一种钒电池用离子交换膜的制备方法

文档序号:10571739阅读:877来源:国知局
一种钒电池用离子交换膜的制备方法
【专利摘要】本发明提供了一种钒电池用离子交换膜的制备方法,将磺化的缩聚物和加聚物溶于第一溶剂中,在60?80℃下浇注成膜,得到钒电池用离子交换膜。与现有技术相比,本发明制备的离子交换膜兼具有聚咪唑盐类离子液体膜和缩聚物膜的特点,同时两者之间通过离子键交联,可以进一步提高其化学稳定性和机械性能,而离子键有利于形成离子通道,在保证良好机械性能和化学稳定性的同时,还保证了其离子导电率。本发明避免了氯甲醚和浓硫酸的使用,减少了对人体与环境的危害。本发明制备的钒电池用离子交换膜具有较低的钒离子渗透率、较高的离子电导和化学稳定性、较好的机械性能,另外该膜制备方法制造简单,对设备要求不高,价格低廉。
【专利说明】
一种钒电池用离子交换膜的制备方法
技术领域
[0001] 本发明涉及高分子材料技术领域,尤其涉及一种钒电池用离子交换膜的制备方 法。
【背景技术】
[0002] 随着国民经济的发展和人类对环境污染、能源危机等问题认识上的不断深入,人 们越来越关注可再生清洁能源的发展。风能、太阳能、水能是可再生新能源的典型代表,成 为21世纪主导能源的强大生命力。但是风能、太阳能、水能等绿色能源其本身具有的随机 性、间接性和不可控制性,制约了更广泛的应用。因此,利用发电系统并实现持续稳定的供 电,高效可行的大规模储能技术的开发尤为重要。
[0003] 全f凡液流电池 (Vanadium Redox Flow Battery-VRB)由于其具有可深度充电点、 能量效率高、绿色环保、响应速度快、容量设计独立、无地域限制、寿命长、成本低等优点,被 认为是现阶段最有前途的大规模储能技术之一。离子交换膜作为全钒液流电池的关键组 件,起到传导质子和阻隔钒电池正负极电解液的双重作用,其性能的好坏直接影响着全钒 液流电池的性能和使用寿命。目前,国内外常用的钒电池隔膜美国杜邦公司生产的Nafion 系列隔膜,该膜在化学稳定性和电化学性能等方面性能优异,但是在应用过程中的高离子 渗透率和水迀移率影响电池性能,同时高价格也极大地限制了钒电池的工业化应用。
[0004] 钒电池电解液具有强酸性,并且五价钒离子具有强氧化性,因此耐酸性、抗氧化性 等长期稳定性也是考察钒电池离子交换膜的一个重要指标。交联是一种提高离子交换膜化 学稳定性和机械稳定性的方法,但是化学交联膜的面电阻比较大,导致电池的电压效率比 较低。为了提高交联膜的离子导电率,可以在膜结构中引入聚离子液体结构,聚离子液体同 时结合了离子液体具有较高电导率、化学稳定性和聚合物易于加工成各种形状的优点,在 钒电池领域具有广阔的前景。
[0005] 阳离子交换膜是一种常见的钒电池隔膜,新型钒电池用阳电池隔膜是通过对聚砜 等带有芳基的主链聚合物进行磺化制备的,对基膜进行磺化,可以提高隔膜的阳离子交换 容量,但是已报道的磺化方法多使用浓硫酸等原料,采用浓硫酸的磺化缺点在于腐蚀性大, 难以产业化。阴离子交换膜是另一种常见的钒电池隔膜,由于膜中的荷电基团与溶液中的 钒离子相互排斥,阻钒效果突出。目前制备阴离子交换膜的常规手段是用氯甲基醚对聚合 物进行氯甲基化,然后用三甲胺季铵化得到季铵基团。但氯甲醚是一种剧毒物质,使得阴离 子交换膜的制备对人体和环境都有很大的危害。
[0006] 因此,本发明人考虑,需要寻求更为有效的方法,制备具有优异离子传导率、化学 稳定性和机械强度的钒电池用离子交换膜。

【发明内容】

[0007] 本发明解决的技术问题在于提供一种钒电池用离子交换膜及其制备方法,该钒电 池用离子交换膜具有较低的钒离子渗透率和较高的离子电导,化学稳定性和机械性能良 好。
[0008] 有鉴于此,本发明提供了一种钒电池用离子交换膜的制备方法,包括以下步骤:向 缩聚物的DMS0溶液中加入四丁基溴化铵、氢氧化钠的水溶液和1,4-丁磺酸内酯的DMS0溶 液,在氮气氛围下搅拌5-8小时,过滤、洗涤、重结晶、干燥后得到磺化的缩聚物,所述缩聚物 选自式1和式2中的一种或几种,
[0009]
[0010]
[0011]
[0012]式 2),
[0013] 其中,η为24-36中的任一整数,t为25-36中的任一整数;
[0014]将聚合型咪唑盐类离子液体单体、苯乙烯和引发剂混合,在惰性气体保护下加热 反应1-3小时,沉淀、洗涤,干燥,然后溶解于N,N-二甲基甲酰胺中得至1」2%-5%的溶液,滴加 在聚四氟乙烯板上,干燥后得到膜状聚合物;将所述膜状聚合物浸泡于碱金属氢氧化物的 水溶液中,洗涤后干燥,得到加聚物;
[0015] 将所述磺化的缩聚物和加聚物溶于第一溶剂中,得到第一溶液,将所述第一溶液 在60-80°C下浇注成膜,得到钒电池用离子交换膜。
[0016] 优选的,所述缩聚物的DMS0溶液按照DMS0与缩聚物的体积质量比为10-15mL: lg配 制。
[0017] 优选的,所述缩聚物与四丁基溴化铵的质量比为1:0.02-0.04。
[0018]优选的,所述氢氧化钠的水溶液的浓度为50wt%,所述氢氧化钠的水溶液与所述 缩聚物的DMS0溶液的体积比为0.1-0.3:1。
[0019]优选的,所述1,4-丁磺酸内酯的DMS0溶液的浓度为1.9-2.5mol/L,所述1,4-丁磺 酸内酯与缩聚物的摩尔比为100-200:1。
[0020] 优选的,所述聚合型咪唑盐类离子液体单体的结构如式3所示:
[0021]
[0022]式3),
[0023] 其中,p为0-10中的任一整数,m为0-6中的任一整数,q为0-5中的任一整数,X为I、 Br、Cl中的一种或几种。
[0024]优选的,所述聚合型咪唑盐类离子液体单体与苯乙烯的质量比为3:1。
[0025]优选的,所述磺化的缩聚物与加聚物的质量比为1:2-4。
[0026] 优选的,所述第一溶剂选自N,N_二甲基甲酰胺、二甲亚砜和N-甲基吡咯烷酮中的 一种或几种。
[0027]优选的,所述第一溶液的浓度为2_5wt%。
[0028]本发明提供了一种钒电池用离子交换膜的制备方法,将磺化的缩聚物和加聚物溶 于第一溶剂中,在60-80°C下浇注成膜,得到钒电池用离子交换膜。与现有技术相比,本发明 制备的离子交换膜兼具有聚咪唑盐类离子液体膜和缩聚物膜的特点,同时两者之间通过离 子键交联,可以进一步提高其化学稳定性和机械性能,而离子键有利于形成离子通道,在保 证良好机械性能和化学稳定性的同时,还保证了其离子导电率。因此,本发明避免了氯甲醚 和浓硫酸的使用,减少了对人体与环境的危害。本发明制备的钒电池用离子交换膜具有较 低的钒离子渗透率、较高的离子电导和化学稳定性、较好的机械性能,另外该膜制备方法制 造简单,对设备要求不高,价格低廉。
【具体实施方式】
[0029] 为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是 应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的 限制。
[0030] 本发明实施例公开了一种钒电池用离子交换膜的制备方法,包括以下步骤:在缩 聚物的DMS0溶液中加入四丁基溴化铵、氢氧化钠的水溶液和1,4-丁磺酸内酯的DMS0溶液, 在氮气氛围下搅拌5-8小时,过滤、洗涤、重结晶、干燥后得到磺化的缩聚物,所述缩聚物选 自式1和式2中的一种或几种,
[0031]
[0032]
[0033]
[0034] 式2,
[0035] 其中,其中,η = 24-36中的任一整数,t = 25-36中的任一整数;将聚合型咪唑盐类 离子液体单体、苯乙烯和引发剂混合,在惰性气体保护下加热反应1-3小时,沉淀、洗涤,干 燥,然后溶解于N,N-二甲基甲酰胺中得到2%-5%的溶液,滴加在聚四氟乙烯板上,干燥后 得到膜状聚合物;将所述膜状聚合物浸泡于碱金属氢氧化物的水溶液中,洗涤后干燥,得到 加聚物;将所述磺化的缩聚物和加聚物溶于第一溶剂中,得到第一溶液,将所述第一溶液在 60-80°C下浇注成膜,得到钒电池用离子交换膜。
[0036] 在上述技术方案中,由于大π键作用,本发明采用的咪唑盐类离子液体比季铵盐类 离子液体更稳定,兼具有聚咪唑盐类离子液体膜和缩聚物膜的特点,同时两者之间通过离 子键交联,可以进一步提高其化学稳定性和机械性能,又由于离子键有利于形成离子通道, 在保证良好机械性能和化学稳定性的同时,还保证了其离子导电率。
[0037] 本发明首先对缩聚物进行磺化,利用1,4-丁磺酸内酯与缩聚物PSF等主链非苯环 磺化,避免了使用浓硫酸等腐蚀性/强氧化性的物质,有利于产业化。
[0038]作为优选方案,所述缩聚物的DMS0溶液按照DMS0与缩聚物的体积质量比为10-15mL: 1 g配制,DMS0与缩聚物的体积质量比更优选为11 -14mL: 1 g,更优选为12-13mL: 1 g。所 述缩聚物与四丁基溴化铵的质量比优选为1: 〇. 02-0.04,更优选为1:0.03-0.04。
[0039]作为优选方案,所述氢氧化钠的水溶液的浓度优选为50wt%,所述氢氧化钠的水 溶液与所述缩聚物的DMSO溶液的体积比优选为0.1-0.3:1,更优选为0.15-0.25:1。
[0040] 所述1,4_ 丁磺酸内酯的DMS0溶液的浓度优选为1.9-2.5mOl/L,更优选为2-2.4mOl/L,更优选为2.1-2.3m Ol/L;所述l,4-丁磺酸内酯与缩聚物的摩尔比为100-200:l, 更优选为120-180:1,更优选为140-160:1。
[0041 ]作为优选方案,所述聚合型咪唑盐类离子液体单体的结构如式3所示:
[0042]
[0043] 式 3),
[0044] 其中,p为0-10中的任一整数,m为0-6中的任一整数,q为0-5中的任一整数,X为I、 Br、Cl中的一种或几种。
[0045] 所述聚合型咪唑盐类离子液体单体与苯乙烯的质量比3:1。所述碱金属氢氧化物 优选为Κ0Η或NaOH;所述碱金属氢氧化物的水溶液的浓度优选为1M。
[0046] 作为优选方案,得到加聚物的步骤具体为:将聚合型咪唑盐类离子液体单体、苯乙 烯和引发剂混合,在惰性气体保护下加热反应1-3小时,沉淀、洗涤,在真空干燥箱中60-80 °C下干燥6-10小时,后用N,N-二甲基甲酰胺溶解得到的聚合物配成2 % -5 %的溶液,将其滴 在聚四氟乙烯板上,在80°C下干燥10-20小时,然后将得到的膜状聚合物浸泡于1M Κ0Η或 NaOH的水溶液中24小时,待离子液体的阴离子完全交换成0!1_后,用去离子水除去残余的 Κ0Η,在真空干燥箱中60-80 °C下干燥15-24小时得到加聚物。
[0047] 由于大π键作用,本发明采用的咪唑盐类离子液体的化学性质比季铵盐类离子液 体更加稳定。
[0048] 作为优选方案,所述磺化的缩聚物与加聚物的质量比为1:2-4,更优选为1:3-4。所 述第一溶剂优选选自N,N_二甲基甲酰胺、二甲亚砜和N-甲基吡咯烷酮中的一种或几种。所 述第一溶液的浓度优选为2_5wt%,更优选为3-4wt%。
[0049] 本发明制备的钒电池用离子交换膜兼具有聚咪唑盐类离子液体膜和缩聚物膜的 特点,同时两者之间通过离子键交联,可以进一步提高其化学稳定性和机械性能,又由于离 子键有利于形成离子通道,在保证良好机械性能和化学稳定性的同时,还保证了其离子导 电率。
[0050] 从以上方案可以看出,本发明具有以下特点:
[0051] (1)本发明制备的钒电池用两性离子交换聚合物膜,避免了传统的聚合物离子交 换膜制备过程中氯甲醚或浓硫酸的使用,减少了对人体与环境的危害;
[0052] (2)本发明制备的钒电池用两性离子交换聚合物膜由于离子交联作用具有较低的 钒离子渗透率、较高的离子电导和化学稳定性、较好的机械性能;
[0053] (3)本发明制备的钒电池用两性离子交换聚合物膜制备方法制造简单、对设备要 求不高,价格低廉。
[0054]为了进一步理解本发明,下面结合实施例对本发明提供的技术方案进行详细说 明,本发明的保护范围不受以下实施例的限制。
[0055]本发明下述实施例中所使用的原料来自于上海泉昕进出口贸易有限公司。
[0056] 实施例1
[0057] (1)缩聚物的磺化:将100g式1所示的缩聚物溶于1.5L DMS0溶液中,并在其中加入 4g四丁基溴化铵,150mL氢氧化钠的水溶液(浓度50wt% )和625mL 1,4_丁磺酸内酯的DMS0 溶液(浓度2mol/L,),以上混合物在氮气氛围室温下搅拌5小时,产物通过过滤,用丙酮和乙 醇洗,重结晶、干燥等步骤即可得到,
[0058]
[0059] 式1)
[0060] 其中,n = 24-36中的任一整数;
[0061] (2)加聚物合成:在反应容器中,加入75g式3所示的聚合型咪唑盐类离子液体单 体、25g苯乙烯的混合物和lg偶氮二异丁腈(AIBN),在通入惰性气体保护下,加热反应3小 时,得到产物;将得到的产物经沉淀、洗涤,在真空干燥箱中80 °C下干燥10小时,后用N,N-二 甲基甲酰胺溶解得到的聚合物配成5%的溶液,将其滴在聚四氟乙烯板上,在80°C下干燥20 小时,然后将得到的膜状聚合物浸泡于1M Κ0Η的水溶液中24小时,待离子液体的阴离子完 全交换成0?Γ后,用去离子水除去残余的Κ0Η,在真空干燥箱中80°C下干燥24小时得到加聚 物,
[0062]
[0063]式 3);
[0064] (3)聚合物膜的制备:称取上述步骤中制备得到的30g磺化的缩聚物和60g加聚物, 溶于DMF中,配置成5wt%溶液,将得到的溶液在80°C下浇注成膜,得到钒电池用离子交换 膜。
[0065] 实施例2
[0066] (1)缩聚物的磺化:将100g式2所示的缩聚物溶于1.5L DMS0溶液中,并在其中加入 4g四丁基溴化铵,150mL氢氧化钠的水溶液(浓度50wt% )和625mL 1,4_丁磺酸内酯的DMS0 溶液(浓度2mol/L,),以上混合物在氮气氛围室温下搅拌5小时,产物通过过滤,用丙酮和乙 醇洗,重结晶、干燥等步骤即可得到,
[0067]
[0068] 式 2)
[0069] 其中,t = 25_36中的任一整数。;
[0070] (2)加聚物合成:在反应容器中,加入75g式3所示的聚合型咪唑盐类离子液体单 体、25g苯乙烯的混合物和lg偶氮二异丁腈(AIBN),在通入惰性气体保护下,加热反应3小 时,得到产物;将得到的产物经沉淀、洗涤,在真空干燥箱中80 °C下干燥10小时,后用N,N-二 甲基甲酰胺溶解得到的聚合物配成5%的溶液,将其滴在聚四氟乙烯板上,在80°C下干燥20 小时,然后将得到的膜状聚合物浸泡于1M Κ0Η的水溶液中24小时,待离子液体的阴离子完 全交换成0?Γ后,用去离子水除去残余的Κ0Η,在真空干燥箱中80°C下干燥24小时得到加聚 物,
[0071]
[0072] 式3);
[0073] (3)聚合物膜的制备:称取上述步骤中制备得到的30g磺化的缩聚物和60g加聚物, 溶于DMF中,配置成4wt%溶液,将得到的溶液在80°C下浇注成膜,得到钒电池用离子交换 膜。
[0074] 对本发明实施例2制备的钒电池用离子交换的性能进行测试,结果如表1所示。
[0075] 表1本实施例2制备得到的离子交换膜性能结果
[0076]
[0077]以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对 于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行 若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
[0078]对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的 一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明 将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一 致的最宽的范围。
【主权项】
1. 一种钒电池用离子交换膜的制备方法,其特征在于,包括以下步骤: 向缩聚物的DMSO溶液中加入四丁基溴化铵、氢氧化钠的水溶液和1,4-丁磺酸内酯的 DMSO溶液,在氮气氛围下搅拌5-8小时,过滤、洗涤、重结晶、干燥后得到磺化的缩聚物,所述 缩聚物选自式1和式2中的一种或几种,其中,η为24-36中的任一整数,t为25-36中的任一整数; 将聚合型咪唑盐类离子液体单体、苯乙烯和引发剂混合,在惰性气体保护下加热反应 1-3小时,沉淀、洗涤,干燥,然后溶解于N,N-二甲基甲酰胺中得到2%-5%的溶液,滴加在聚 四氟乙烯板上,干燥后得到膜状聚合物;将所述膜状聚合物浸泡于碱金属氢氧化物的水溶 液中,洗涤后干燥,得到加聚物; 将所述磺化的缩聚物和加聚物溶于第一溶剂中,得到第一溶液,将所述第一溶液在60-80°C下浇注成膜,得到钒电池用离子交换膜。2. 根据权利要求1所述的制备方法,其特征在于,所述缩聚物的DMSO溶液按照DMSO与缩 聚物的体积质量比为10_15mL: Ig配制。3. 根据权利要求1所述的制备方法,其特征在于,所述缩聚物与四丁基溴化铵的质量比 为1:0.02-0.04。4. 根据权利要求1所述的制备方法,其特征在于,所述氢氧化钠的水溶液的浓度为 50wt%,所述氢氧化钠的水溶液与所述缩聚物的DMSO溶液的体积比为0.1-0.3:1。5. 根据权利要求1所述的制备方法,其特征在于,所述1,4_ 丁磺酸内酯的DMSO溶液的浓 度为1.9-2.5mol/L,所述1,4_ 丁磺酸内酯与缩聚物的摩尔比为100-200:1。6. 根据权利要求1所述的制备方法,其特征在于,所述聚合型咪唑盐类离子液体单体的 结构如式3所示:其中,P为0-10中的任一整数,m为0-6中的任一整数,q为0-5中的任一整数,X为I、Br、Cl 中的一种或几种。7. 根据权利要求1所述的制备方法,其特征在于,所述聚合型咪唑盐类离子液体单体与 苯乙烯的质量比为3:1。8. 根据权利要求1所述的制备方法,其特征在于,所述磺化的缩聚物与加聚物的质量比 为1:2-4。9. 根据权利要求1所述的制备方法,其特征在于,所述第一溶剂选自N,N-二甲基甲酰 胺、二甲亚砜和N-甲基吡咯烷酮中的一种或几种。10. 根据权利要求1所述的制备方法,其特征在于,所述第一溶液的浓度为2-5wt %。
【文档编号】H01M8/18GK105932317SQ201610267985
【公开日】2016年9月7日
【申请日】2016年4月22日
【发明人】魏亮
【申请人】宁波高新区夏远科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1