一种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法

文档序号:10658506阅读:395来源:国知局
一种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法
【专利摘要】本发明公开了一种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,主要解决现有技术制造的背面局部单质掺杂深度和浓度不能兼得(硼扩散表面浓度远高于铝,而铝扩散深度远大于硼)、在制备掺杂源时采用旋涂、蒸镀或丝网印刷硼聚合物存在着工艺繁琐、集成度低、杂质源不纯净和存在毒害危险等问题。其实施方案是:通过PECVD方法在P型太阳电池背面钝化层上沉积掺硼氧化铝,之后通过激光辐射硅片背面局部区域以在所述区域形成硼和铝双质杂质掺杂,并在掺硼氧化铝层和钝化层的对应位置上形成开口。激光掺杂形成的双质杂质掺杂结浓度高、深度深,有助于降低背电极和硅基的接触电阻和基区纵向电阻,提高FF;此结构可匹配低方块电阻,提升短路电流。
【专利说明】
一种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法
技术领域
[0001]本发明涉及晶体硅太阳电池制造领域,尤其涉及一种晶体硅太阳电池的背面局部双质杂质惨杂结构及其惨杂方法。
【背景技术】
[0002]作为一种清洁能源,太阳电池于促进人类可持续发展方面越来越受关注。在制造方面,太阳电池永恒不变的一大主题即为降低成本、提高电池效率。P型晶体硅制造一直主导太阳电池领域,提高其效率是行业研究的重点。
[0003]目前,背钝化背接触电池是高效晶体硅太阳电池发展的主要方向。根据结构不同,可分为PERC、PERT、PERL等。PERL电池较传统丝网印刷电池增加了制备背面钝化层和掺杂P型源等步骤。P型源一般选为硼源。要掺杂P型硼源,首先在硅片背面旋涂、蒸镀或丝网印刷硼聚合物;然后通过激光在硅片背面局部区域辐射硼聚合物以在所述辐射区域形成局部重掺结构,同时起到开窗作用。但旋涂、蒸镀或丝网印刷方式沉积的硼聚合物存在以下问题:
(I)硼源掺杂深度浅、不够纯净且利用效率低;(2)不利于工艺集成;(3)使用前要烘干、使用后要清洗,步骤繁琐;(4)毒性大且易挥发,对操作人员的人身安全和环境造成不良影响。因此,要推进PERL电池的产业化,就要发明一种清洁的、利于集成的掺杂源制备方法。
[0004]作为P型掺杂源,硼在硅中的固溶度(6X 120Cm-3)高、扩散表面浓度高,所以硼是主流背面掺杂源。但是硼在硅中的扩散系数小,制备出的结较浅。相对地,铝在硅中的扩散系数大于硼,杂质浓度分布较缓,结深可达80μπι。所以,结合硼和铝双质杂质来掺杂制备一种高浓度双质杂质深结是PERL电池非常理想的一种方案。工业上用硼铝乙醇源或者硼铝乳胶源作为双质掺杂源,这两种源都是有机液体,经过涂源后,需要用100tC以上的高温进行扩散。不仅工艺复杂、耗费能源,再次引入的高温过程会把杂质引入晶体硅体,在很大程度上降低开路电压。
[0005]氧化铝是近几年开始被频频使用的钝化薄膜。因其带有负电荷,所以很适合钝化P型晶体硅电池的背面。制备氧化铝薄膜的方法很多,业界一般采用ALD或者PE⑶V,厚度一般为?SOnmt3Al也可以作为一种P型掺杂源,通过激光辐射氧化铝层被掺杂进所述辐射区域成为掺杂源。因此,在用PECVD制备氧化铝薄膜的同时掺入硼源,而后进行激光辐射可形成高浓度双质杂质深结。这种方法制备背面重掺杂好处有四:(I)双质杂质结浓度高、结深;(2)利于集成,掺硼氧化铝膜的制备可集成于制备氮化硅钝化层的PECVD设备;(3)不存在额外的硼源烘干、去除清洗、高温扩散等制造步骤,简单方便;(4)无毒无害,掺杂源较为纯净,有利于降低复合速率,提升开路电压。

【发明内容】

[0006]本发明的目的是要提供一种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,通过所述结构和掺杂方法可制备出一种高浓度双质杂质深结,有效提高工艺的集成,并提高源的纯净度且能确保操作的安全无毒性。
[0007]为实现上述目的,本发明提供的这种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,包括以下步骤:(a)提供完成制绒清洗、扩散PN结、背面和边缘刻蚀、正面沉积减反膜的P型晶体硅片;(b)在所述硅片背面沉积钝化层;(C)在所述背面钝化层上沉积双质杂质掺杂介质层;(d)通过激光辐射硅片背面局部区域以在硅片背面所述局部区域形成局部双质杂质重掺区,并在双质杂质掺杂介质层和钝化层的对应位置上形成开口;(e)在硅片背面形成经由所述开口与所述局部双质杂质重掺区电性连接的背面电极。
[0008]优选的,所述双质杂质为硼和铝,所述双质杂质掺杂介质层为掺硼氧化铝膜,所述掺硼氧化铝膜通过等离子增强化学气象沉积(PECVD)工艺形成,所述PECVD温度为100?450Γ。
[0009]优选的,所述掺硼氧化铝膜中铝杂质源于工艺气体三甲基铝(TMA),所述掺硼氧化铝膜中硼杂质源于工艺气体乙硼烷(B2H6)或三甲基硼(TMB)或三氟化硼(BF3),所述硼在掺硼氧化铝膜中的掺杂浓度为I X 118-1X 10'm—3。
[0010]优选的,所述掺硼氧化铝膜厚度为0.01?ΙΟμπι。
[0011]优选的,步骤(b)中背面钝化层为氧化硅和氮化硅叠层或者氧化铝和氮化硅叠层,叠层膜厚为55?300nmo
[0012]优选的,所述步骤(d)中,通过连续激光器或脉冲激光器对硅片背面区域进行局部辐射,形成硼局部重掺P++区和铝局部重掺P+区,所述硼局部重掺P++区的有效硼掺杂浓度为IX 102()?I X 1021cm—3,深度为5?30μπι,所述铝局部重掺P+区的有效铝掺杂浓度为I X 119?6X 1019cm—3,深度为 30 ?80μηι。
[0013]优选的,所述局部重掺区图形采用点阵列或线阵列结构,所述局部重掺区面积占硅片背面总面积的0.1 %?10%。
[0014]优选的,所述步骤(e)中通过溅射或者蒸发铝并进行热处理在硅片背面形成背面电极,所述热处理温度为400 °C?600 °C。
[0015]相比于现有技术,本发明的有益之处在于:(1)本发明制备的双质杂质结浓度高、结深,有助于降低背电极和硅基的接触电阻、基区纵向电阻,提高FF;此结构可匹配低方块电阻,提升短路电流;(2)利于集成,掺硼氧化铝膜的制备可集成于制备氮化硅钝化层的PECVD设备;(3)不存在额外的硼源烘干、去除清洗、高温扩散等制造步骤,简单方便;(4)无毒无害,掺杂源较为纯净,有利于降低复合速率,提升开路电压。
【附图说明】
[0016]图1是本发明提供的晶体硅太阳电池的背面局部双质杂质掺杂结构示意图。
【具体实施方式】
[0017]下面结合附图和实施例对本发明的技术方案作进一步的说明。
[0018]图1是采用本发明的技术方案制备出的晶体硅太阳电池的结构示意图,图中:1-P型硅基体、2-磷扩散PN结、3-正面减反层、4-背面钝化层、5-背面掺硼氧化铝层、6-背面硼局部重掺P++区、7-背面铝局部重掺P+区、8-背面铝电极层、9-正面电极。
[0019]【具体实施方式】如下。
[0020]实施例1:
[0021]—种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,包括以下步骤:
[0022](a)选择P型晶体硅片,去损伤后制作金字塔绒面,并用硝酸和氢氟酸的混合溶液对所述硅片进行背面酸抛光,然后清洗去除杂质;
[0023](b)采用管式POCl3热扩散法在所述硅片上扩散制成方块电阻为50ohm/Sq PN结;
[0024](c)通过刻蚀去除所述硅片正面区域外的PN结,并去除磷硅玻璃层;
[0025](d)在所述娃片正面沉积厚度为80nm的SiNx减反介质膜,背面沉积厚度为180nm的氧化娃和氮化娃叠层膜;
[0026](e)在所述氧化硅和氮化硅叠层膜上通过PECVD法沉积掺硼氧化铝层,所述膜厚为400nm;
[0027](f)通过1064nm脉冲激光器对所述硅片背面区域进行局部辐射,以在所述局部区域形成点阵列局部双质杂质硼铝重掺区,并在钝化层和掺硼氧化铝层的对应位置上形成开口,所述双质杂质硼铝重掺区中,有效硼掺杂浓度为5 XlO2t3cm—3,深度为15μπι,有效铝掺杂浓度为2\101%1—3,深度为4(^,所述局部重掺?++区面积占硅片背面总面积的2.5%;
[0028](g)通过蒸发铝并进行烧结在硅片背面形成铝背面电极,经由所述开口与所述局部双质杂质重掺P++区电性连接,所述烧结温度为400 V。
[0029]实施例2:
[0030]—种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,包括以下步骤:
[0031](a)选择P型晶体硅片,去损伤后制作金字塔绒面,并用氢氧化钠或氢氧化钾溶液对所述硅片进行背面碱抛光,然后清洗去除杂质;
[0032](b)采用管式POCl3热扩散法在所述硅片上扩散制成方块电阻为SOohm/sq PN结;
[0033](c)通过刻蚀去除所述硅片正面区域外的PN结,并去除磷硅玻璃层;
[0034](d)在所述娃片正面沉积厚度为80nm的SiNx减反介质膜,背面沉积厚度为280nm的氧化铝和氮化硅叠层膜;
[0035](e)在所述氧化铝和氮化硅叠层膜上通过PECVD法沉积掺硼氧化铝层,所述膜厚为800nm;
[0036](f)通过355nm连续激光器对所述硅片背面区域进行局部辐射,以在所述局部区域形成线阵列局部双质杂质硼铝重掺区,并在钝化层和掺硼氧化铝层的对应位置上形成开口,所述双质杂质硼铝重掺区中,有效硼掺杂浓度为8X102()cm—3,深度为25μπι,有效铝掺杂浓度为6\101%1—3,深度为6(^,所述局部重掺?++区面积占硅片背面总面积的5%;
[0037](g)通过溅射铝并进行烧结在硅片背面形成铝背面电极,经由所述开口与所述局部双质杂质重掺P++区电性连接,所述烧结温度为500 °C。
[0038]最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
【主权项】
1.一种晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,其特征在于,该方法主要包括以下步骤:(a)提供完成制绒清洗、扩散PN结、背面和边缘刻蚀、正面沉积减反膜的P型晶体硅片;(b)在所述硅片背面沉积钝化层;(C)在所述背面钝化层上沉积双质杂质掺杂介质层;(d)通过激光辐射硅片背面局部区域以在硅片背面所述局部区域形成局部双质杂质重掺区,并在双质杂质掺杂介质层和钝化层的对应位置上形成开口;(e)在硅片背面形成经由所述开口与所述局部双质杂质重掺区电性连接的背面电极。2.根据权利要求1所述的晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,其特征在于,所述双质杂质为硼和铝,所述双质杂质掺杂介质层为掺硼氧化铝膜,所述掺硼氧化铝膜通过等离子增强化学气象沉积(PECVD)工艺形成,所述PECVD温度为100?450Γ。3.根据权利要求2所述的晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,其特征在于,所述掺硼氧化铝膜中铝杂质源于工艺气体三甲基铝(TMA),所述掺硼氧化铝膜中硼杂质源于工艺气体乙硼烷(B2H6)或三甲基硼(TMB)或三氟化硼(BF3),所述硼在掺硼氧化铝膜中的掺杂浓度为I X 118-1X 10'm—3。4.根据权利要求2或3所述的晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,其特征在于,所述掺硼氧化铝膜厚度为0.01?ΙΟμπι。5.根据权利要求1所述的晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,其特征在于,步骤(b)中背面钝化层为氧化硅和氮化硅叠层或者氧化铝和氮化硅叠层,叠层膜厚为55?300nmo6.根据权利要求1所述的晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,其特征在于,所述步骤(d)中,通过连续激光器或脉冲激光器对硅片背面区域进行局部辐射,形成硼局部重掺P++区和铝局部重掺P+区,所述硼局部重掺P++区的有效硼掺杂浓度为IX 102()?I X 1021cm—3,深度为5?30μπι,所述铝局部重掺P+区的有效铝掺杂浓度为I X 119?6X 1019cm—3,深度为 30 ?80μηι。7.根据权利要求5所述的晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,其特征在于,所述局部重掺区图形采用点阵列或线阵列结构,所述局部重掺区面积占硅片背面总面积的0.1 %?1 %。8.根据权利要求1所述的晶体硅太阳电池的背面局部双质杂质掺杂结构及其掺杂方法,其特征在于,所述步骤(e)中通过溅射或者蒸发铝并进行热处理在硅片背面形成背面电极,所述热处理温度为400°C?600°C。
【文档编号】H01L31/0352GK106024933SQ201610635728
【公开日】2016年10月12日
【申请日】2016年8月4日
【发明人】李文佳, 邵建波, 王振交, 朱益清, 李果华
【申请人】江南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1