一种高强度纳米网络状纤维膜的制备方法

文档序号:10571632阅读:364来源:国知局
一种高强度纳米网络状纤维膜的制备方法
【专利摘要】本发明公开了一种高强度纳米网络状纤维膜的制备方法,先将PVDF和PMMA共混并用静电纺丝机制成纳米级静电纺丝,再制成PVDF/PMMA共混纳米纤维膜;然后对PVDF/PMMA共混纳米纤维膜进行恒温恒压热处理,自然冷却至室温即得到高强度纳米网络状纤维膜。本发明有效提高了静电纺丝隔膜的强度、减小了孔径,同时提高了导电率,具有良好的市场推广前景。
【专利说明】
一种高强度纳米网络状纤维膜的制备方法
技术领域
[0001]本发明属于材料工程领域,具体涉及一种高强度纳米网络状纤维膜的制备方法。
【背景技术】
[0002]锂电池具有能量密度高、无记忆效应、环境友好等优点,因此被广泛的应用在手机、电脑、相机等数码设备上。近几年电动汽车的兴起、电动自行车的更新换代,使得市场对大容量锂电池的需求也越来越旺盛。为了满足市场应用,发展高能量密度电池成为重点。高能量密度电池可以从两方面考虑来提高其能量密度:一是采用高比能量的材料;二是采用高电压材料来提高充电电压。
[0003]隔膜是锂电池关键的内层组件之一,是技术壁皇最高的一种高附加值电池材料,约占锂电池成本的20%左右。隔膜的品质对电池容量、电池循环性能和电池安全等都有很大的影响,因此能否生产出高品质隔膜对我国电动车的发展具有举足轻重的意义。目前我国锂电池隔膜生产主要集中在中低端市场,高品质隔膜依旧依靠进口。
[0004]由于PP、PE隔膜特殊的结构和性能尚能满足市场需要,其作为锂离子电池隔膜的主导地位短时间无法改变。但随着锂电池应用的不断扩展,市场对隔膜性能的要求也会越来越高,当PP、PE不再能满足需求时,自然会催生性能更优异、工艺更简单、成本更低廉的新技术。静电纺丝是利用高分子溶液或熔体在高压电场的作用下发生极化,喷出的射流在电场中被裂分、细化,在溶剂挥发固结后,可得到纤维无纺布。静电纺丝制备的无纺布隔膜具有纤维丝直径可控、比表面积大等优点,它能够克服聚烯烃类隔膜孔隙不均匀、吸液率低等缺点,能有效地提尚裡尚子迁移率。
[0005]但是现在的静电纺丝制备的无纺布隔膜的强度低是静电纺丝目前面临的技术难题。此外,静电纺丝还有脆性大、孔径大等问题。如能解决这些技术问题,静电纺丝在制备电池隔膜方面将会发挥更大的作用。

【发明内容】

[0006]针对现有技术存在的上述不足,本发明提供一种高强度纳米网络状纤维膜的制备方法,旨在解决现在的静电纺丝隔膜强度低、孔径大的技术问题。
[0007]为了实现上述目的,本发明采用的技术方案如下:
一种高强度纳米网络状纤维膜的制备方法,包括以下步骤:
I)先将PVDF(聚偏氟乙烯)和PMMA(聚甲基丙烯酸甲酯)共混并加热至熔融态,再用静电纺丝机将其喷出,得到直径为纳米级的静电纺丝;然后用所述的纳米级静电纺丝制成PVDF/PMMA共混纳米纤维膜。
[0008]2)将PVDF/PMMA共混纳米纤维膜于70°C下干燥12h ;再在该PVDF/PMMA共混纳米纤维膜上施加压力,并置于145°C下恒温恒压热处理2h。
[0009]145°C恒温恒压热处理2h为最佳选择。在时间和温度都很低的情况下,强度提高很小,随着温度的提高,强度明显提高,但是温过高时隔膜会熔融,空隙率急剧降低。随着时间的延长,强度提高不明显,而时间过短,纤维丝又不能充分熔并。
[0010]3)将经过恒温恒压热处理的PVDF/PMMA共混纳米纤维膜在大气环境中自然冷却至室温,得到高强度纳米网络状纤维膜。
[0011]其中,步骤2)中所述的恒温恒压热处理可以采用一种比较简单易行的方式进行,SP:将所述的PVDF/PMMA共混纳米纤维膜夹入两块平板玻璃之间,然后在所述的平板玻璃上施加压力并置于145°C的恒温烘箱中2h。
[0012]为保证PVDF/PMMA共混纳米纤维膜的热机械处理的效果,施加在PVDF/PMMA共混纳米纤维膜上的压力产生在其上的压强为0.02-0.1MPa,最优方案为0.05MPa。
[0013]在压力从0.02MPa升高到0.1MPa的过程中,隔膜的强度不断提高,孔隙率降低。压力过大,空隙变得更加紧凑,更加明显的降低孔隙率,但是强度却没有明显的提高。
[0014]步骤I)中所述的PVDF和PMMA的质量比为8: 2。这是因为PVDF机械性能好,但是和电解液的亲和性较弱,所以为保证好的机械性能、亲和性,需要降低PVDF的结晶度。
[0015]最初静电纺丝机纺织出来的纳米纤维膜为简单堆积,纤维与纤维之间仅仅靠物理接触,为熔合,导致纤维薄膜拉伸强度低。经过热机械处理,给与一个温度和压力处理后,从SEM可以得到纤维与纤维之间,产生熔并(交联),多根纤维之间连接在一起,从而增加纤维薄膜强度。并且通过热处理,从XRD分析可以看得到纤维的结晶度明显提高,其单根纤维本身强度也得到提高。最终隔膜抗拉强度从1.9MPa提高到29MPa。
[0016]由此可见,在同时给与高温和高压的处理条件下,原先无序堆积的纳米纤维丝之间产生交联点,使得强度提高,并且空隙在压力下因纤维变得更紧凑而减小,其孔径也减少。
[0017]与现有的技术相比,本发明具有如下有益效果:
1、处理后的产品强度高。通过对纳米纤维膜进行热机械处理,在高温和高压的处理条件下,原先无序堆积的纳米纤维丝之间产生交联点,使得强度提高,通过热机械处理后的静电纺丝隔膜的抗拉强度提高了 15倍。
[0018]2、孔隙率有所降低。在压力下因纤维变得更紧凑而减小,其孔径也减少。
[0019]3、锂离子传导率高。热机械处理后的隔膜其锂离子室温电导率是比商用Celgard2400高出187%。因为静电纺丝制备纤维膜本身具有非常高的孔隙率,然后经过热压处理后,空隙率有所降低,但依然保留很高的空隙率,这些空隙为锂离子传导提供更多的通道。
【附图说明】
[0020]
图1为PVDF/PMMA共混纳米纤维膜的电镜扫描图;
图2为高强度纳米网络状纤维膜的电镜扫描图;
图3为本发明的热机械处理的工艺示意图;
图4为热机械处理前、后的PVDF/PMMA共混纳米纤维膜的XRD(X射线衍射)对比图。
[0021]图5为热机械处理后应力应变曲线。
【具体实施方式】
[0022]下面结合具体实施例对本发明作进一步详细说明。
[0023]实施例一
一种高强度纳米网络状纤维膜的制备方法,包括以下步骤:
I)先将PVDF(聚偏氟乙烯)和PMMA(聚甲基丙烯酸甲酯)按质量比8:2共混并加热至熔融,再用静电纺丝机将其喷出,得到直径为纳米级的静电纺丝;然后用所述的纳米级静电纺丝制成PVDF/PMMA共混纳米纤维膜,其SEM(扫描电镜)图见图1。
[0024]2)将PVDF/PMMA共混纳米纤维膜于70 °C的烘箱中干燥12h。再将其进行恒温恒压热处理处理,具体操作为:将所述的PVDF/PMMA共混纳米纤维膜夹入两块平板玻璃之间,然后在所述的平板玻璃上施加压力并置于145°C的恒温烘箱中2h;其中,施加的压力在PVDF/PMMA共混纳米纤维膜上产生的压强为0.05MPa,如图3所示。
[0025]3)将经过恒温恒压热处理的PVDF/PMMA共混纳米纤维膜在大气环境中自然冷却至室温,得到高强度纳米网络状纤维膜,其SEM图见图2。
[0026]如图1所示,最初静电纺丝机纺织出来的纳米纤维膜为简单堆积,纤维与纤维之间仅仅靠物理接触,未熔合,导致纤维薄膜拉伸强度低。经过热机械处理,给与一个温度和压力处理后,从SEM(图2)可以得到纤维与纤维之间,产生熔并(铰链),多根纤维之间连接在一起,从而增加纤维薄膜强度。并且通过热处理,图4的XRD(X射线衍射)分析得到纤维的结晶度明显提高,其单根纤维自身的强度也得到提高。最终隔膜抗拉强度从1.9MPa提高到29MPa。
[0027]可见,通过热机械处理的得到的高强度纳米网络状纤维膜的抗拉强度较热机械处理之前提高了 15倍(其应力应变曲线如图5所示),空隙率有略微降低。此外,经热机械处理得到的高强度纳米网络状纤维膜其锂离子室温电导率比商用Celgard 2400高出187%,此隔膜既保留有纳米纤维膜有高的锂离子电导率又具有高的抗拉强度。
[0028]实施例二
一种高强度纳米网络状纤维膜的制备方法,包括以下步骤:
I)先将PVDF(聚偏氟乙烯)和PMMA(聚甲基丙烯酸甲酯)按质量比8:2共混并加热至熔融,再用静电纺丝机将其喷出,得到直径为纳米级的静电纺丝;然后用所述的纳米级静电纺丝制成PVDF/PMMA共混纳米纤维膜。
[0029]2)将PVDF/PMMA共混纳米纤维膜于70 °C的烘箱中干燥12h。再将其进行恒温恒压热处理处理,具体操作为:将所述的PVDF/PMMA共混纳米纤维膜夹入两块平板玻璃之间,然后在所述的平板玻璃上施加压力并置于140°C的恒温烘箱中3h;其中,施加的压力在PVDF/PMMA共混纳米纤维膜上产生的压强为0.02MPa。
[0030]3)将经过恒温恒压热处理的PVDF/PMMA共混纳米纤维膜在大气环境中自然冷却至室温,得到高强度纳米网络状纤维膜。
[0031 ] 实施例三
一种高强度纳米网络状纤维膜的制备方法,包括以下步骤:
I)先将PVDF(聚偏氟乙烯)和PMMA(聚甲基丙烯酸甲酯)按质量比8:2共混并加热至熔融,再用静电纺丝机将其喷出,得到直径为纳米级的静电纺丝;然后用所述的纳米级静电纺丝制成PVDF/PMMA共混纳米纤维膜。
[0032]2)将PVDF/PMMA共混纳米纤维膜于70 °C的烘箱中干燥12h。再将其进行恒温恒压热处理处理,具体操作为:将所述的PVDF/PMMA共混纳米纤维膜夹入两块平板玻璃之间,然后在所述的平板玻璃上施加压力并置于150°C的恒温烘箱中Ih;其中,施加的压力在PVDF/PMMA共混纳米纤维膜上产生的压强为0.1MPa0
[0033]3)将经过恒温恒压热处理的PVDF/PMMA共混纳米纤维膜在大气环境中自然冷却至室温,得到高强度纳米网络状纤维膜。
[0034]本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。
【主权项】
1.一种高强度纳米网络状纤维膜的制备方法,其特征在于,包括以下步骤: 1)先将PVDF和PMMA共混并加热至熔融态,再用静电纺丝机将其喷出,得到直径为纳米级的静电纺丝;然后用所述的纳米级静电纺丝制成PVDF/PMMA共混纳米纤维膜; 2)将PVDF/PMMA共混纳米纤维膜于70°C下干燥12h;再在该PVDF/PMMA共混纳米纤维膜上施加压力,并置于140?150 °C下恒温恒压热处理lh_3h; 3)将经过恒温恒压热处理的PVDF/PMMA共混纳米纤维膜在大气环境中自然冷却至室温,得到高强度纳米网络状纤维膜。2.根据权利要求1所述的高强度纳米网络状纤维膜的制备方法,其特征在于,步骤2)中所述的恒温恒压热处理为:将所述的PVDF/PMMA共混纳米纤维膜夹入两块平板玻璃之间,然后在所述的平板玻璃上施加压力并置于145°C的恒温烘箱中2h。3.根据权利要求1或2所述的高强度纳米网络状纤维膜的制备方法,其特征在于,步骤2)中施加压力在PVDF/PMMA共混纳米纤维膜上产生的压强为0.02-0.1MPa04.根据权利要求1所述的高强度纳米网络状纤维膜的制备方法,其特征在于,步骤I)中所述的PVDF和PMMA的质量比为8: 2。5.根据权利要求3所述的高强度纳米网络状纤维膜的制备方法,其特征在于,步骤2)中施加压力在PVDF/PMMA共混纳米纤维膜上产生的压强为0.05MPa。
【文档编号】H01M2/14GK105932205SQ201610540293
【公开日】2016年9月7日
【申请日】2016年7月11日
【发明人】陈建, 罗少伶, 代祖洋, 聂松
【申请人】四川理工学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1