P型鳍式场效应晶体管及其形成方法

文档序号:10471863阅读:499来源:国知局
P型鳍式场效应晶体管及其形成方法
【专利摘要】一种P型鳍式场效应晶体管及其形成方法,其中,P型鳍式场效应晶体管的形成方法包括:提供半导体衬底,所述半导体衬底具有鳍部;形成横跨所述鳍部的栅极结构;从鳍部顶部降低所述栅极结构两侧鳍部的高度;在剩余的所述鳍部表面形成掺杂有源漏离子的第一半导体材料层;在所述第一半导体材料层上形成掺杂有势垒降低离子的第二半导体材料层;在所述第二半导体材料层上形成金属层;对所述金属层进行退火处理,形成接触电阻减小层。采用本发明的方法形成的P型鳍式场效应晶体管降低了后续形成的P型鳍式场效应晶体管的源极和漏极上的寄生电阻,提高了后续形成的P型鳍式场效应晶体管的性能。
【专利说明】
P型韓式场效应晶体管及其形成方法
技术领域
[0001] 本发明设及半导体制造,尤其设及P型罐式场效应晶体管及其形成方法。
【背景技术】
[0002] 随着半导体产业向更低的技术节点的发展,渐渐开始从平面CMOS晶体管向=维 罐式场效应晶体管(FinFET)过渡。FinFET中,栅极结构至少可W从两侧对沟道进行控制, 具有比平面MOSFET器件强得多的栅对沟道的控制能力,能够很好的抑制短沟道效应。而且 相对其它器件具有更好的与现有的集成电路生产技术的兼容性。
[0003] 参考图1至图4,现有技术中的P型罐式场效应晶体管的形成方法如下:
[0004] 首先,参考图1和图2,提供半导体衬底10,所述半导体衬底10具有罐部11。具体 如下: 阳0化]所述半导体衬底10包括具有至少两个分立的凸起结构的娃衬底101和位于凸起 结构之间的绝缘层102,绝缘层102低于所述凸起结构。高于绝缘层102的凸起结构为罐部 11。
[0006] 接着,形成横跨罐部11的栅极结构12。其中栅极结构12包括栅氧层121和位于 栅氧层121之上的栅极层122。
[0007] 接着,在半导体衬底10、罐部11的顶部和侧壁、栅极结构12的顶部和侧壁形成侧 墙材料层13。
[000引接着,在栅极结构12的周围形成栅极结构侧墙(图未示),此时,罐部11的周围没 有侧墙。
[0009] 接着,参考图3,去除栅极结构12两侧的罐部11,绝缘层102与剩余的凸起结构相 平。
[0010] 接着,参考图4,在剩余的凸起结构顶面原位渗杂生长有源漏离子的错娃层14,形 成了 P型罐式场效应晶体管的源极和漏极。其中,源漏离子为棚离子。然后,在错娃层14 的表面外延生长娃帽(Si Cap)层15。
[0011] 接着,在娃帽层15上形成金属层(图未示),对金属层进行退火,金属层与娃帽层 烙合形成金属娃化物层(图未示)。
[0012] 采用现有技术的方法形成的P型罐式场效应晶体管的性能不佳。

【发明内容】

[0013] 本发明解决的问题是采用现有技术的方法形成的P型罐式场效应晶体管的性能 不佳。
[0014] 为解决上述问题,本发明提供一种P型罐式场效应晶体管的形成方法,
[0015] 包括:提供半导体衬底,所述半导体衬底具有罐部;
[0016] 形成横跨所述罐部的栅极结构;
[0017] 从罐部顶部降低所述栅极结构两侧罐部的高度;
[0018] 在剩余的所述罐部表面形成渗杂有源漏离子的第一半导体材料层;
[0019] 在所述第一半导体材料层上形成渗杂有势垒降低离子的第二半导体材料层;
[0020] 在所述第二半导体材料层上形成金属层;
[0021] 对所述金属层进行退火处理,形成接触电阻减小层。
[0022] 可选的,所述渗杂有势垒降低离子的第二半导体材料层的形成方法包括:
[0023] 在所述第一半导体材料层上原位渗杂生长有势垒降低离子的第二半导体材料层, 或者,
[0024] 在所述第一半导体材料层上外延生长第二半导体材料层;
[00巧]对所述外延生长的第二半导体材料层进行势垒降低离子注入。
[00%] 可选的,所述势垒降低离子包括侣离子、嫁离子、错离子和铜离子中的至少一种。
[0027] 可选的,所述势垒降低离子为侣离子、嫁离子和铜离子中的至少一种时,所述势垒 降低离子渗杂剂量为大于等于lE13atom/cm2且小于等于lE15atom/cm2; W28] 所述势垒降低离子为错离子时,所述势垒降低离子渗杂剂量为大于等于 lE13atom/cm2且小于等于 lE14atom/cm 2O
[0029] 可选的,形成第二半导体材料层的过程还包括对所述第二半导体材料层渗杂有棚 离子。
[0030] 可选的,所述棚离子的渗杂剂量大于所述势垒降低离子的渗杂剂量。
[0031] 可选的,所述第二半导体材料层的材料为娃。
[0032] 可选的,所述接触电阻减小层的材料为金属娃化物。
[0033] 可选的,形成所述栅极结构步骤之后,降低所述罐部高度的步骤之前还包括:
[0034] 在所述罐部周围形成罐部侧墙;
[0035] 从罐部顶部降低所述罐部高度至预设高度的过程中还包括从罐部侧墙顶部降低 所述罐部侧墙的高度至预设高度。
[0036] 可选的,所述预设高度为大于等于所述原始罐部高度的=分之一且小于原始罐部 高度的=分之二。
[0037] 可选的,所述第一半导体材料层的材料为错娃。
[003引为解决上述问题,本发明提供一种P型罐式场效应晶体管,包括:
[0039] 具有罐部的半导体衬底;
[0040] 横跨所述罐部的栅极结构;
[0041] 位于所述栅极结构两侧的高度降低的罐部;
[0042] 位于所述高度降低的罐部表面的渗杂有源漏离子的第一半导体材料层;
[0043] 位于所述第一半导体材料层上的接触电阻减小层;
[0044] 所述接触电阻减小层的底部界面具有电偶极子层。
[0045] 可选的,所述电偶极子层包括侣离子、嫁离子、错离子和铜离子中的至少一种的电 偶极子层。
[0046] 可选的,所述接触电阻减小层的材料为金属娃化物。
[0047] 可选的,所述第一半导体材料层的材料为错娃。 W48] 可选的,所述高度降低的罐部周围具有罐部侧墙。
[0049] 可选的,所述高度降低后的罐部高度和罐部侧墙高度为预设高度,所述预设高度 为大于等于原始罐部高度的=分之一且小于等于原始罐部高度的=分之二。
[0050] 可选的,所述接触电阻减小层与所述第一半导体材料层之间具有第二半导体材料 层,所述第二半导体材料层内渗杂有棚离子。
[0051] 与现有技术相比,本发明的技术方案具有W下优点:
[0052] 在形成接触电阻减小层的退火处理的过程中,渗入第二半导体材料层的势垒降低 离子会发生在接触电阻减小层的固溶度值小,在第二半导体材料层的固溶度值大的现象。 因此,形成接触电阻减小层的过程中,大量的势垒降低离子会在接触电阻减小层的底部边 界析出,并且在接触电阻减小层的底部边界形成电偶极子(dipole)层。该电偶极子层会产 生一个和电子运动方向相同的电场,从而降低了肖特基势垒宽度和高度,进而降低了后续 形成的P型罐式场效应晶体管的源极和漏极上的寄生电阻,提高了后续形成的P型罐式场 效应晶体管的性能。
【附图说明】
[0053] 图1是现有技术中的半导体衬底及在其上形成有栅极结构和侧墙材料层的立体 结构示意图;
[0054] 图2是沿图1中AA方向的剖面结构示意图; 阳化5] 图3和图4是继图2的步骤之后形成的现有技术的P型罐式场效应晶体管的剖面 流程结构示意图;
[0056] 图5是本发明中的半导体衬底及在其上形成有栅极结构和侧墙材料层的立体结 构示意图;
[0057] 图6是沿图5中BB方向的剖面结构示意图;
[0058] 图7至图9是继图6的步骤之后形成的本发明具体实施例的P型罐式场效应晶体 管的剖面流程结构示意图。
【具体实施方式】
[0059] 发明人发现,采用现有技术的方法形成的P型罐式场效应晶体管的性能不佳的原 因为在源极和漏极上形成的金属娃化物层的寄生电阻太大。
[0060] 为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明 的具体实施例做详细的说明。
[0061] 首先,参考图5和图6,提供半导体衬底20,所述半导体衬底20具有罐部21。
[0062] 本实施例中,所述半导体衬底20包括具有至少两个分立的凸起结构的娃衬底201 和位于凸起结构之间的绝缘层202,绝缘层202低于所述凸起结构。高于绝缘层202的凸起 结构为罐部21。其中,绝缘层202的材料为氧化娃。
[0063] 其他实施例中,所述半导体衬底还可W为绝缘体上娃衬底,所述绝缘体上娃衬底 包括底部娃层、位于底部娃层上的绝缘层、位于绝缘层上的顶部娃层。刻蚀顶部娃层形成罐 部。
[0064] 接着,继续参考图5和图6,形成横跨所述罐部21的栅极结构22。
[0065] 本实施例中,所述栅极结构22包括栅介质层221和位于所述栅介质层221上的栅 极层222。栅介质层221的材料为氧化娃时,栅极层222的材料为多晶娃。栅介质层221 的材料为高k栅介质层时,栅极层222的材料为金属。其中,高k栅介质层的材料为Hf〇2、 AI2O3、Zr〇2、HfSiO、HfSiON、HfTaO 和 HfZrO。
[0066] 栅极结构22的具体形成方法为本领域技术人员的熟知技术。
[0067] 接着,继续参考图5和图6,在栅极结构22的周围形成栅极侧墙(图未示),在罐 部21的周围形成罐部侧墙。
[0068] 具体形成方法如下:在半导体衬底20、罐部21的顶部和侧壁、栅极结构22的顶部 和侧壁形成侧墙材料层23'。侧墙材料层23'包括底部的氧化娃层和位于底部的氧化娃层 上的氮化娃层。氮化娃层之所W在外侧,是因为,氮化娃层的硬度和机械强度较高,后续形 成的栅极结构侧墙中,在外侧的氮化娃层能够更好的保护栅极结构在后续工艺步骤中不受 损伤。氧化娃层为氮化娃层的应力缓冲层。
[0069] 接着,对侧墙材料层23'进行回刻,形成栅极结构侧墙和罐部侧墙23a(参考图7)。 栅极结构侧墙与罐部侧墙23a的组成成分相同。W罐部侧墙23a为例,罐部侧墙包括位于 内侧的氧化娃侧墙231和位于氧化娃侧墙231上的氮化娃侧墙232 (参考图7)。如果没有 氧化娃侧墙231的存在,氮化娃侧墙232会对罐部21产生较大应力,再加上罐部21的尺寸 较小,该较大应力会使罐部21中的娃产生位错,从而严重影响后续形成的P型罐式场效应 晶体管的性能。
[0070] 接着,参考图7,降低所述栅极结构两侧罐部的高度和罐部侧墙的高度至预设高度 Hlo
[0071] 其中,所述预设高度小于等于罐部高度。
[0072] 现有技术中,是直接采用干法刻蚀的方法同时降低罐部侧墙与罐部的高度至预设 高度Hl的。但是由于罐部的特征尺寸非常小,再加上受罐部侧墙的影响,使得降低罐部高 度的工艺非常难控制,通常在剩余罐部顶部会形成向上凸出的尖锐的棱角或者会形成向下 凹陷的锥形凹坑。因此,剩余的罐部顶部的形状非常不规则且不均匀。后续在该剩余罐部 上形成错娃层时,错娃层的形状也会非常不规则,从而影响错娃层对后续形成的P型罐式 场效应晶体管施加的应力大小,不利于提高P型罐式场效应晶体管的载流子迁移率,进而 会影响P型罐式场效应晶体管的性能。
[0073] 另外,每个剩余罐部顶部的形状不规则,在不规则形状的罐部顶部形成错娃层时, 会发生相邻的剩余罐部上的错娃层相连生长的现象。后续形成的器件中,容易出现源极之 间的短路连接或漏极之间的短路连接现象,从而进一步影响后续形成的P型罐式场效应晶 体管的性能。
[0074] 本实施例中,先将罐部侧墙23a中的氮化娃侧墙232自上而下去除高度h(图未 示),其中,去除高度h与所述预设高度Hl之和小于原始罐部高度。接着将露出的氧化娃侧 墙231去除高度h,接着将露出的罐部21去除高度h。依次循环重复所述的氮化娃侧墙去 除高度h、氧化娃侧墙去除高度h和罐部21去除高度h的步骤,直至将罐部侧墙23a和罐部 21的高度减小至预设高度H1。
[00巧]其中,将罐部侧墙23a中的氮化娃侧墙232自上而下去除高度h的具体过程如下: 处理气体为CHFs,稀释气体为氣气。具体工艺条件为:CHFs的流量为Isccm~200sccm ;氣 气的流量为IOsccm~SOOsccm;处理压力为:10~200mTorr,处理频率为0. mz~1000化; 源功率为50¥~500胖;偏置功率为:0胖~200胖;占空比为10%~90%。
[0076] 将露出的氧化娃侧墙231去除高度h的具体过程如下: 阳077] 处理气体为CaFs,稀释气体为氣气。具体工艺条件为:CaFs的流量为5sccm~ 200sccm ;氣气的流量为IOsccm~SOOsccm ;处理压力为:10~200mTo;r;r,处理频率为 0.1 Hz~1000 Hz ;源功率为50W~500W ;偏置功率为:OW~200W ;占空比为10%~90%。
[0078] 采用上述条件可W实现将露出的罐部侧墙去除高度h,运样,之前被该罐部侧墙包 围的罐部21会露出。而且,露出的罐部21的顶面呈向下凹陷,且凹陷面为只有一个弧度的 规则弧面。因此,露出罐部21的顶面均匀光滑。例如,露出的罐部顶部为一个规则的碗状凹 坑,该碗状凹坑的内侧壁均匀光滑。其他实施例中,露出罐部的顶面也可W呈向上凸起的、 只有一个弧度的规则弧面,该顶面均匀光滑。上述具体工艺条件需要精确控制,任何一项不 符合要求,都不能实现使露出的罐部21的顶面呈规则的、光滑均匀的弧面。
[0079] 之后,将罐部侧墙的高度自上而下降低h后,采用干法刻蚀的方法将露出的罐部 21去除高度h。此时,剩余的罐部与剩余的罐部侧墙相平,而且剩余的罐部顶面光滑平坦。
[0080] 依次重复将所述氮化娃侧墙去除高度h,之后,将氧化娃侧墙去除高度h,露出的 罐部顶面为规则的,光滑均匀的弧面。再将罐部21去除高度h的步骤,直至将罐部侧墙23a 和罐部21都去除至预设高度HI。最终剩余的罐部顶面光滑平坦。后续步骤中,在最终高度 的剩余罐部上光滑平坦的弧面上形成第一半导体材料层的形状规则,能够更好的对后续形 成P型罐式场效应晶体管施加压应力,从而提高后续形成的P型罐式场效应晶体管的载流 子的迁移率,进一步提高后续形成的P型罐式场效应晶体管的性能。
[0081] 另外,在最终高度的剩余罐部的有规则、光滑均匀的弧面顶部上形成的第一半导 体材料的形状规则,不会发生相邻的罐部上的第一半导体材料相连生长的现象,从而可W 避免后续形成的源极金属插塞之间或者漏极金属插塞之间的短路连接的现象出现。
[0082] 需要说明的是(1)剩余的罐部的周围具有罐部侧墙的原因如下:罐部侧墙可W防 止后续在该剩余的罐部上形成的第一半导体材料层的体积过大。体积太大的第一半导体材 料层一方面对沟道不能施加有效的压应力。另一方面,如果栅极结构为多晶娃栅极结构,体 积太大的第一半导体材料层高于该多晶娃栅极结构的几率会很大。则后续工艺中,采用化 学机械研磨形成金属栅极结构的过程中,化学机械研磨会在第一半导体材料层上停止,并 不会在金属栅极结构处停止,从而使得金属栅极结构的厚度增加,影响后续形成的P型罐 式场效应晶体管的性能。再者,相邻的剩余罐部上如果形成体积过大的第一半导体材料层, 则该体积过大的第一半导体材料层会相连,同样会发生源极金属插塞之间或者漏极金属插 塞之间的短路连接的现象。
[0083] (2)剩余罐部的高度与剩余罐部侧墙的高度相等,都为预设高度Hl。原因如下:剩 余罐部的高度如果高于罐部侧墙,则后续在剩余罐部上生长形成第一半导体材料层的速度 会很快,形成的第一半导体材料层的致密性欠佳,性能略差,后续对沟道施加的应力略小。 剩余罐部的高度如果低于罐部侧墙,则第一半导体材料层生长至与罐部侧墙相平处的生长 难度较大,生长速度非常慢。
[0084] (3)预设高度Hl小于原始罐部高度时,更进一步的,当预设高度为大于等于原始 罐部高度的=分之一且小于等于原始罐部高度的=分之二时,后续工艺中,在该高度的罐 部上形成的第一半导体材料层与沟道的距离最为合适,因此,可W对后续形成的P型罐式 场效应晶体管施加最佳效果的压应力。
[00化]其他实施例中,采用现有技术中的直接采用干法刻蚀的方法同时降低罐部侧墙与 罐部至预设高度Hl的方法,也属于本发明的保护范围。
[0086] 其他实施例中,去除高度h与预设高度Hl之和等于原始罐部高度,也属于本发明 的保护范围。运样,就可W不用进行依次重复氮化娃侧墙去除、氧化娃侧墙去除和罐部21 去除的步骤,只需要进行一个循环就可W实现将罐部和罐部侧墙的高度降低至预设高度 Hlo
[0087] 其他实施例中,所述预设高度Hl等于零,运时,剩余的凸起结构的顶部与绝缘层 202相平。后续工艺中,在剩余的凸起结构的顶面形成错娃层,也属于本发明的保护范围。
[0088] 其他实施例中,罐部侧墙的材料只为氧化娃层,也属于本发明的保护范围。
[0089] 接着,参考图8,在剩余的所述罐部21表面形成渗杂有源漏离子的第一半导体材 料层24。
[0090] 本实施例中,第一半导体材料层24的材料为错娃。渗杂在第一半导体材料层24 的源漏离子为棚离子。
[0091] 本实施例中,形成渗杂有源漏离子的第一半导体材料层24的方法为:原位渗杂生 长。之所W采用原位渗杂生长的方法形成渗杂有源漏离子的第一半导体材料层24,是因为, 该生长工艺相对于离子注入工艺容易控制,能够实现梯度渗杂。
[0092] 所述原位渗杂生长第一半导体材料层后,对第一半导体材料层进行源漏离子注 入,之后,对第一半导体材料进行退火,形成源极和漏极。
[0093] 具体形成工艺为本领域技术人员的熟知技术,在此不再寶述。
[0094] 其他实施例中,也可W在剩余的罐部上外延生长第一半导体材料层。之后,对第一 半导体材料层进行源漏离子注入和退火。也属于本发明的保护范围。
[0095] 形成第一半导体材料层后,第一半导体材料层24对后续形成的P型罐式场效应晶 体管产生压应力,W提高后续形成的P型罐式场效应晶体管的性能。
[0096] 接着,参考图9,在所述第一半导体材料层24上形成渗杂有势垒降低离子的第二 半导体材料层25。
[0097] 本实施例中,第二半导体材料层25的材料为娃。则势垒降低离子包括侣离子、嫁 离子、错离子和铜离子中的至少一种。
[0098] 本实施例中,形成渗杂有势垒降低离子的第二半导体材料层25的方法为:原位渗 杂生长。在外延生长娃材料的过程中原位渗入含侣离子、嫁离子、错离子和铜离子中的至少 一种渗杂气体。
[0099] 之所W采用原位渗杂生长的方法形成渗杂有势垒降低离子的第二半导体材料层 25,是因为,原位渗杂生长工艺相对于离子注入工艺容易控制,可W实现梯度渗杂。另一方 面可W防止向第二半导体材料层注入势垒降低离子过程中的对第二半导体材料层晶格造 成损伤。
[0100] 本实施例中,采用原位渗杂生长的方法形成渗杂有势垒降低离子的第二半导体材 料层25的同时,还在第二半导体材料层25中渗杂有棚离子。而且,棚离子的渗杂剂量大于 势垒降低离子的渗杂剂量。原因如下:棚离子的渗入可W使棚离子处于第二半导体材料层 25晶格中的非替代位上,形成接触电阻减小层的退火处理过程中,棚离子被激活,占据第二 半导体材料层的晶格。因为,第二半导体材料层25的接触电阻与渗入棚离子的剂量(Nd, n-type doping concentration)成反比,所W在第二半导体材料层25中渗杂有棚离子,并 且增大棚离子的渗杂剂量可W降低第二半导体材料层25的接触电阻。 阳101] 其他实施例中,采用原位渗杂生长的方法形成渗杂有势垒降低离子的第二半导体 材料层的同时,不在第二半导体材料层中渗杂有棚离子,也属于本发明的保护范围。因为, 后续的退火工艺中,第一半导体材料层中的棚离子会扩散至第二半导体材料层。 阳102] 其他实施例中,也可W在剩余的罐部上外延生长第二半导体材料层。之后,对第二 半导体材料层进行势垒降低离子注入。 阳103] 接着,在第二半导体材料层25上形成金属层(图未示)。
[0104] 本实施例中,金属层的材料为儀金属。儀金属层的方法为化学气相沉积法或者为 物理瓣射法。本实施例中,之所W选择儀金属,是因为:后续退火工艺中形成的儀娃化物颗 粒比较小,低电阻相被完全成核并且长大。另外,正因为儀娃化物颗粒比较小,它的电接触 也比较容易形成。
[01化]其他实施例中,金属层还可W为钻金属、钢金属、销金属、粗金属、铁金属或鹤金属 等难烙金属,也属于本发明的保护范围。 阳106] 接着,对金属层进行退火处理,形成接触电阻减小层(图未示)。
[0107] 本实施例中,所述接触电阻减小层的材料为金属娃化物。具体材料为儀娃化物 (NiSiz)。退火处理为快速热退火(RTA)处理。具体溫度范围为大于等于150°C且小于等于 900 °C。
[0108] 形成接触电阻减小层的过程如下:金属层与第二半导体材料层在一起发生反应, 具体为金属层与第二半导体材料层烙合形成娃化物,也就是说,形成接触电阻减小层,W减 小后续在源极和漏极上形成的金属插塞与源极和漏极之间的接触电阻。
[0109] 本实施例中,第二半导体材料层25的厚度大于接触电阻减小层的厚度。正因为, 第二半导体材料层25内渗杂有棚离子,才使第二半导体材料层25的阻值减小。后续工艺 形成的源极插塞和漏极插塞与对应的源极和漏极之间的接触电阻值也不会受到影响。本实 施例中,形成渗杂有势垒降低离子的第二半导体材料层25的原因如下:
[0110] 在形成接触电阻减小层的退火处理的过程中,渗入第二半导体材料层25的势垒 降低离子会发生在接触电阻减小层的固溶度值小,在第二半导体材料层25的固溶度值大 的现象。因此,形成接触电阻减小层的过程中,大量的势垒降低离子会在接触电阻减小层的 底部边界析出。也就是说,会在接触电阻减小层与第二半导体材料层25的界面析出,并且 在接触电阻减小层与第二半导体材料层25的界面形成电偶极子(dipole)层,该电偶极子 层会产生一个和电子运动方向相同的电场,从而降低了第二半导体材料层25内的载流子 向金属跃迁的势垒宽度和高度至载流子可W直接向金属跃进,也就是说,降低了肖特基势 垒宽度和肖特基势垒高度(Schottky Barrier Hei曲t,(()Bn),进而降低了后续形成的P型 罐式场效应晶体管的源极和漏极上的寄生电阻P C,提高了后续形成的P型罐式场效应晶 体管的性能。
[0111] 需要说明的是,(1)渗入第二半导体材料层的势垒降低离子为侣离子、嫁离子 和铜离子中的至少一种时,势垒降低离子的剂量为大于等于lE13atom/cm 2且小于等于 lE15atom/cm2。其中,当势垒降低离子为一种W上的离子种类时,则势垒降低离子的剂量为 一种W上离子的总剂量。势垒降低离子的剂量如果太大,容易在第二半导体材料层25内引 入过多的晶格缺陷,从而影响后续形成的P型罐式场效应晶体管的性能。势垒降低离子的 剂量如果太小,降低了后续形成的P型罐式场效应晶体管的源极和漏极上的寄生电阻的效 果不是最佳。
[0112] (2)如果势垒降低离子为错离子,则渗入错离子的第二半导体材料层25在退火工 艺不容易形成金属娃化物层。因此,渗入至第二半导体材料层25的错离子的剂量要小。本 实施例为大于等于lE13atom/cm 2且小于等于lE14atom/cm2。如果渗入第二半导体材料层 25的错离子的剂量太大,除了会在第二半导体材料层25内引入过多的缺陷外,还不利于后 续金属娃化物的形成。如果渗入第二半导体材料层25的错离子的剂量太小降低了后续形 成的P型罐式场效应晶体管的源极和漏极上的寄生电阻的效果不是最佳。
[0113] (3)如果势垒降低离子为错离子与其他势垒降低离子的混合物,则势垒降低离子 的总剂量为大于等于lE13atom/cm 2且小于等于lE15atom/cm2。其中,相对于其他势垒降低 离子,错离子的剂量的含量最少。
[0114] (4)为什么不在第一半导体材料层中渗杂势垒降低离子的原因如下:只有在形成 娃化物的快速热退火处理的过程中,势垒降低离子只在接触电阻减小层与第二半导体材料 层的界面析出,并且在接触电阻减小层与第二半导体材料层的界面形成电偶极子。因此,如 果在第一半导体材料层中渗杂势垒降低离子,并不会被析出,从而也不会产生电偶极子。
[0115] 当然,其他实施例中,接触电阻减小层的厚度等于第二半导体材料层的厚度也属 于本发明的保护范围。则形成接触电阻减小层的过程中,大量的势垒降低离子会在接触电 阻减小层的底部边界析出。也就是说,会在接触电阻减小层与第一半导体材料层24的界面 析出,并且在接触电阻减小层与第一半导体材料层24的界面形成电偶极子(dipole)层,该 电偶极子层会产生一个和电子运动方向相同的电场,从而降低了第一半导体材料层24内 的载流子向金属跃迁的势垒宽度,也就是说,降低了肖特基势垒宽度,进而降低了后续形成 的P型罐式场效应晶体管的源极和漏极上的寄生电阻,提高了后续形成的P型罐式场效应 晶体管的性能。也属于本发明的保护范围。
[0116] 参考图9,本发明还提供一种P型罐式场效应晶体管,包括:
[0117] 具有罐部的半导体衬底20 ;
[0118] 横跨所述罐部的栅极结构22 (请参考图5);
[0119] 位于所述栅极结构22两侧的高度降低的罐部21 ;
[0120] 位于所述高度降低的罐部21表面的渗杂有源漏离子的第一半导体材料层24 ; 阳121] 位于所述第一半导体材料层24上的接触电阻减小层25 ;
[0122] 所述接触电阻减小层25的底部界面具有电偶极子层(图未示)。
[0123] 本实施例中,所述电偶极子层包括侣离子、嫁离子、错离子和铜离子中的至少一种 的电偶极子层。
[0124] 本实施例中,所述接触电阻减小层的材料为金属娃化物。
[01巧]本实施例中,所述第一半导体材料层的材料为错娃。
[0126] 本实施例中,所述高度降低的罐部周围具有罐部侧墙。
[0127] 本实施例中,所述高度降低的罐部21和罐部侧墙高度为预设高度,所述预设高度 为大于等于所述原始罐部高度的=分之一且小于等于原始罐部高度的=分之二。
[0128] 本实施例中,所述接触电阻减小层与所述第一半导体材料层之间具有第二半导体 材料层,所述第二半导体材料层内渗杂有棚离子。
[0129] 具体请参考P型罐式场效应晶体管的形成方法的实施例。
[0130] 虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本 发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当W权利要求所 限定的范围为准。
【主权项】
1. 一种P型鳍式场效应晶体管的形成方法,其特征在于,包括: 提供半导体衬底,所述半导体衬底具有鳍部; 形成横跨所述鳍部的栅极结构; 从鳍部顶部降低所述栅极结构两侧鳍部的高度; 在剩余的所述鳍部表面形成掺杂有源漏离子的第一半导体材料层; 在所述第一半导体材料层上形成掺杂有势皇降低离子的第二半导体材料层; 在所述第二半导体材料层上形成金属层; 对所述金属层进行退火处理,形成接触电阻减小层。2. 如权利要求1所述的方法,其特征在于,所述掺杂有势皇降低离子的第二半导体材 料层的形成方法包括: 在所述第一半导体材料层上原位掺杂生长有势皇降低离子的第二半导体材料层,或 者, 在所述第一半导体材料层上外延生长第二半导体材料层; 对所述外延生长的第二半导体材料层进行势皇降低离子注入。3. 如权利要求1所述的方法,其特征在于,所述势皇降低离子包括铝离子、镓离子、锗 离子和铟离子中的至少一种。4. 如权利要求1所述的方法,其特征在于,所述势皇降低离子为铝离子、镓离子和铟 离子中的至少一种时,所述势皇降低离子掺杂剂量为大于等于lE13atom/cm 2且小于等于 lE15atom/cm2; 所述势皇降低离子为锗离子时,所述势皇降低离子掺杂剂量为大于等于lE13atom/cm2 且小于等于lE14atom/cm2。5. 如权利要求1所述的方法,其特征在于,形成第二半导体材料层的过程还包括对所 述第二半导体材料层掺杂有硼离子。6. 如权利要求5所述的方法,其特征在于,所述硼离子的掺杂剂量大于所述势皇降低 离子的掺杂剂量。7. 如权利要求1所述的方法,其特征在于,所述第二半导体材料层的材料为硅。8. 如权利要求7所述的方法,其特征在于,所述接触电阻减小层的材料为金属硅化物。9. 如权利要求1所述的方法,其特征在于,形成所述栅极结构步骤之后,从鳍部顶部降 低所述鳍部高度的步骤之前还包括: 在所述鳍部周围形成鳍部侧墙; 从鳍部顶部降低所述鳍部高度至预设高度的过程中还包括从鳍部侧墙顶部降低所述 鳍部侧墙的高度至预设高度。10. 如权利要求9所述的方法,其特征在于,所述预设高度为大于等于原始鳍部高度的 三分之一且小于原始鳍部高度的三分之二。11. 如权利要求1所述的方法,其特征在于,所述第一半导体材料层的材料为锗硅。12. -种P型鳍式场效应晶体管,包括: 具有鳍部的半导体衬底; 横跨所述鳍部的栅极结构; 位于所述栅极结构两侧的高度降低的鳍部; 位于所述高度降低的鳍部表面的掺杂有源漏离子的第一半导体材料层; 位于所述第一半导体材料层上的接触电阻减小层; 其特征在于,所述接触电阻减小层的底部界面具有电偶极子层。13. 如权利要求12所述的晶体管,其特征在于,所述电偶极子层包括铝离子、镓离子、 锗离子和铟离子中的至少一种的电偶极子层。14. 如权利要求12所述的晶体管,其特征在于,所述接触电阻减小层的材料为金属硅 化物。15. 如权利要求12所述的晶体管,其特征在于,所述第一半导体材料层的材料为锗硅。16. 如权利要求12所述的晶体管,其特征在于,所述高度降低的鳍部周围具有鳍部侧 墙。17. 如权利要求12所述的晶体管,其特征在于,所述高度降低的鳍部和鳍部侧墙高度 为预设高度,所述预设高度为大于等于所述原始鳍部高度的三分之一且小于等于原始鳍部 高度的三分之二。18. 如权利要求12所述的晶体管,其特征在于,所述接触电阻减小层与所述第一半导 体材料层之间具有第二半导体材料层,所述第二半导体材料层内掺杂有硼离子。
【文档编号】H01L29/78GK105826374SQ201510006082
【公开日】2016年8月3日
【申请日】2015年1月6日
【发明人】李勇, 居建华, 陈林林
【申请人】中芯国际集成电路制造(上海)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1