发光器件封装和包括该发光器件封装的照明设备的制造方法

文档序号:10571564阅读:347来源:国知局
发光器件封装和包括该发光器件封装的照明设备的制造方法
【专利摘要】公开了一种发光器件封装和照明设备。所述发光器件封装包括:衬底;发光结构,布置在所述衬底的下方并且包括第一导电型半导体层、有源层和第二导电型半导体层;第一电极,被连接至通过至少一个接触孔暴露的所述第一导电型半导体层;第二电极,被连接至所述第二导电型半导体层;第一绝缘层,被布置为从所述发光结构的下方延伸至在所述发光结构的一侧与所述第一电极之间的空间并且被配置为反射光;以及反射层,布置在所述第一绝缘层的下方。
【专利说明】
发光器件封装和包括该发光器件封装的照明设备
技术领域
[0001 ]实施例涉及一种发光器件封装和包括该发光器件封装的照明设备。
【背景技术】
[0002]发光二极管(LED)是一类半导体器件,其利用化合物半导体的特性将电转换为红外光或光来交换信号,或者其被用作光源。
[0003]由于其物理和化学特性,第II1-V族氮化物半导体作为发光器件的核心材料而引人注目,发光器件例如为LED、激光二极管(LD)等。
[0004]因为LED不包括在例如白炽灯泡和荧光灯等的传统照明设备中所使用的诸如为汞(Hg)的对环境有害的物质,因此这种LED具有极好的环境友好特性,并且由于长寿命和低功耗等的特性而正在取代传统光源。已经以各种方式进行了用于提高包括LED的传统发光器件封装的可靠性的研究。
[0005]在传统的倒装芯片接合型的发光器件封装的情形下,尽管需要在发光器件封装的向上方向上发射光,但是却在向下的方向上发射光,因此存在光输出效率降低的问题。

【发明内容】

[0006]实施例提供一种具有提高的光输出效率的发光器件封装以及包括该发光器件封装的照明设备。
[0007]根据实施例,提供一种发光器件封装,包括:衬底;发光结构,布置在所述衬底的下方并且包括第一导电型半导体层、有源层和第二导电型半导体层;第一电极,被连接至通过至少一个接触孔暴露的所述第一导电型半导体层;第二电极,被连接至所述第二导电型半导体层;第一绝缘层,被布置为从所述发光结构的下方延伸至在所述发光结构的一侧与所述第一电极之间的空间并且被配置为反射光;以及反射层,布置在所述第一绝缘层的下方。
[0008]所述反射层可以被布置为还延伸至所述第一电极或所述第二电极中至少一个的下方。所述反射层可以布置在所述至少一个接触孔的下方。例如,在垂直于发光结构的厚度方向的方向上,反射层的宽度可以大于至少一个接触孔的宽度。此外,当至少一个接触孔包括多个接触孔时,在垂直于发光结构的厚度方向的方向上,反射层的宽度可以大于多个接触孔的宽度总和。
[0009]所述发光器件封装还可以包括:第一焊盘和第二焊盘,被分别连接至所述第一电极和所述第二电极;以及第二绝缘层,布置在所述反射层与所述第二焊盘之间。所述第一焊盘可以被连接至所述反射层。第一电极、反射层或第一焊盘中的至少两个可以包括相同的材料。即,第一焊盘可以经由反射层被连接至第一电极。
[0010]所述第一电极可以被连接至所述反射层。第一绝缘层可以包括分布式布拉格反射器。发光器件封装还可以包括布置在分布式布拉格反射器与发光结构的一侧之间且布置在分布式布拉格反射器与发光结构的上部之间的钝化层。
[0011]所述第一绝缘层可以包括:第一部分,布置在所述发光结构的下方并且具有第一厚度;以及第二部分,在所述至少一个接触孔中布置在所述第一电极与所述发光结构的所述侧之间并且具有与所述第一厚度不同的第二厚度。
[0012]第二厚度可以小于第一厚度。反射层的厚度可以为10nm至500nm的范围,并且第二电极的厚度可以为10nm至100nm的范围。
[0013]所述反射层的端部与所述第二电极在所述发光结构的厚度方向上重叠。与第二电极重叠的反射层的宽度的最小值可以为2μπι。所述反射层的端部可以与所述发光结构在所述发光结构的厚度方向上重叠。
[0014]发光器件封装还可以包括布置在第二电极与第二导电型半导体层之间的可透光电极层。发光器件封装还可以包括第一焊接部和第二焊接部、以及第一引线框架和第二引线框架,其中第一焊接部和第二焊接部被分别连接至第一焊盘和第二焊盘且彼此电隔离,第一引线框架和第二引线框架被分别连接至第一焊接部和第二焊接部且彼此电隔离。发光器件封装还可以包括封装体,其与第一和第二引线框架形成腔,其中衬底、发光结构、第一电极、第二电极、第一绝缘层和反射层可以布置在腔中。
[0015]根据实施例,提供一种包括该发光器件封装的照明设备。
【附图说明】
[0016]参照下面的附图可以详细描述布置和实施例,附图中类似的附图标记指代类似的元件,并且其中:
[0017]图1是发光器件封装的平面图;
[0018]图2是沿图1所示的线1-Γ截取的发光器件封装的剖视图;
[0019]图3Α至图3Η是根据实施例用于描述制造发光器件封装的方法的工艺剖视图;以及
[0020]图4是示出根据比较示例的发光器件封装中的分布式布拉格反射器的立体图。
【具体实施方式】
[0021]下文中,将参照附图详细地描述本公开的实施例以帮助理解本公开。然而,根据本公开的实施例可以具有不同的形式并且不应该被解释为限于本文所陈述的描述。提供本公开的实施例使得本公开是彻底的和完整的且充分地将本公开的概念传达给本领域技术人员。
[0022]在实施例的描述中,应该理解,当元件被称为在另一元件“上或下”时,术语“上或下”指两个元件之间的直接连接或者在两个元件之间形成有一个或更多元件的间接连接。此外,当使用术语“上或下”时,它可以指元件的向下方向和向上方向。
[0023]另外,相对性术语诸如“第一”和“第二”、“以上/上部/之上”和“以下/下部/之下”不一定需要或包括器件或元件之间的任何物理或逻辑关系或顺序,并且还可以被用来将一个器件或元件与另一个器件或元件区分开。
[0024]为了方便和精确描述起见,附图中层和区域的厚度可以被夸大、省略或示意性示出。另外,每个组件的尺寸并不完全匹配其实际尺寸。
[0025]下文中,将参照附图描述根据实施例的发光器件封装100。为方便起见,将使用笛卡尔坐标系(X-轴、y_轴、Z-轴)来描述发光器件封装100。然而,也可以使用其他不同的坐标系。在笛卡尔坐标系中,X-轴、y-轴和Z-轴是相互垂直的。但是本公开并不限于此。即,X-轴、y-轴和z-轴可以相互交叉而不是相互垂直。
[0026]图1是发光器件封装100的平面图,图2是沿图1所示的线1-Γ截取的发光器件封装100的剖视图。
[0027]参照图1和图2,根据实施例的发光器件封装100可以包括衬底110、发光结构120、第一电极132-1和132-2、第二电极134、第一绝缘层140、反射层150、第一焊盘162、第二焊盘164、第一焊接部166、第二焊接部168、第二绝缘层170、钝化层180、可透光电极层190、封装体192、绝缘体194、第一引线框架196A、第二引线框架196B、以及模塑构件198。
[0028]图1是对应于当在+X轴方向观察图2所示的剖视图时视图的平面图。为了便于描述。图1仅仅示出图2所示的第一和第二焊盘162和164以及第一和第二接触孔CHl和CH2。
[0029]衬底110可以包括导电材料或非导电材料。例如,衬底110可以包括蓝宝石A1203、6&15丨(:、2110、63?、11^、63203、6348或3丨中的至少一种,但是实施例并不限于衬底110包括这些材料。
[°03°] 为了改善衬底110与发光结构120之间的热膨胀系数(coefficients of thermaleXpanS1n,CTE)之差以及衬底110与发光结构120之间的晶格失配,缓冲层或过渡层(未示出)还可以被布置在衬底110与发光结构120之间。缓冲层可以包括,例如,从由Al、In、N和Ga构成的组中选择的至少一种材料,但不限于此。另外,缓冲层可以具有单层或多层结构。[0031 ] 发光结构120可以布置在衬底110下方。发光结构120可以包括第一导电型半导体层122、有源层124、以及第二导电型半导体层126,其自衬底110在向下方向(例如,+X轴方向)上依次堆叠。
[0032]第一导电型半导体层122布置在衬底110下方。第一导电型半导体层122可以利用包含第II1-V族元素、第I1-VI族元素等的化合物半导体来实施,并且可以掺杂有第一导电型掺杂剂。当第一导电型半导体层122是η型半导体层时,第一导电型掺杂剂是η型掺杂剂并且可以包括S1、Ge、Sn、Se或Te,但不限于此。
[0033]例如,第一导电型半导体层122可以包括具有AlxInyGaa-x—y)N(0<x< l、0<y<l、0
<x+y < I)的组成式的半导体材料。第一导电型半导体层122可以包括GaN、InN、AlN、InGaN、AlGaN、InAlGaN、AlInN、AlGaAs、InGaAs、AlInGaAs、GaP、AlGaP、InGaP、AlInGaP 或 InP 中的至少一种。
[0034]有源层124可以布置在第一导电型半导体层122与第二导电型半导体层126之间。有源层124是这样的层:在该层中通过第一导电型半导体层122注入的电子(或空穴)和通过第二导电型半导体层126注入的空穴(或电子)相遇来发射光,该光具有由形成有源层124的材料的固有能带确定的能量。有源层124可以由单阱结构、多阱结构、单量子阱结构、多量子讲结构(multi quantum well,MQW)、量子线结构或量子点结构中的至少一种形成。
[0035]有源层124的阱层/阻挡层可以由InGaN/GaN结构、InGaN/InGaN结构、GaN/AlGaN结构、InAlGaN/GaN结构、GaAs (InGaAs)/AlGaAs 结构和 GaP (InGaP)/AlGaP 结构中的一种或多种成对结构形成,但不限于此。该阱层可以由带隙能量低于阻挡层的带隙能量的材料形成。
[0036]导电覆层(未示出)可以形成在有源层124之上和/或之下。该导电覆层可以由带隙能量高于有源层124的阻挡层的带隙能量的半导体形成。例如,导电覆层可以包括GaN结构、AlGaN结构、InAlGaN结构、超晶格结构等。另外,该导电覆层可以掺杂有η型或P型掺杂剂。
[0037]根据实施例,有源层124可以发射紫外线波长带的光。这里,紫外线的波长带指从10nm到400nm范围内的波长带。特别地,有源层124可以发射在10nm到280nm的范围内的波长带的光。然而,该实施例并不限制从有源层124发射的光的波长带。
[0038]第二导电型半导体层126可以被布置在有源层124之下。第二导电型半导体层126可以由半导体化合物形成,并且可以由诸如第II1-V族半导体、第I1-VI族半导体等的化合物半导体来实施。例如,第二导电型半导体层126可以包括具有ΙηχΑ1Α&ΡΧ-γΝ(0<χ<1、0<y < UO < x+y < I)组成式的半导体材料。第二导电型半导体层126可以掺杂有第二导电型掺杂剂。当第二导电型半导体层126是P型半导体层时,第二导电型掺杂剂是P型掺杂剂,并且可以包括Mg、Zn、Ca、Sr或Ba等。
[0039]第一导电型半导体层122可以是η型半导体层,并且第二导电型半导体层126可以被实施为P型半导体层。可替代地,第一导电型半导体层122可以是P型半导体层,并且第二导电半导体层126可以被实施为η型半导体层。
[0040]发光结构120可以被实施为η-ρ结结构、ρ-η结结构、η-ρ-η结结构以及ρ-η-ρ结结构中的任意一种结构。
[0041]第一电极132-1和132-2可以被电连接至第一导电型半导体层122。如下参照图3Β所述,第二导电型半导体层126的一部分、有源层124的一部分、以及第一导电型半导体层122的一部分被台面蚀刻以形成至少一个接触孔,暴露在至少一个接触孔CH处的第一导电型半导体层122可以被电连接至第一电极132-1和132-2。
[0042]例如,参照图1,第一电极可以包括第一-第一电极132-1和第一-第二电极132-2。手指形状的第一-第一电极132-1可以被布置在第一接触孔CHl处,并且第一-第二电极132-2可以被布置在第二接触孔CH2处。第一电极132-1和132-2包括欧姆接触材料来提供欧姆功能,并且因此可以不需要布置额外的欧姆层(未示出),或者额外的欧姆层可以布置在第一电极132-1和132-2之上或之下。为了更好地理解,在图1中,用虚线示出由第一和第二焊盘162和164覆盖的第一和第二接触孔CHl和CH2。
[0043]第二电极134可以被电连接至第二导电型半导体层126。第二电极134可以具有欧姆特性,并且可以包括与第二导电型半导体层126欧姆接触的材料。当第二电极134执行欧姆功能时,可以省略额外的欧姆层(未示出)。
[0044]由于图1和图2中示出的发光器件封装100具有倒装芯片接合结构,所以可以通过第一电极132-1和132-2、第一导电型半导体层122和衬底110发射从有源层124发射的光。为此,第一电极132-1和132-2、第一导电型半导体层122、以及衬底110可以由具有光透明性的材料形成。此时,第二导电型半导体层126和第二电极134可以由具有光透明性或光不透明性的材料或具有反射性的材料形成,但是实施例不限于此。
[0045]使用反射或透射从有源层124发射的光而不是吸收光的任何材料,可以形成第一和第二电极132-1、132-2和134中的每个,并且第一和第二电极132-1、132-2和134中的每个可以在第一和第二导电型半导体层122和126上高质量地生长。例如,第一和第二电极132-1、132-2和134中的每个可以由金属形成,并且可以由厶8、祖、厶1、1^、?(1、&、1?11、]\%、211^Au、Hf和其选择性组合形成。
[0046]当第二电极134被实施为银(Ag)并且第二电极134的第一厚度tl小于10nm时,在第二电极134中可以产生银附聚物和空隙。因此,如将在下面所述的,当存在可透光电极层190时,工作电压可以受到轻微的影响,但是第二电极134的反射率可以降低。此外,当第一厚度tl大于100nm时,银原子迀移,并且然后可能出现短路。虽然存在阻挡银原子迀移的介电层,但是仍可能产生原子的迀移并且可能发生可透光电极层190的分层。因此,第一厚度tl可以是10nm至100nm的范围,但是实施例不限于此。
[0047]同时,可透光电极层190可以布置在第二电极134与第二导电型半导体层126之间。可透光电极层190可以是透明导电氧化物(TCO)。例如,可透光电极层190可以包括铟锡氧化物(ITO)、铟锌氧化物(IZO)、铟锌锡氧化物(IZTO)、铟铝锌氧化物(IAZO)、铟镓锌氧化物(IGZO)、铟镓锡氧化物(IGT0)、铝锌氧化物(ΑΖ0)、锑锡氧化物(ATO)、镓锌氧化物(GZ0)、Ir0x、Ru0x、Ru0x/IT0、Ni/Ir0x/Au 或 Ni/Ir0x/Au/IT0 中的至少一种,然而不限于上述材料。
[0048]在一些情形中,可以省略可透光电极层190。
[0049]同时,第一绝缘层140可以从发光结构120的下方延伸至在发光结构120的侧部与第一电极132-1和132-2之间的空间。
[0050]第一绝缘层140可以包括第一部分Pl和第二部分P2。第一部分Pl是位于发光结构120下方的部分且具有第二厚度t2。第二部分P2被布置在第一电极132-1和132-2与发光结构120的侧部之间,并且具有第三厚度t3。本文中,第二厚度t2和第三厚度t3可以是彼此不同的。如将在下面所述的,当第一绝缘层140是由物理气相沉积(physical vapordeposit1n,PVD)方法形成时,第三厚度t3可以小于第二厚度t2。
[0051 ]根据实施例,第一绝缘层140可以被实施为执行绝缘和反射功能的材料。例如,第一绝缘层140可以包括分布式布拉格反射器(DBR),但是实施例不限于此。DBR具有πιλ/4η的厚度以及其中低折射率层和高折射率层交替堆叠的结构。λ指从有源层124发射的光的波长,η指介质的折射率,并且m是奇数。低折射率层可以包括,例如,具有1.4的折射率的二氧化硅(Si02)、或者具有1.6的折射率的氧化铝(Al2O3),并且高折射率层可以包括,例如,具有2.05至2.25的折射率的氮化硅(Si3N4)、具有2或更大折射率的氧化钛(T12)、或者具有3或更大折射率的S1-H,但是实施例不限于此。低折射率层和高折射率层的数量可以进行各种改变。
[0052]由于第一绝缘层140具有绝缘功能,所以第一电极132-1和132-2可以与发光结构120的有源层124电隔离,并且第一电极132-1和132-2可以是与发光结构120的第二导电型半导体层126电隔离。另外,由于第一绝缘层140具有反射功能,所以可以反射从有源层124发射且指向第一和第二引线框架而不是朝向衬底110的光。
[0053]此外,钝化层180还可以被布置在第一绝缘层140(即DBR)与发光结构120的侧部之间,并且还可以被布置在第一绝缘层140(即DBR)与发光结构120的上部之间。如上所述,钝化层180可以包围发光结构120的角落,并且可以被布置在发光结构120的上部和侧部上。钝化层180可以包括Si02、Ti02、Zr02、Si3N4、Al203或MgF2中的至少一种,但是实施例不限于钝化层180包括这些材料。在某些情况下,可以省略钝化层180。
[0054]同时,反射层150可以布置在第一绝缘层140下方。参照图2,反射层150可以包括布置在第一绝缘层140下方的第一部分Rl。
[0055]另外,反射层150可以布置在第一电极132-1和132-2或第二电极134中至少一个的下方。例如,如图2所示,反射层150还可以包括布置在第一电极132-1和132-2下方的第二部分R2。
[0056]另外,反射层150可以布置在至少一个接触孔下方。例如,如图2所示,反射层150可以布置在第一和第二接触孔CHl和CH2的下方。在这种情况下,在与发光结构120的厚度方向(例如,X-轴方向)交叉的方向,例如垂直于X-轴方向的方向(例如,z-轴方向)上,反射层150的宽度可以大于第一和第二接触孔CHl和CH2的宽度总和。
[0057]此外,反射层150的第一部分Rl的端部可以布置在第二电极134下方。即,在发光结构120的厚度方向(例如,X-轴方向)上,反射层150的端部可以与第二电极134重叠。此外,在厚度方向(例如,X-轴方向)上,反射层150的第一部分Rl的端部可以与发光结构120重叠。
[0058]当与第二电极134重叠的反射层150的第一宽度Wl或者与发光结构120重叠的反射层150的第二宽度W2小于2μπι时,从有源层124发射且指向厚度方向(例如,X-轴方向)的光可以不从反射层150或者第二电极134反射,并且可以在反射层150与第二电极134之间泄漏。因此,第一宽度Wl与第二宽度W2的最小值可以是2μπι,但是实施例不限于此。
[0059]反射层150可以由诸如银(Ag)的反射材料形成。当反射层150被实施为银(Ag)并且反射层150的第四厚度t4小于10nm时,在反射层150中可以产生银附聚物和空隙。此外,当第四厚度t4大于500nm时,银原子迀移,并且然后可能发生短路。虽然存在阻挡银原子迀移的介电层,但仍可能发生银原子的迀移。因此,根据本实施例,反射层150的第一部分Rl的第四厚度t4可以为10nm至500nm的范围,但是实施例不限于此。
[0060]如上所述,当第三厚度t3小于第二厚度t2时,第一绝缘层140的第二部分P2可能无法完全执行反射功能。在这种情况下,光可以通过第二部分P2泄漏。为了防止这种情况,根据本实施例,反射层150被布置在第一绝缘层140下方。因此,由于第一绝缘层140的第二部分P2的厚度小而未从第一绝缘层140反射且指向下的光可以被反射层150反射。
[0061]如上所述,只要能够反射未从第一绝缘层140反射的泄漏光,反射层150的布置不限定于上述示例。
[0062]此外,如图2所示,第一电极132-1和132-2可以被连接至反射层150,但是实施例不限于此。
[0063]同时,第一焊盘162可以被电连接至反射层150,并且反射层150可以被电连接至第一电极132-1和132-2。因此,第一焊盘162可以经由反射层150被电连接至第一电极132-1和132-2。
[0064]此外,当反射层150被连接到第一焊盘162时,第一焊盘162的实际面积增大,导热性增强,因此可以提高散热效率。
[0065]此外,第二焊盘164可以被电连接至第二电极134。
[0066]第一和第二焊盘162和164中的每个可以包括具有导电性的金属材料,并且可以包括与第一和第二电极132-1、132-2和134中的每个相同或不同的材料。
[0067]此时,根据本实施例,第一电极132-1和132-2、反射层150、或第一焊盘162中的至少两个可以包括相同的材料。例如,第一电极132-1和132-2、反射层150和第一焊盘162中的全部可以被实施为相同的材料。可替代地,第一电极132-1和132-2和反射层150中的全部可以被实施为相同的材料,并且第一焊盘162可以被实施为与第一电极132-1和132-2的材料不同的材料。可替代地,第一电极132-1和132-2和第一焊盘162中的全部可以被实施为相同的材料,并且反射层150可以被实施为与第一电极132-1和132-2的材料不同的材料。可替代地,反射层150和第一焊盘162中的全部可以被实施为相同的材料,并且第一电极132-1和132-2可以被实施为与第一焊盘162的材料不同的材料。
[0068]此外,第二绝缘层170可以布置在反射层150与第二焊盘164之间,并且可以将反射层150与第二焊盘160电绝缘。当未布置第二绝缘层170时,反射层150被电连接至第二焊盘164,并且因此发光器件封装100不能工作。如上所述,第二绝缘层170可以用于防止反射层150与第二焊盘164之间的电短路。
[0069]第二绝缘层170可以被实施为与第一绝缘层140相同的材料,或者可以被实施为与第一绝缘层140不同的材料。第二绝缘层170可以包括Si02、Ti02、Zr02、Si3N4、Al203或MgF2中的至少一种,但是实施例并不限于第二绝缘层170包括这些材料。
[0070]同时,第一焊接部166可以被布置在第一焊盘162与第一引线框架196A之间,并且可以将第一焊盘162电连接至第一引线框架196A。此外,第二焊接部168可以被布置在第二焊盘164与第二引线框架196B之间,并且可以将第二焊盘164电连接到第二引线框架196B。
[0071]第一和第二焊接部166和168中的每个可以是焊锡膏或焊锡球。
[0072]上述第一和第二焊接部166和168可以通过第一和第二焊盘162和164将第一和第二导电型半导体层122和126电连接至相应的第一和第二引线框架196A和196B,并且由此无需导线。然而,根据另一个实施例,可以使用导线将第一和第二导电型半导体层122和126分别连接到第一和第二引线框架196A和196B。
[0073]此外,可以省略第一焊接部166和第二焊接部168。在这种情况下,第一焊盘162可以执行第一焊接部166的功能,并且第二焊盘164可以执行第二焊接部168的功能。当省略第一焊接部166和第二焊接部168时,第一焊盘162可以被直接连接到第一引线框架196A,并且第二焊盘164可以被直接连接到第二引线框架196B。
[0074]此外,第一和第二引线框架196A和196B可以被分别电连接到第一和第二焊接部166和168。在与发光结构120的厚度方向(例如,X-轴方向)交叉的方向,例如垂直于厚度方向的方向(例如,Z-轴方向)上,第一和第二引线框架196A和196B可以彼此间隔开。第一和第二引线框架196A和196B中的每个可以由导电材料例如金属形成,但是实施例不限于第一和第二引线框架196A和196B中的每个包括这些材料。为了电隔离第一和第二引线框架196A和196B,绝缘体194也可以被布置在第一引线框架196A与第二引线框架196B之间。绝缘体194可以包括Si02、Ti02、Zr02、Si3N4、Al203或MgF2中的至少一种,但是实施例并不限于绝缘体194包括这些材料。
[0075]此外,当封装体192由导电材料例如金属材料形成时,第一和第二引线框架196A和196B也可以是封装体192的一部分。在此情况下,形成封装体192—部分的第一和第二引线框架196A和196B被绝缘体194彼此电隔离。
[0076]此外,封装体192可以形成腔C。例如,如图2所示,封装体192可以与第一和第二引线框架196A和196B形成腔C。即,可以由封装体192的内侧表面以及第一和第二引线196A和196B的上表面来限定腔C。然而,实施例不限于此。根据另一个实施例,不同于图2中所示,可以仅由封装体192来形成腔C。可替代地,阻挡壁(未示出)被布置在封装体192的平坦上表面上,并且可以由阻挡壁和封装体192的上表面限定来限定腔。封装体192可以被实施为环氧树脂模塑料(epoxy molding compound,EMC)等,但是实施例不限于封装体192被实施为该材料。
[0077]在腔C中可以布置衬底110、发光结构120、第一电极132-1和132-2、第二电极134、第一绝缘层140、反射层150、第一焊盘162、第二焊盘164、第一焊接部166、第二焊接部168、第二绝缘层170、钝化层180、可透光电极层190以及模塑构件198。
[0078]另外,模塑构件198可以包围和保护腔C中的衬底110、发光结构120、第一电极132-1和132-2、第二电极134、第一绝缘层140、反射层150、第一焊盘162、第二焊盘164、第一焊接部166、第二焊接部168、第二绝缘层170、钝化层180和可透光电极层190。模塑构件198可以被实施为例如,硅树脂(Si),并且由于包括荧光体(或荧光物质),所以模塑构件198可以改变将被从发光器件封装发射的光的波长。荧光体可以包括可将从发光器件封装产生的光转换为白光的基于YAG、基于TAG、基于硅酸盐、基于硫化物、和基于氮化物的荧光体中的至少一种,但实施例不限于这些类型的荧光体。
[0079]选自(丫、!13、1^、3(3、1^、6(1、3111)3(厶1、6&、111、31小6)5(0、3)12:〇6中的一种可以被用作基于YAG和基于TAG的荧光体,并且选自(Sr、Ba、Ca、Mg)2Si04: (Eu、F、Cl)中的一种可以被用作基于硅酸盐的荧光体。
[0080]另外,选自(Ca、Sr)S:Ei^P(Sr、Ca、Ba) (Al、Ga)2S4:Eu中的一种可以被用作基于硫化物的荧光体。选自基于 Ca-aSiA10N:Eu 荧光体的(Sr、Ca、S1、Al、0)N:Eu@i^,CaAlSiN4:Eu或β-SiA10N:Eu)和(Cax、My)(S1、Al)12(0、N)16的荧光体成分(这里,M是Eu、Tb、Yb或Er中的至少一种材料,并且0.05〈(x+y)〈0.3、0.02〈χ〈0.27且0.03〈y〈0.3)中的至少一种可以被用作基于氮化物的荧光体。
[0081]作为红色荧光体,可以使用包括N(例如,CaAlSiN3= Eu)的基于氮化物荧光体。当与基于硫化物荧光体相比较时,这种基于氮化物红色荧光体具有低的颜色变化风险,以及相对于外部条件(包括热、湿气等)优良的可靠性。
[0082]下文中,将参照以下附图描述制造如图1和图2所示的发光器件封装100的方法,但是实施例不限于此。即,图1和2中所示的发光器件封装100显然可以由不同的制造方法来制造。
[0083]图3A至图3H是根据实施例用于描述制造发光器件封装100的方法的工艺剖视图。
[0084]参照图3A,发光结构120形成在衬底110上。即,第一导电型半导体层122、有源层124、以及第二导电型半导体层126被顺序地堆叠在衬底110上以形成发光结构120。
[0085]首先,设置衬底110。衬底110可以包括导电材料或非导电材料。例如,衬底110可以包括蓝宝石(Al203)、GaN、SiC、Zn0、GaP、InP、Ga203、GaAs或Si中的至少一种,但是实施例并不限于衬底110包括这些材料。
[0086]然后,第一导电型半导体层122形成在衬底110上。第一导电型半导体层122可以由诸如掺杂有第一导电型掺杂剂的第II1-V族元素、第I1-VI族元素等的化合物半导体形成。当第一导电型半导体层122是η型半导体层时,第一导电型掺杂剂是η型掺杂剂并且可以包括S1、Ge、Sn、Se或Te,但不限于此。
[0087]例如,第一导电型半导体层122可以包括具有AlxInyGaa-x—y)N(0<x< l、0<y<l、0
<x+y < I)的组成式的半导体材料。第一导电型半导体层122可以包括GaN、InN、AlN、InGaN、AlGaN、InAlGaN、AlInN、AlGaAs、InGaAs、AlInGaAs、GaP、AlGaP、InGaP、AlInGaP 或 InP 中的至少一种。
[0088]然后,有源层124形成在第一导电型半导体层122上。有源层124可以由单阱结构、多阱结构、单量子阱结构、MQW结构、量子线结构或量子点结构中的至少一种形成。
[0089]有源层124 的阱层 / 阻挡层可以由 InGaN/GaN、InGaN/InGaN、GaN/AlGaN、InAlGaN/GaN、GaAs (InGaAs)/AlGaAs和GaP (InGaP )/AlGaP中的一种或多种成对结构形成,但不限于此。该阱层可以由带隙能量低于阻挡层的带隙能量的材料形成。
[0090]导电覆层(未示出)可以形成在有源层124之上和/或之下。该导电覆层可以由带隙能量高于有源层124的阻挡层的带隙能量的半导体形成。例如,导电覆层可以包括GaN、AlGaN、InAlGaN、超晶格结构等。另外,该导电覆层可以掺杂有η型或P型掺杂剂。
[0091]然后,第二导电型半导体层126形成在有源层124上。第二导电型半导体层126可以由半导体化合物形成,并且可以由诸如第II1-V族半导体或第I1-VI族半导体的化合物半导体来实施。例如,第二导电型半导体层126可以包括具有InxAlyGapx-yN(0 <x< U0<y< UO
<x+y < I)组成式的半导体材料。第二导电型半导体层126可以掺杂有第二导电型掺杂剂。当第二导电型半导体层126是P型半导体层时,第二导电型掺杂剂是P型掺杂剂,并且可以包括 Mg、Zn、Ca、Sr、Ba 等。
[0092]然后,参照图3B,第二导电型半导体层126的一部分、有源层124的一部分、以及第一导电型半导体层12 2的一部分被台面蚀刻以形成第一接触孔CHI和第二接触孔CH2。本文中,被台面蚀刻的每个第一接触孔CHl和第二接触孔CH2的深度可以为800nm,但是实施例不限于此。
[0093]然后,参照图3C,形成钝化层180以包围发光结构120的侧边缘和上边缘。可以省略形成钝化层180。钝化层180可以由Si02、Ti02、Zr02、Si3N4、Al203或MgF2中的至少一种形成,但是实施例不限于钝化层180由这些材料形成。
[0094]然后,参照图3D,可透光电极层190形成在被暴露且未被钝化层180覆盖的第二导电型半导体层126上。可透光电极层190可以是TC0。例如,可透光电极层190可以由ΙΤ0、ΙΖ0、IZTO、IAZO、IGZO、IGTO、AZO、ATO、GZO、I r0x、RuOx、RuOx/1 TO、Ni /1 rOx/Au或Ni /I rOx/Au/1 TO 中的至少一种形成,并且不限于上述材料。在一些情况下,可以省略形成可透光电极层190。
[0095]然后,参照图3E,第一电极132-1和132-2形成在第一导电型半导体层122上,其暴露在由台面蚀刻形成的第一和第二接触孔CHl和CH2处。此外,第二电极134形成在可透光电极层190上。第一电极132-1和132-2可以具有Ιμπι的高度。此外,第二电极134可以具有10nm至500nm的第一厚度tl。然而,实施例并不限制第一电极132-1和132-2的高度h以及第二电极134的第一厚度tl的具体值。
[0096]第一和第二电极132-1、132-2和134中的每个可以由金属形成,并且可由Ag、N1、Al、Rh、Pd、Ir、Ru、Mg、Zn、Pt、Au、Hf 或其选择性组合形成。
[0097]然后,参照图3F,形成第一绝缘层140以覆盖布置在衬底110上的发光结构120、钝化层180、可透光电极层190、第一电极132-1和132-2、以及第二电极134。本文中,第一绝缘层140可以是DBR。例如,可以通过PVD方法形成DBR。在这种情况下,形成在第一电极132-1和132-2与发光结构120的侧部之间的第一绝缘层140的第三厚度t3小于形成在发光结构120上的第一绝缘层140的第二厚度t2。
[0098]—般地,当膜形成在阶梯层上时,形成在阶梯层的侧壁上的膜厚度与形成在阶梯层的上部之上的膜厚度的比例接近1:1的程度被称作阶梯覆盖特性。根据本实施例,当其上形成有DBR的发光结构120被成为阶梯式的并且由PVD方法形成DBR时,DBR被沉积在发光结构120的侧壁上的比例和DBR被沉积在发光结构120的上部之上的比例变得彼此不同。考虑到这一点,DBR的阶梯覆盖特性可能是差的。因此,形成在发光结构120的侧壁上的DBR的反射率与形成在发光结构120的上部之上的DBR的反射率可以彼此不同。
[0099]然后,参照图3G,使用普通光刻工艺形成被配置为暴露第一电极132-1和132-2的第一和第二孔Hl和H2以及形成被配置为暴露第二电极134的第三孔H3。
[0100]然后,参照图3H,反射层150形成在第一绝缘层140上至第四厚度t4,同时掩埋第一和第二孔Hl和H2。此时,形成反射层150,使得第二电极134可以与反射层150的端部在竖直方向(例如,发光结构120的厚度方向)上重叠第一宽度Wl。反射层150可以由诸如银(Ag)的反射材料形成。
[0101]然后,继续参照图3H,第二绝缘层170形成在反射层150的上部和一侧上。第二绝缘层可以由Si02、Ti02、Zr02、Si3N4、Al203或MgF2中的至少一种形成,但是实施例不限于第二绝缘层170由这些材料形成。
[0102]然后,参照图2,第一焊盘162形成在第二绝缘层170和反射层150上,并且第二焊盘164形成在第二电极134以及第一和第二绝缘层140和170上同时掩埋第三孔H3。此时,第二焊盘164可以与第一焊盘162在水平方向上分隔开,并且可以由第二绝缘层170与反射层150电隔离。第一和第二焊盘162和164中的每个可以由具有导电性的金属材料形成,并且可以包括与第一和第二电极132-1、132-2和134中每个的材料相同的材料或不同的材料。
[0103]然后,第一和第二焊接部166和168分别形成在第一和第二焊盘162和164上。
[0104]如上所述,在从形成衬底110到形成第一和第二焊接部166和168的过程中,利用单独的过程形成第一和第二引线框架196A和196B、将第一和第二引线框架196A和196B彼此电绝缘的绝缘体194、以及封装体192。
[0105]然后,第一和第二焊接部166和168被分别连接至第一和第二引线框架196A和196B,模塑构件198被填充到封装体192的腔C,以完成发光器件封装100。
[0106]下文中,将参照附图描述根据比较示例的发光器件封装和根据实施例的发光器件封装。根据比较示例的发光器件封装是在根据实施例的发光器件封装中省略反射层150的情形。
[0107]图4是示出根据比较示例的发光器件封装中的DBR的立体图。
[0108]形成在发光结构120的上部和侧部上的DBR即第一绝缘层140的厚度彼此不同。在具有差的阶梯覆盖特性的这种DBR中,可能会出现裂缝或者可能由图4所示的空隙200产生分层。因此,在具有相对小厚度的第一绝缘层140处可能无法适当地执行反射功能。特别地,光可以通过在第一绝缘层140中具有第三厚度t3的第二部分P2泄漏。即,大量的光可以通过第一和第二接触孔CHl和CH2 (在该处布置有第二部分P2)泄露。
[0109]为了改善这种情况,根据实施例,反射层150被布置在具有差的阶梯覆盖特性的DBR下方,特别在第一和第二接触孔CHl和CH2下方,以反射被泄漏到外面的光,并且因此可以提高光输出效率。
[0110]根据实施例的多个发光器件封装可以布置在衬底上,并且包括导光板、棱镜片、扩散片等的光学构件可以布置在发光器件封装的光的路径上。发光器件封装、衬底、以及光学构件可以用作背光单元。
[0111]此外,根据本实施例的发光器件封装可以被应用于显示装置,指示器装置或照明设备。
[0112]这里,显示装置可以包括:底盖、布置在底盖上的反射板、发射光的发光模块、布置在反射板前方且被配置为在向前方向上引导从发光模块发出的光的导光板、包括棱镜片(被布置在导光板前方)的光学片、布置在光学片前方的显示面板、被连接至显示面板且被配置为将图像信号提供给显示面板的图像信号输出电路、以及布置在显示面板前方的滤色镜。本文中,底盖、反射板、发光模块、导光板以及光学片可以形成背光单元。
[0113]另外,照明设备可以包括光源模块(包括衬底和根据该实施例的发光器件封装)、消散光源模块的热量的散热器、以及电源,该电源处理或转换外部提供的电信号以将处理或转换后的电信号提供给光源模块。例如,照明设备可以包括电灯、头灯或街灯。
[0114]头灯可以包括发光模块(包括布置在衬底上的发光器件封装)、反射镜(其在预定方向上例如向前方向上反射从发光模块发射的光)、透镜(其折射反射镜在向前方向上反射的光)、以及遮罩(其阻挡或反射从反射镜反射且然后指向透镜的一部分光),使得形成设计者期望的光分布图案。
[0115]在根据实施例的发光器件封装中,反射层被布置在具有差的阶梯覆盖特性的DBR下方,特别在第一和第二接触孔下方,以反射被泄漏到外面的光,并且因此发光器件封装可以具有提高的光输出效率。另外,在根据实施例的发光器件封装中,通过将反射层连接到第一焊盘,第一焊盘的实际面积增加,并且可以提高散热效率。
[0116]虽然已经参照多个示例性实施例描述了实施方式,但应理解的是,本领域技术人员可以设想出落入本公开原理的精神和范围内的许多其它修改和实施例。更具体地,在本公开、附图和所附权利要求的范围内,主题组合布置的组成部件和/或布置可以有各种变型和修改。
【主权项】
1.一种发光器件封装,包括: 衬底; 发光结构,布置在所述衬底的下方并且包括第一导电型半导体层、有源层和第二导电型半导体层; 第一电极,被连接至通过至少一个接触孔暴露的所述第一导电型半导体层; 第二电极,被连接至所述第二导电型半导体层; 第一绝缘层,被布置为从所述发光结构的下方延伸至在所述发光结构的一侧与所述第一电极之间的空间并且被配置为反射光;以及 反射层,布置在所述第一绝缘层的下方。2.根据权利要求1所述的发光器件封装,其中所述反射层被布置为还延伸至所述第一电极或所述第二电极中至少一个的下方。3.根据权利要求1所述的发光器件封装,其中所述反射层布置在所述至少一个接触孔的下方。4.根据权利要求1所述的发光器件封装,还包括: 第一焊盘和第二焊盘,被分别连接至所述第一电极和所述第二电极;以及 第二绝缘层,布置在所述反射层与所述第二焊盘之间。5.根据权利要求4所述的发光器件封装,其中所述第一焊盘被连接至所述反射层。6.根据权利要求1所述的发光器件封装,其中所述第一电极被连接至所述反射层。7.根据权利要求1所述的发光器件封装,其中所述第一绝缘层包括: 第一部分,布置在所述发光结构的下方并且具有第一厚度;以及 第二部分,在所述至少一个接触孔中布置在所述第一电极与所述发光结构的所述侧之间并且具有与所述第一厚度不同的第二厚度。8.根据权利要求1所述的发光器件封装,其中所述反射层的端部与所述第二电极在所述发光结构的厚度方向上重叠。9.根据权利要求1所述的发光器件封装,其中所述反射层的端部与所述发光结构在所述发光结构的厚度方向上重叠。10.—种照明设备,包括根据权利要求1至9中任一项所述的发光器件封装。
【文档编号】H01L33/62GK105932134SQ201610109347
【公开日】2016年9月7日
【申请日】2016年2月26日
【发明人】丁星好, 任范镇, 李尚烈
【申请人】Lg伊诺特有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1