一种石墨烯和金属纳米线复合透明导电塑料薄膜及其制备方法与应用

文档序号:10625526阅读:1139来源:国知局
一种石墨烯和金属纳米线复合透明导电塑料薄膜及其制备方法与应用
【专利摘要】本发明公开了一种石墨烯和金属纳米线复合透明导电塑胶薄膜及其制备方法与应用,包括如下步骤:1)利用化学气相沉积法在铜基底上沉积石墨烯,得到铜基底/石墨烯薄膜复合结构;2)在塑胶衬底表面涂布金属纳米线,即可得到金属纳米线/塑胶衬底复合塑胶膜;3)将所述铜基底/石墨烯薄膜复合结构和所述金属纳米线/塑胶衬底复合塑胶膜贴合,热压印,得到铜基底/石墨烯薄膜/金属纳米线/塑胶衬底复合结构;4)采用电化学鼓泡方法去除铜基底,即得到所述石墨烯和金属纳米线复合透明导电塑胶薄膜。其具有高的透光性和导电性、优异的环境稳定性、抗化学腐蚀能力和良好的柔性,可用于多种电子器件,如:电致变色器件和触摸屏等。
【专利说明】
一种石墨烯和金属纳米线复合透明导电塑料薄膜及其制备方法与应用
技术领域
[0001]本发明属于石墨稀和纳米材料复合薄膜领域,具体涉及一种石墨稀和金属纳米线复合透明导电塑料薄膜及其制备方法与应用。【背景技术】
[0002]透明导电薄膜是各种光电子器件(如触摸屏、有机太阳能电池和有机发光二极管等)的重要组成部分。氧化铟锡(IT0)具有良好的透光性和导电性,是工业上应用最为广泛的透明导电薄膜材料。但是IT0的一些缺陷,如自身的脆性、金属铟较低的丰度、低的红外透光性以及较昂贵的制备过程,限制了 IT0更广泛的应用。金属纳米线(MNWs,如银纳米线Ag NWs和铜纳米线Cu NWs)导电薄膜,由于具有良好的透光性和导电性,柔性,以及溶液法较低的制备成本,有望成为一种替代IT0的材料。但是金属纳米线具有粗糙的表面,对基底有较低的粘附性,较大的结区电阻,较差的抗腐蚀能力,这些都是其走向应用需要克服的难题。此外,石墨稀(graphene)也被认为是一种可能替代IT0的透明导电材料,其在从可见光至远红外范围内保持良好的透光性,吸光率仅为2.23%,而且具有优异的柔韧性以及抗化学腐蚀性。石墨烯作为透明导电材料的缺点在于其面电阻较大,虽然能通过化学掺杂的方法提高其导电性,但是非常不稳定,不适用于长期的应用。
[0003]因此,能否同时利用金属纳米线的优异的导电性和石墨烯良好的抗环境腐蚀能力,制备同时具有良好透光性和导电性、优异的柔性、环境稳定的透明导电薄膜,并直接加工在柔性透明塑料衬底上制成导电透明塑料,成了透明导电薄膜领域亟待解决的一个问题。
【发明内容】

[0004]本发明的目的在于提供一种石墨烯和金属纳米线复合透明导电塑料薄膜及其制备方法,该制备方法可实现卷对卷宏量制备。[〇〇〇5] 本发明所提供的石墨烯和金属纳米线复合透明导电塑料薄膜的制备方法包括如下步骤:
[0006]1)利用化学气相沉积法在铜基底上沉积石墨烯,得到铜基底/石墨烯薄膜复合结构;
[0007]2)在塑料衬底表面涂布金属纳米线,即可得到金属纳米线/塑料衬底复合塑料膜;
[0008]3)将所述铜基底/石墨烯薄膜复合结构中的石墨烯薄膜和所述金属纳米线/塑料衬底复合塑料膜中的金属纳米线贴合,热压印,得到铜基底/石墨烯薄膜/金属纳米线/塑料衬底复合结构;
[0009]4)采用电化学鼓泡方法去除所述铜基底/石墨烯薄膜/金属纳米线/塑料衬底复合结构中的铜基底,即可得到石墨稀薄膜/金属纳米线/塑料衬底复合薄膜,即所述石墨稀和金属纳米线复合透明导电塑料薄膜。
[0010]上述制备方法中,步骤1)中,所述铜基底具体可为铜箱,纯度大于99.9 %,厚度为 12 um-25 um,具体可为 18 um。
[0011]所述化学气相沉积法中,反应温度为900-1000°C,氢气流量为l-5SCCm,碳源具体可为甲烷,所述甲烷的流量为5-36sCCm。
[0012]当采用铜箱裁规格为10cm x 5m (宽度x长度),铜箱的运转速率为lr/min时,利用所述化学气相沉积法中的反应条件反应时间为5min-10min,即可制备得到沉积在铜基底表面的石墨烯薄膜。
[0013]所述铜基底/石墨稀薄膜复合结构中的石墨稀薄膜为高质量的单层石墨稀薄膜。
[0014]所述利用化学气相沉积法来制备石墨烯具体可以在图1所示化学气相沉积系统中进行,实现石墨烯在铜基底(如:铜箱)上卷对卷连续化制备。该化学气相沉积系统主要由气体供应系统,高温生长系统(如:高温管式炉),运转系统,低压系统等部分构成,所述铜箱的运转速率为〇-5r/min,但不为0,所述运转系统由步进电机和进出样转子构成。
[0015]上述制备方法中,步骤2)中,所述塑料衬底可为商品化应用的热裱膜,可用于太阳能光伏组件背板膜与封装胶膜。
[0016]具体可选自如下任意一种:聚对苯二甲酸乙二醇酯/乙烯-醋酸乙烯共聚物 (PET/EVA)高分子透明薄膜、聚对苯二甲酸乙二醇酯/聚甲基丙烯酸甲酯高分子透明薄膜、 聚碳酸酯/乙烯-醋酸乙烯共聚物高分子透明薄膜、聚碳酸酯/聚甲基丙烯酸甲酯高分子透明薄膜、聚萘二甲酸乙二醇酯/乙烯-醋酸乙烯共聚物高分子透明薄膜和聚萘二甲酸乙二醇酯/聚甲基丙烯酸甲酯高分子透明薄膜,优选为聚对苯二甲酸乙二醇酯/乙烯-醋酸乙烯共聚物(PET/EVA)高分子透明薄膜,所述聚对苯二甲酸乙二醇酯的厚度为35-75 ym, 所述乙稀-醋酸乙稀共聚物的厚度为35-50 ym。
[0017]所述塑料衬底在使用之前还包括用空气等离子体处理塑料衬底表面的步骤,以提高其表面的亲水性,以得到均匀分散的纳米线薄膜,所述空气等离子体处理的功率具体可为90W,时间具体可为2min。
[0018]所述金属纳米线选自如下至少一种:银纳米线(Ag NWs)、金纳米线(Au NWs)和铜纳米线(Cu NWs)等。
[0019]所述金属纳米线是以金属纳米线悬浮液的形式涂布在塑料衬底表面的,所述金属纳米线悬浮液的浓度为lmg/ml-10mg/ml,具体可为lmg/ml-2.5mg/ml,所述金属纳米线悬浮液是将金属纳米线超声分散在醇类化合物中而得到的,所述醇类化合物具体可选自如下至少一种:异丙醇、乙醇和甲醇。
[0020]所述涂布具体可采用旋涂和/或刷涂。
[0021]所述涂布之后,还包括对表面涂布有金属纳米线的塑料衬底进行清洗,吹干或烘干的步骤。
[0022]所述清洗具体可采用如下步骤:将所述金属纳米线/塑料衬底复合塑料膜浸泡在超纯水l〇s,以除去其表面的表面活性剂防氧化层和/或防聚集层(如:聚乙烯吡咯烷酮 PVP) 〇
[0023]所述吹干具体可用高纯氮气枪吹干。
[0024]所述烘干具体可在80-100°C下烘烤30-60s。
[0025]上述制备方法中,步骤3)中,所述热压印是通过塑封机来实现的,所述压印的温度为100-150°C,压印速率为0.5-2cm/s,具体可为lcm/s,依据所使用的塑料衬底的厚度选择合适的压印温度和压印速率。
[0026]上述制备方法中,步骤4)中,所述电化学鼓泡方法实验条件具体如下:阳极电极为石墨棒,阴极电极为步骤3)所述铜基底/石墨烯薄膜/金属纳米线/塑料衬底复合结构,电解液为l-2mol/L NaOH水溶液,电压为2-4V,采用液面式的鼓泡法,即将部分分离的铜基底和石墨烯薄膜/金属纳米线/塑料衬底的分离界面放置在电解液液面,用同速运转的转轴分别牵引分离的复合薄膜和铜基底,实现卷对卷的鼓泡分离,能实现小电流快速的分离,分离速率可达到lcm/s,分离之后,用超纯水清洗干净,然后用氮气将复合薄膜和铜基底吹干,其中,铜基底可反复利用。
[0027]步骤4)中,还包括对所述石墨烯和金属纳米线复合透明导电塑料薄膜进行退火处理的步骤,具体可使其在80-100°C下退火处理10-30S,以便得到平整化的所述石墨烯和金属纳米线复合透明导电塑料薄膜。
[0028]本发明利用上述制备方法所制备得到的石墨烯和金属纳米线复合透明导电塑料薄膜也属于本发明的保护范围。
[0029]本发明还保护上述石墨烯和金属纳米线复合透明导电塑料薄膜在制备电子器件中的应用。
[0030]所述电子器件为电致变色器件、触摸屏、有机太阳能电池和有机发光二极管等。
[0031]本发明通过卷对卷化学气相沉积的方法制备了成卷的高质量石墨烯,然后通过卷对卷压印以及高效电化学鼓泡的方法成功地将金属纳米线与石墨稀复合。该方法制备的金属纳米线石墨烯复合薄膜具有优异的透光性和导电性,优异的柔性。由于金属纳米线嵌入到了 EVA高分子里面,而EVA是一种优异的粘合剂,可用于太阳能光伏组件的封装胶膜,石墨烯与其贴合良好,因此其抗剥离性能非常好,远远优于简单旋涂在高分子基底上的金属纳米线,与ITO有几乎相同的抗剥离性能。此外,由于金属纳米线部分嵌入到EVA封装胶膜里面,上面覆盖化学惰性的石墨烯,可有效隔离外界空气和污染物,抵御外界环境引起的老化影响,因此具有长期抗氧化性能和抗化学腐蚀性能。
【附图说明】
[0032]图1为本发明用于石墨烯的卷对卷生长的化学气相沉积装置结构示意图。
[0033]图2为卷对卷宏量制备金属纳米线石墨稀复合薄膜的制备过程。
[0034]图3为实施例1中生长的单层石墨烯在铜箔表面的扫描电子显微镜图。
[0035]图4为实施例1中PET/EVA/Ag NWs复合塑料膜的扫描电子显微镜图。
[0036]图5为实施例1中PET/EVA/Ag NWs/石墨烯复合薄膜的结构示意图。
[0037]图6为实施例1中PET/EVA/Ag NWs/石墨烯复合薄膜的扫描电子显微镜图。
[0038]图7为实施例1中PET/EVA/Ag NWs/石墨烯复合薄膜的原子力显微镜图。
[0039]图8为实施例1中三种不同浓度的银纳米线制备的PET/EVA/AgNWs/石墨烯复合薄膜的典型透光性曲线。
[0040]图9为实施例1中PET/EVA/AgNWs/石墨烯复合薄膜透光性和导电性综合性能。
[0041]图10为实施例1中PET/EVA/AgNWs/石墨烯复合薄膜在室温、大气条件下放置的面电阻变化。
[0042]图11为实施例1中PET/EVA/AgNWs/石墨烯复合薄膜在质量分数为4%的硫化钠溶液中处理的电阻随时间的变化图。
[0043]图12为实施例1中PET/EVA/AgNWs/石墨烯复合薄膜面电阻随着弯曲曲率的变化图。
[0044]图13为实施例1中PET/EVA/AgNWs/石墨烯复合薄膜面电阻随着一定弯曲曲率弯曲次数的变化图。
[0045]图14为实施例1中PET/EVA/AgNWs/石墨烯复合薄膜面电阻随着胶带剥离次数的变化图。
[0046]图15为实施例1中生长石墨烯前和三次重复生长石墨烯后的铜箔实物照片和光学显微镜照片。
[0047]图16为实施例1中A4面积大小的PET/EVA/AgNWs/石墨烯复合薄膜的实物图。
[0048]图17为实施例1中用PET/EVA/AgNWs/石墨烯复合透明导电薄膜制备的电致变色器件实物图。
[0049]图18为实施例2中PET/EVA/Cu NWs/石墨烯复合薄膜的光学显微镜图。
[0050]图19为实施例2中PET/EVA/Cu NWs/石墨烯复合薄膜的扫描电子显微镜图。
[0051]图20为实施例2中PET/EVA/Cu NWs/石墨烯复合薄膜在80°C、20%湿度、大气条件下放置的面电阻变化。
【具体实施方式】
[0052]下面通过具体实施例对本发明的方法进行说明,但本发明并不局限于此,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
[0053]下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
[0054]下述实施例中所用材料和设备如下:
[0055]铜箔:购自苏州福田金属有限公司生产,纯度99.9%,厚度18μπι,电解铜箔。
[0056]商业热裱膜PET/EVA:购自得力集团有限公司,商品型号为3817塑封膜,其中,PET厚度 75 μ m,EVA 厚度 50 μ m。
[0057]金属银纳米线:购自苏州冷石纳米科技有限公司,其参数为:线径30±5nm,平均线径30nm,线长20 ± 5 μ m,纯度大于99.5 %,分散剂为异丙醇,浓度5mg/mL。
[0058]金属铜纳米线:购自南京先丰纳米科技有限公司,型号XFJ44,直径50-100nm,长度1-10 μ m,纯度99%,分散剂为乙醇,浓度10mg/mL。
[0059]PET/IT0薄膜:购自百灵威科技有限公司,产品编号为639303。
[0060]计量棒:购自石家庄奥斯派机械科技有限公司,型号为0SP-12。
[0061]塑封机:购自上海申广办公设备有限公司,型号为SCL-300。
[0062]四探针测量仪:购自广州四探针有限公司,型号为RTS-4。
[0063]紫外可见近红外光谱仪:购自Perkin-Elmer公司,型号为Perkin-Elmer Lambda950。
[0064]下述实施例中卷对卷宏量制备石墨烯的系统装置示意图如图1所示;卷对卷连续化制备石墨烯银纳米线复合透明导电塑料薄膜的过程示意图如图2所示。
[0065]下述实施例中所用的测试方法如下:
[0066]通过如下常规方法对所述石墨烯和金属纳米线复合透明导电塑料薄膜进行如下项目测试:面电阻、透光性、抗氧化性、抗化学腐蚀性、柔性和表面粘附性等,具体测量方法如下:
[0067]面电阻测量:使用四探针测量仪(广州四探针有限公司,RTS-4四探针测量仪)测量,每一个样品三次测量取其平均值作为测量值;
[0068]透光性测量:使用紫外可见近红外光谱仪(Perkin-Elmer Lambda 950UV_Vis光谱仪)测量,扣除PET/EVA基底;
[0069]抗氧化性能测试:将制备的样品放置在室温、大气条件下,每隔2周对其面电阻进行测量,每个样品测量三次,取其平均值;
[0070]抗化学腐蚀能力测试:将制备的样品浸入到质量分数为4%的硫化钠溶液中,测量器面电阻随时间的变化,每个样品测量三次,取其平均值;
[0071]柔性测量:将样品弯曲,测量其电阻随曲率的变化;
[0072]抗弯曲性能测量:将样品弯曲到一定的曲率,测量其电阻随弯曲次数的变化;
[0073]抗剥离性能测试:将样品用胶带(3M Scotch胶带)剥离,测量其电阻随剥离次数的变化。
[0074]实施例1、制备石墨烯和银纳米线复合透明导电塑料薄膜
[0075]I)单层石墨烯薄膜/铜箔:使用工业电解铜箔,将铜箔裁剪成1cm x 5m(宽度X长度),置于连续制备系统的运转体系中,在流量为50SCCm的氢气气氛下,将炉体温度升至1000°C,体系压强约为50Pa,然后将氢气流量改为2sccm,通入36sccm的甲烷气体,保持1000C,以步进电机控制铜箔的运转速率为lr/min,铜箔贴着石英管壁,运转完后,关闭氢气和甲烷,得到沉积在铜箔表面的大面积单层石墨烯,将铜箔降至室温后,打开炉体,取出铜箔;
[0076]制备得到的沉积在铜箔表面的石墨烯的典型电子显微镜照片如图3所示,沉积在铜箔表面的石墨烯为大面积单层石墨烯,有少量的双层或者多层小岛。
[0077]2)制备PET/EVA/Ag NWs复合塑料膜:使用商业热裱膜PET/EVA,将PET/EVA薄膜用异丙醇清洗,吹干,然后用功率为90W的空气等离子体处理2min,以提高EVA表面的亲水性;
[0078]将金属银纳米线分散在异丙醇中,使其浓度为5mg/ml,使用前需要用异丙醇稀释至其浓度为lmg/mL,再在功率为99W的超声清洗机中超声分散lmin,得到分散良好的金属银纳米线悬浮液;
[0079]在PET/EVA薄膜上形成金属银纳米线层可采用如下工艺I或工艺2:
[0080]工艺1:匀胶机旋涂工艺,调控不同的金属银纳米线浓度、匀胶机转速、银纳米线悬浊液用量可以得到不同密度的银纳米线,匀胶机转速为500-1200r/min,旋涂时间为Imin0如图8所示,控制勾胶机转速1000r/min,旋涂时间lmin,银纳米线浓度为2.5mg/mL,分别使用滴管控制银纳米线悬浊液为4滴、6滴和8滴,可得到最终面电阻分别为40 Ω \15Ω1和10Ω 1的透明导电薄膜。
[0081]工艺2:计量棒刷涂工艺,使用滴管在PET/EVA薄膜上滴一层金属银纳米线悬浮液,再用计量棒均匀地将悬浮液铺展开来,在基底上刷涂一层厚度为12 μ m的液膜。然后将PET/EVA/Ag NWs复合薄膜放到去离子水中清洗10s,最后用高纯氮气枪吹干,或者在80°C下烘烤30s,使其烘干,得到PET/EVA/Ag NWs复合塑料膜;
[0082]典型的PET/EVA/Ag NWs复合塑料膜表面的银纳米线的电子显微镜照片如图4所示,从图4可知:Ag NWs均匀分散,纳米线相互交联形成纳米线网络。
[0083]3)制备PET/EVA/Ag NWs/石墨烯薄膜/铜箔复合结构:将PET/EVA/Ag NWs复合塑料膜和石墨烯薄膜/铜箔的石墨烯面贴合,利用申广SCL-300型号塑封机,调至第二档,热压印温度为100°C,压印速率为lcm/s,进行热压印,使得EVA软化粘合石墨烯薄膜/铜箔,得到PET/EVA/Ag NWs/石墨烯薄膜/铜箔复合结构。
[0084]4)制备PET/EVA/Ag NWs/石墨烯复合薄膜:采用在电化学鼓泡的方法去除铜箔,阳极电极为石墨棒(采购自阿法埃莎(中国)化学有限公司,产品编号10134),阴极电极为步骤3)所得复合结构,电解液为lmol/L NaOH水溶液,电源为直流稳压电源,恒定为3V电压,典型的电流为0.1A,通过石墨烯薄膜和铜箔之间产生的气泡而使两者分离,再用超纯水清洗分离后得到的铜箔和PET/EVA/AgNWs/石墨烯复合薄膜,然后用氮气吹干;
[0085]上述氮气吹干后的铜箔可进行多次重复生长利用,生长前和生长三次后的铜箔表面实物照片和光学显微镜照片如图15所示,从图15可以看出:铜箔可以重复利用,而且生长时加热退火过程中会导致铜箔的畴区变大,导致更高质量石墨烯的生长。
[0086]5)将步骤4)所得PET/EVA/Ag NWs/石墨烯复合薄膜放置到100°C的热台上烘烤10s,进行退火,薄膜变透明,得到平整化的PET/EVA/Ag NWs/石墨稀复合薄膜;
[0087]其相应的示意图如图5所示,从图5可看出:金属银纳米线部分嵌入EVA里面,同时在其表面覆盖一层石墨稀,金属银纳米线能够很好地跨越石墨稀的畴区;
[0088]其相应的电子显微镜照片如图6所示,从图6可看出:金属银纳米线被石墨烯很好地包覆,石墨稀保持完整;
[0089]其相应的原子力显微镜照片如图7所示,从图7可看出:本发明使用的银纳米线的线径为30nm,而从图7右边的AFM的高度图可以看出,在基底外的单根Ag NW的高度为15nm(图7右边的AFM的高度图中的下面曲线),可见金属银纳米线部分包埋到了高分子EVA里面;此外,两根纳米线的结区的高度为35nm左右(图7右边的AFM的高度图中的上面曲线),低于两根纳米线的线径之和60nm,由此可见压印过程导致了结区部分的融合。
[0090]所制备得到的A4面积大小的PET/EVA/Ag NWs/石墨烯复合薄膜的实物照片如图16所示。
[0091]6)对步骤5)所得复合薄膜进行如下表征:
[0092]面电阻测量:使用四探针测量仪对每一个样品测量三次,取其平均值作为测量值;
[0093]透光性测量:使用紫外可见近红外光谱仪测量,扣除PET/EVA基底;
[0094]抗氧化性能测试:将制备的样品放置在室温、大气条件下,每隔2周对其面电阻进行测量,每个样品测量三次,取其平均值;
[0095]抗化学腐蚀能力测试:将制备的样品浸入到质量分数为4%的硫化钠溶液中,测量器面电阻随时间的变化,每个样品测量三次,取其平均值;
[0096]柔性测量:将样品弯曲,测量其电阻随曲率的变化;
[0097]抗弯曲性能测量:将样品弯曲到一定的曲率,测量其电阻随弯曲次数的变化;
[0098]抗剥离性能测试:将样品用胶带(3M Scotch胶带)剥离,测量其电阻随剥离次数的变化。
[0099]相应的表征数据如下:
[0100]a)良好的透光性和导电性:其透光性性能如图8所示,从图8可以得出:所述PET/EVA/Ag NWs/石墨烯复合薄膜具有良好的宽光谱透光性,比ITO在近红外区有优异的透光性能;
[0101]其综合的透光性和导电性能如图9所示,从图9可以得出:透光性与导电性负相关关系,PET/EVA/Ag NWs/石墨烯复合薄膜具有比单纯的PET/AgNWs薄膜优异的透光-导电性能,也有比单纯的石墨烯具有更好的导电性能。
[0102]b)稳定性:采用如上所述步骤2)的工艺I或2,直接将Ag NWs旋涂到PET基底上,能够得到PET/AgNWs薄膜。将PET/EVA/Ag NWs/石墨烯复合薄膜和单纯的PET/AgNWs薄膜放置在室温、大气环境下两个月,测量其表面电阻的变化,如图10所示,从图10可知:在高分子和石墨烯的双重保护作用下,银纳米线的抗氧化能力大大提高,长时间的稳定性变好;
[0103]将PET/EVA/Ag NWs/石墨烯复合薄膜和单纯的PET/AgNWs薄膜放置到质量分数为4%的硫化钠溶液中,测量其面电阻随着放置时间的变化,如图11所示,从图11可知:单纯的银纳米线其抗硫化钠侵蚀能力很弱,而石墨烯复合结构大大提高了其稳定性。
[0104]c)柔性:测量PET/EVA/Ag NWs/石墨烯复合薄膜和ΡΕΤ/ΙΤ0薄膜的面电阻随着弯曲曲率的变化,如图12所示,从图12可知:PET/EVA/Ag NWs/石墨烯复合薄膜(125微米)具有比ΡΕΤ/ΙΤ0薄膜(125微米)优异的柔性;
[0105]测量PET/EVA/Ag NWs/石墨烯复合薄膜和ΡΕΤ/ΙΤ0薄膜的面电阻随着弯曲次数的变化,如图13所示,从图13可知:PET/EVA/Ag NWs/石墨烯复合薄膜具有多次弯曲还能够保持其面电阻基本不变的性能。
[0106]d)抗剥离性能:采用如上所述步骤2)的工艺I或2,直接将Ag NWs涂到PET基底上,能够得到PET/AgNWs薄膜。对比测量PET/EVA/Ag NWs/石墨烯复合薄膜、单纯的PET/AgNWs薄膜和ΡΕΤ/ΙΤ0薄膜在3M Scotch胶带剥离下的面电阻变化,如图14所示,从图14可得知:PET/EVA/Ag NWs/石墨烯复合薄膜具有与ΡΕΤ/ΙΤ0薄膜相当的抗剥离性能,远远优于单纯的银纳米线薄膜,其原因在于银纳米线部分包埋在EVA里面,而且EVA具有良好的粘附性,对石墨烯的粘附能力也很强,因此抗剥离性能强。
[0107]7)电致变色器件的制备:使用实施例1所制备的PET/EVA/Ag NWs/石墨烯复合薄膜制备了电致变色器件。先采用上述方法制备一张1X 1cm2的PET/EVA/AgNWs/石墨稀复合塑料薄膜,在其石墨烯一侧旋涂一层0.13%浓度的PED0T:PSS溶液(Sigma-Aldrich公司购置)。用标准三电极系统(B1Logic公司购置)测试,以石墨棒(Alfa Aesar公司购置)作为对电极,Ag/AgCl电极(Accumet公司购置)作为参比电极,电解质为IM LiClO4(AlfaAesar公司购置)的乙腈(EMD Chmicals公司购置)溶液。相应的测试结果如图20所示,当调节电压为+0.2V时,PEDOT:PSS电致变色层显示无色,就是电致变色器件的无色态;当调节电压为-0.4V时,PEDOT: PSS电致变色层显示深蓝色,就是电致变色器件的着色态。通过电压在+0.2V和-0.4V的切换,就能够实现电致变色器件的无色-着色态转变。
[0108]实施例2、制备石墨烯和铜纳米线复合透明导电塑料薄膜
[0109]I)单层石墨烯薄膜/铜箔:步骤同实施例1步骤I);
[0110]2)制备PET/EVA/Cu NWs复合塑料膜:使用商业热裱膜PET/EVA,将PET/EVA薄膜用异丙醇清洗,吹干,然后用90W的空气等离子体处理2min,以提高EVA表面的亲水性;
[0111]将金属铜纳米线分散在乙醇中,使其浓度为10mg/mL,使用前,用乙醇将Cu NWs悬池液稀释到lmg/mL,在功率为99W的超声清洗机中超声分散lmin,得到分散均勾的金属铜纳米线悬浮液;
[0112]在PET/EVA薄膜上形成金属铜纳米线层可采用如下工艺I或工艺2:
[0113]工艺1:匀胶机旋涂工艺,调控不同的金属铜纳米线浓度、匀胶机转速、铜纳米线悬浊液用量可以得到不同密度的铜纳米线薄膜,匀胶机转速为500-1200r/min,旋涂时间为lmin。典型的旋涂工艺为:转速1000r/min,时间lmin,铜纳米线悬池液浓度为lmg/mL。
[0114]工艺2:计量棒刷涂工艺,使用滴管在PET/EVA薄膜上滴一层金属铜纳米线悬浮液,再用计量棒均匀地将悬浮液铺展开来。然后将PET/EVA/Cu NWs薄膜置于lmol/L的盐酸中30s,以除去铜纳米线表面的氧化层、氢氧化层以及表面活性剂等,并用去离子水清洗,最后用高纯氮气枪吹干,或者在80°C下烘烤30s,使其烘干,得到PET/EVA/Cu NWs复合塑料膜;
[0115]典型的PET/EVA/Cu NWs复合塑料膜表面的铜纳米线的光学显微镜照片如图17所示,从图17可得知:铜纳米线分散均匀,形成铜纳米线网络结构。
[0116]3)步骤同实施例1步骤3),仅将PET/EVA/Ag NWs复合塑料膜换成PET/EVA/Cu NWs复合塑料膜;
[0117]4)步骤同实施例1步骤4);
[0118]5)步骤同实施例1步骤5),最后得到PET/EVA/Cu NWs/石墨烯复合薄膜的扫描电子显微镜照片如图18所示,从图18可知:铜纳米线被包埋在EVA基底里,而且被石墨烯良好地覆盖;
[0119]6)步骤同实施例1步骤6)。
[0120]相应的测试结果如下:
[0121]a)良好的透光性和导电性:PET/EVA/Cu NWs/石墨烯复合薄膜具有良好的透光性和导电性能。PET/EVA/Cu NWs/石墨烯复合薄膜比具有相同浓度的PET/Cu NWs薄膜导电性能优异。PET/EVA/Cu NWs/石墨烯复合薄膜具有良好的宽光谱透光性,比ITO在近红外区有更优异的透光性能;
[0122]b)稳定性:直接将Cu NWs旋涂到PET基底上,能够得到PET/Cu NWs薄膜。将PET/EVA/Cu NWs/石墨烯复合薄膜和单纯的PET/Cu NWs薄膜放置在80°C、20%湿度、大气环境下,测量其表面电阻随时间的变化,如图19所示,从图19可知:在高分子和石墨烯的双重保护作用下,铜纳米线的抗氧化能力大大提高,稳定性变好;
[0123]c)柔性:PET/EVA/Cu NWs/石墨烯复合薄膜具有比PET/IT0优异的柔性;
[0124]d)抗剥离性能:PET/EVA/Cu NWs/石墨烯复合薄膜具有比PET/Cu NWs优异的抗剥离性能。
【主权项】
1.一种石墨烯和金属纳米线复合透明导电塑料薄膜的制备方法,包括如下步骤:1)利用化学气相沉积法在铜基底上沉积石墨烯,得到铜基底/石墨烯薄膜复合结构;2)在塑料衬底表面涂布金属纳米线,S卩可得到金属纳米线/塑料衬底复合塑料膜;3)将所述铜基底/石墨烯薄膜复合结构中的石墨烯薄膜和所述金属纳米线/塑料衬底 复合塑料膜中的金属纳米线贴合,热压印,得到铜基底/石墨烯薄膜/金属纳米线/塑料衬 底复合结构;4)采用电化学鼓泡方法去除所述铜基底/石墨烯薄膜/金属纳米线/塑料衬底复合结 构中的铜基底,即得到石墨稀薄膜/金属纳米线/塑料衬底复合薄膜,即所述石墨稀和金属 纳米线复合透明导电塑料薄膜。2.根据权利要求1所述的制备方法,其特征在于:步骤1)中,所述铜基底为铜箱,纯度 大于99.9%,厚度为12-25 ym;所述化学气相沉积法中,反应温度为900-1000°C,氢气流量为l-5sCCm,碳源为甲烷, 所述甲烷的流量为5-36sccm。3.根据权利要求1或2所述的制备方法,其特征在于:步骤2)中,所述塑料衬底为热裱膜;所述塑料衬底在使用之前还包括用空气等离子体处理塑料衬底表面的步骤,所述空气 等离子体处理的功率为90W,时间为2min ;所述金属纳米线选自如下至少一种:银纳米线、金纳米线和铜纳米线。4.根据权利要求1-3中任一项所述的制备方法,其特征在于:步骤2)中,所述金属纳 米线是以金属纳米线悬浮液的形式涂布在塑料衬底表面的;所述金属纳米线悬浮液的浓度为l-l〇mg/ml ;所述金属纳米线悬浮液是将金属纳米线超声分散在醇类化合物中而得到的,所述醇类 化合物选自异丙醇和/或乙醇。5.根据权利要求1-4中任一项所述的制备方法,其特征在于:步骤2)中,所述涂布采 用旋涂和/或刷涂;所述涂布之后,还包括对表面涂布有金属纳米线的塑料衬底进行清洗,吹干或烘干的 步骤:所述清洗为将所述金属纳米线/塑料衬底复合塑料膜浸泡在超纯水中l〇s ;所述吹干为用高纯氮气枪吹干;所述烘干为在80-100 °C下烘烤30-60s。6.根据权利要求1-5中任一项所述的制备方法,其特征在于:步骤2)中,所述塑料衬 底选自如下任意一种:聚对苯二甲酸乙二醇酯/乙烯-醋酸乙烯共聚物高分子透明薄膜、聚 对苯二甲酸乙二醇酯/聚甲基丙烯酸甲酯高分子透明薄膜、聚碳酸酯/乙烯-醋酸乙烯共 聚物高分子透明薄膜、聚碳酸酯/聚甲基丙烯酸甲酯高分子透明薄膜、聚萘二甲酸乙二醇 酯/乙烯-醋酸乙烯共聚物高分子透明薄膜和聚萘二甲酸乙二醇酯/聚甲基丙烯酸甲酯高 分子透明薄膜。7.根据权利要求1-6中任一项所述的制备方法,其特征在于:步骤3)中,所述热压印 是通过塑封机来实现的,所述热压印的温度为100-150°C,压印速率为0.5-2cm/s ;步骤4)中,所述电化学鼓泡方法实验条件如下:阳极电极为石墨棒,阴极电极为步骤 3)所述铜基底/石墨稀薄膜/金属纳米线/塑料衬底复合结构,电解液为l_2mol/L NaOH水溶液,电压为2-4V ;步骤4)中,还包括对所述石墨烯和金属纳米线复合透明导电塑料薄膜进行退火处理 的步骤:使其在80-100°C下退火处理10-30s。8.根据权利要求1-7中任一项所述的制备方法而制备得到的石墨烯和金属纳米线复 合透明导电塑料薄膜。9.权利要求8所述的石墨烯和金属纳米线复合透明导电塑料薄膜在制备电子器件中 的应用。10.根据权利要求9所述的应用,其特征在于:所述电子器件为电致变色器件、触摸屏、 有机太阳能电池和/或有机发光二极管。
【文档编号】H01B5/14GK105989911SQ201510069588
【公开日】2016年10月5日
【申请日】2015年2月10日
【发明人】彭海琳, 邓兵, 刘忠范
【申请人】北京大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1