提升储能电池导电剂材料性能的方法

文档序号:9913403阅读:870来源:国知局
提升储能电池导电剂材料性能的方法
【技术领域】
[0001]本发明涉及储能电池的导电剂材料技术领域,尤其涉及到一种提升储能电池导电剂材料性能的方法。
【背景技术】
[0002]锂离子电池是一个快速增长的电池市场。他们在诸多领域都有重要应用,包括混合动力汽车和插电式动力汽车。这些电池通常由含锂的过渡金属组成的氧化物或者含锂的过渡金属磷酸盐正极和石墨负极。这些电极通常由电极粉末,导电剂和有机粘结剂组成。
[0003]使用导电剂是为了保证储能电池电极具有良好的充放电性能,在极片制作时通常加入一定量的导电物质,在活性物质之间、活性物质与集流体之间起到收集微电流的作用,以减小电极的接触电阻加速电子的移动速率,同时也能有效地提高锂离子在电极材料中的迀移速率,从而提高电极的充放电效率。
[0004]主要的储能电池导电剂为导电炭黑,其特点是粒径小,比表面积特别大(例如10-2000m2/g),导电性能特别好,常用的炭黑导电剂有:乙炔黑、Super P、Super S、350G、碳纤维(VGCF)、碳纳米管(CNTs)、科琴黑(KetjenblackEC300J、KetjenblackEC600JD、CarbonECP、Carbon ECP600JD等。
[0005]在锂离子电池中使用导电剂可以I)提高锂离子电池的电池倍率性能;2)可以提高锂离子传导的性能;3)可以起到吸液保液的作用等。
[0006]目前锂离子电池中使用导电剂的主要问题有I)导电剂的高比表面积,尤其是超高比表面积(>500m2/g)导电剂会大大增加其化学反应活性,尤其是在高电压下,会造成电解质在其表面更容易氧化,造成电池寿命减少,安全性,稳定性降低;2)导电剂的颗粒较小(一般为几十纳米),造成其分散性不好,分散工艺繁杂,一般除了要使用机械的操作外还要注意其分散的程序(如:分次、分量加入的专用分散剂、导电剂等的顺序问题);3)导电剂的比例及添加量等会影响电池制备成本。
[0007]以上导电剂性能的不足,都会造成锂电池性能成本损失。例如一些商业化的电池包括钴酸锂(LiCoO2(LCO)),钴锰镍酸锂(LiMnxNiyCoz02(x+y+z = I) (NCM)),镍钴铝锂(LiNixCoyAlz02(x+y+z = I) (NCA)),磷酸铁锂(LiFePOx),以及未来的锂硫电池,锂空,锂氧,钠电池,鎂电池,矾电池等高容量储能电池会出现循环寿命降低(尤其高电压下),电池产气,起火(thermalrunaway)等安全性问题。
[0008]对导电剂的改性,可以改善以上出现的问题。目前,导电剂材料的改性主要有高温惰性气氛处理(如Ar>900C。),经过处理后的导电炭黑表面形成一层无定形碳薄层,减少表面悬挂碳键,经过处理的导电炭黑,可明显减少电解质在导电剂表面氧化(尤其是高电压下),提高电池的循环,安全,稳定性。

【发明内容】

[0009]本发明所要解决的技术问题是提供一种提升储能电池导电剂材料性能的方法,提尚导电剂的稳定性,进而提尚电池的稳定性。
[0010]为解决上述技术问题,本发明提出下列提升储能电池导电剂材料性能的方法,通过原子层积法或气态前驱体脉冲法,或者上述两种方法的结合,在导电剂表面生长包覆金属氧化物,所述金属氧化物厚度为2埃米到100埃米。
[0011]所述原子层积法或气态前驱体脉冲法,或者上述两种方法的结合,在导电剂表面生长包覆金属氧化物,包括以下步骤:
[0012]a.将导电剂材料置于原子层沉积反应腔中,抽真空并加热反应室温度到250?1000开尔文,使导电剂粉末在设定温度下保持5?300min,反应腔内的气压低于0.01个大气压;
[0013]b.打开出气阀,脉冲清扫气,清扫3?600s;
[0014]c.关闭出气阀,脉冲气态前驱体A或者前驱体A与携带气的混合物,时间为0.0I?1000秒,接着保持一段时间I秒?15分钟;
[0015]d.然后打开出气阀,脉冲清扫气,清扫0.1?10分钟;关闭出气阀,抽真空,移去多余的反应副产物;
[0016]g.循环执行步骤c、d,直到得到所需的包覆厚度2?100埃米;
[0017]h.导电剂在原子层沉积反应前可经过但不限于02,N20,N02等气体处理,温度在250?1000开尔文,时间5?300分钟。
[0018]包覆层生长速度是I到1埃米每循环。
[0019]上述反应条件的选择主要遵循两个原则。第一个原则是前驱体A、B在反应条件下是气态。因此,根据反应物的是否挥发选择反应温度和气压条件。反应温度选在基底能够稳定存在,不融化,不分解,并在电极和电极部件的玻璃化温度以下。第二个原则是前驱体A、B的反应活性。
[°02°] 优选所述前驱体A为三甲基招(trimethyl aluminum)、A1C13三氯化招、钛酸四异丙酯(tetraisopropylTitanate)、四氯化钛(TiCU)、給酸四异丙酯(tetra isopropylhafnate)之一或上述物质的混合物。
[0021 ]优选所述清扫气为氮气或氩气;携带气为氮气或氩气。
[0022]优选所述前驱体B水,氧气,臭氧,双氧水,等离子氧原子,硫化氢,氟气,氢氟酸之一或上述物质的混合物。
[0023]原子层沉积(ALD)中,所述前驱体A混合物在该反应条件下不会发生自我反应。前驱体A混合物中每个所述前驱体A只在基底表面反应,生成单层沉积物。在引入第前驱体B前,过量的前驱体A会从反应区移除。前驱体A或前驱体B的半反应的副产品也会在下一个反应前被移除。这保证了反应只在基底表面反应。
[0024]清扫气用于在两个反应前驱体之间排除过量的反应物。携带气,用于携带反应物进入反应腔室。携带气体以下几个功能,包括(I)加速移除多余的反应物和反应副产品,(2)协助将反应前驱体带入反应区,帮助所有电极基体表面都可以均匀接触反应物,(3)对于电极颗粒的包覆,携带气可以将颗粒流化分散,充分均匀地和前驱体接触。清扫气和携带气都不和ALD反应物反应,或者干扰反应物彼此反应。
[0025]本发明可应用于的导电剂材料不限于上文说到的炭黑导电剂乙炔黑、SuperP、Super S、350G、碳纤维(VGCF)、碳纳米管(CNTs)、科琴黑(Ket jenblackEC300J)等。
[0026]本发明是一种在高比表面积导电剂粉末表面形成均匀超薄包覆层的工艺,可以提高导电剂(尤其是在高电压下的)稳定性,进而提高电池的稳定性,还可提高导电剂的分散性,另外可提高超高比表面积(>500m2/g)导电剂在电极材料的使用比例,降低总体导电剂添加量(例如一般电极材料会使用多种不同比例的导电剂组合)。
【附图说明】
[0027]下面结合附图和【具体实施方式】对本发明的技术方案作进一步具体说明。
[0028]图1为LiCoO2电池容量变化相对于电池充放电循环次数曲线图。近乎水平的曲线为包覆导电剂后的钴酸锂电池,斜向下的曲线为未包覆导电剂的同款钴酸锂电池,电压〉4.45V0.5C。显然,包覆导电剂后的钴酸锂电池的电池容量变化相对于电池充放电循环次数增加没有明显变化。而未包覆导电剂的同款钴酸锂电池的电池容量变化相对于电池充放电循环次数增加呈现快速下降趋势。此差异在高倍率充放电下更为明显。
【具体实施方式】
[0029]实施例1
[0030]a.将导电剂材料置于原子层沉积仪器反应腔中,抽真空并加热反应室温度到400开尔文,使电极样品在设定温度下保持25min,反应腔内的气压为10毫托;
[0031]b.打开出气阀,脉冲清扫气,清扫15秒;
[0032 ] c.关闭出气阀,脉冲气态三甲基铝,时间为0.0I秒,接着保持一段时间60秒;
[0033]d.然后打开出气阀,脉冲清扫气氩气,清扫I分钟;关闭出气阀,抽真空,移去多余的反应副产物;
[0034]e.然后关闭出气阀,脉冲气态水,时间为1秒,接着保持一段时间5s;
[0035]f.然后打开出气阀,脉冲清扫气氩气,清扫I分钟;再次关闭出气阀,抽真空,移去多余的反应副产物;
[0036]g.返回步骤c循环执行步骤c以下步骤。
[0037]包覆层生长速度是I埃米每循环,得到金属氧化物厚度约为2埃米的导电剂材料。
[0038]实施例2
[0039]a.将导电剂材料置于原子层沉积仪器反应腔中,抽真空并加热反应室温度到450开尔文,使电极样品在设定温度下保持5min,反应腔内的气压为10毫托;
[0040]b.打开出气阀,脉冲清扫气氮气,清扫3s;
[0041 ] c.关闭出气阀,脉冲气态三氯化铝,时间为1秒,接着保持一段时间I秒;
[0042]d.然后打开出气阀,脉冲清扫气氮气,清扫0.1分钟;关闭出气阀,抽真空,移去多余的反应副产物;
[0043]g.返回步骤c循环执行步骤c以下步骤。
[0044]包覆层生长速度是1.1埃米每循环,得到金属氧化物厚度约为20埃米的导电剂材料。
[0045]实施例3
[0046]a.将导电剂材料置于原子层沉积仪器反应腔中,抽真空并加热反应室温度到500开尔文,使电极样品在设定温度下保持5min,反应腔内的气压为10毫托;
[0047]b.打开出气阀,脉冲清扫气氩气,清扫10s;
[0048]c.关闭出气阀,脉冲气态钛酸四异丙酯,时间为I秒,接着保持一段时间20秒;
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1