适用于可见光通信的光信号接收器件的制作方法

文档序号:10658538阅读:737来源:国知局
适用于可见光通信的光信号接收器件的制作方法
【专利摘要】本发明公开了一种适用于可见光通信的光信号接收器件,包括:设置在前端的聚光透镜、设置在后端的硅基光电二极管,以及设置在聚光透镜与硅基光电二极管之间的红色荧光粉层;其中,所述硅基光电二极管对可见光波段和近红外波段有响应,最大响应波长在600nm与640nm之间;所述红色荧光粉层中的红色荧光粉激发谱最高峰位于430nm和470nm之间,发射谱为峰值波长位于600nm和640nm之间的红光光谱。通过该器件可以弥补入射光和硅基光电二极管之间的光谱不匹配,显著提高对蓝光及近紫外光的信号强度。
【专利说明】
适用于可见光通信的光信号接收器件
技术领域
[0001]本发明涉及光电器件领域,尤其涉及一种适用于可见光通信的光信号接收器件。
【背景技术】
[0002]提升硅基光电二极管的近紫外及蓝光光谱响应一直是研究的热点。硅基光电二极管的峰值响应波长一般位于近红外或红光波段。
[0003]近年来的可见光通信迫切需要蓝光探测器以提高信噪比。而一般的高速硅基光电二极管在蓝光波段及近紫外波段的灵敏度、响应速率及带宽严重不足。
[0004]鉴于此,有必要在光通信材料和器件领域进行深入研究,来提高蓝光波段及近紫外波段的探测信号强度。

【发明内容】

[0005]本发明的目的是提供一种适用于可见光通信的光信号接收器件,可以显著提高对蓝光及近紫外光的信号强度。
[0006]本发明的目的是通过以下技术方案实现的:
[0007]—种适用于可见光通信的光信号接收器件,包括:设置在前端的聚光透镜、设置在后端的硅基光电二极管,以及设置在聚光透镜与硅基光电二极管之间的红色荧光粉层;
[0008]其中,所述硅基光电二极管对可见光波段和近红外波段有响应,最大响应波长在600nm与640nm之间;所述红色焚光粉层中的红色焚光粉激发谱最高峰位于430nm和470nm之间,发射谱为峰值波长位于600nm和640nm之间的红光光谱。
[0009]所述红色荧光粉层紧贴硅基光电二极管的窗口,且红色荧光粉层的尺寸与硅基光电二极管窗口的尺寸相同。
[0010]所述红色荧光粉层以半导体工艺溅镀在硅基光电二极管的窗口表面。
[0011]所述红色荧光粉层中红色荧光粉的载体为玻璃、环氧树脂、硅树脂或硅凝胶。
[0012]所述红色荧光粉层的厚度为100微米-300微米。
[0013]所述娃基光电二极管包括:PIN型光电二极管或者是雪崩光电二极管,且外量子效率大于50%。
[0014]所述聚光透镜为自由曲面型透镜、半球透镜或菲涅耳透镜。
[0015]由上述本发明提供的技术方案可以看出,基于红色荧光粉层来提升光电二极管对近紫外光的响应度、灵敏度,从而弥补入射光和硅基光电二极管之间的光谱不匹配,提高了信号强度;同时,红色荧光粉层对硅基光电二极管频率响应带宽的影响并不显著。
【附图说明】
[0016]为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
[0017]图1为本发明实施例提供的适用于可见光通信的光信号接收器件的结构示意图;
[0018]图2为本发明实施例提供的一种红色荧光粉层与硅基光电二极管的剖面图;
[0019]图3为本发明实施例提供的另一种红色荧光粉层与硅基光电二极管的剖面图
[0020]图4为本发明实施例提供的一种红色荧光粉的激发谱和发射谱示意图;
[0021]图5为本发明实施例提供的带或不带红色荧光粉层光电二极管对IMHz方波近紫外激光的接收响应波形示意图;
[0022]图6为本发明实施例提供的带或不带红色荧光粉层光电二极管对1MHz方波近紫外激光的接收响应波形示意图。
【具体实施方式】
[0023]下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
[0024]图1为本发明实施例提供的适用于可见光通信的光信号接收器件的结构示意图。如图1所示,其主要包括:设置在前端的聚光透镜1、设置在后端的硅基光电二极管3,以及设置在聚光透镜I与硅基光电二极管3之间的红色荧光粉层2;
[0025]其中,所述硅基光电二极管3对可见光波段和近红外波段有响应,最大响应波长在600nm与640nm之间;所述红色焚光粉层2中的红色焚光粉激发谱最高峰位于430nm和470nm之间,发射谱为峰值波长位于600nm和640nm之间的红光光谱。
[0026]本发明实施例中,所述红色荧光粉层2的厚度L为100微米-300微米,荧光粉的种类不限,只要在需要的光谱波段荧光粉的激发效率能大于50%。
[0027]本发明实施例中,所述红色荧光粉层2紧贴硅基光电二极管3的窗口,且红色荧光粉层2的尺寸与娃基光电二极管3窗口的尺寸相同。
[0028]本发明实施例中,所述硅基光电二极管3可以是PIN型光电二极管或者是雪崩光电二极管,且外量子效率大于50% ο ;也可以用娃基光电倍增管代替光电二极管。
[0029]本发明实施例中,所述聚光透镜I为自由曲面型透镜、半球透镜或菲涅耳透镜。
[0030]本发明实施例的上述方案中基于红色荧光粉层2弥补入射光和硅基光电二极管3之间的光谱不匹配。同时,还通过实验比较研究了红色荧光粉层增强型硅基光电二极管的光波下转换特性对近紫外光的频率响应的影响。结果表明:红色荧光粉层能有效提升光电二极管对近紫外光的响应度、灵敏度,并且对硅基光电二极管频率响应带宽的影响并不显著。此外,还可以通过优化红色荧光胶层的形状和胶层荧光粉的浓度,针对具体应用场景优化探测器的外部量子效率及响应灵敏度。另外,红色荧光粉层也起着扩散层的作用,可以显著提高硅基光电二极管的光接收视场角。对于蓝光,本发明的上述实施例也有同样的作用。
[0031]本发明实施例中,所述红色荧光粉层2中红色荧光粉的载体为玻璃、环氧树脂、硅树脂或硅凝胶。所述红色荧光粉层也可以以半导体工艺溅镀在硅基光电二极管的窗口表面。
[0032]如图2所示,为本发明实施例提供的红色荧光粉层与硅基光电二极管的剖面图。其中,11是40微米-200微米厚度的红色荧光粉层,12是封装好的硅基光电二极管的收光窗口,13是硅基光电二极管实体。
[0033]如图3所示,为本发明实施例提供的红色荧光粉层与硅基光电二极管的剖面图。图3中硅基光电二极管为PIN型光电二极管;其中,101是PIN型光电二极管PN结中的N层,201是I层,301是P层,401是镍金电极,501是硅基板,601是正电极,701是负电极,801是在窗口上溅镀的20-50微米厚红色荧光粉层。该结构采用光电二极管晶元级的制作工艺,不仅保证了荧光层的质量,也更适合现代化大规模量产。
[0034]以上为本发明实施例提供的适用于可见光通信的光信号接收器件的主要组成结构。下面针对其原理进行详细介绍。
[0035]本发明实施例上述方案中,红色荧光粉层固定在硅基光电二极管的窗口,通过波长下转换提高硅基光电二极管对近紫外波段的响应。在验证实验中,方波或正弦波调制的波长375nm的近紫外激光以15mW的平均光功率和100 %的调制深度正向瞄准硅基光电二极管圆形窗口的正中心。光电二极管的圆形探测窗口直径为0.8mm。其630nm处的探测灵敏度为0.45A/W,375nm处的探测灵敏度为0.13A/W。实验中激光光束直径不超过0.8_。近紫外激光激发三菱化学的氮化物红色荧光粉(SrCa)AlSiN3:Eu2+,如图4所示,红色荧光粉的主发射波长位于630nm,对375nm的近紫外激发量子效率是460nm处激发谱峰值的85-90%。验证实验结果表明红色荧光粉胶层能有效提升光电二极管对近紫外光的响应度、灵敏度,并且对硅基光电二极管频率响应带宽的影响并不显著。
[0036]此外,还通过实验比较研究了有红色荧光胶层和没有红色荧光胶层两种结构下光电二极管的响应。实验装置中,D5q尺寸为11微米的红色荧光粉末以0.5 %的重量比混合在德国瓦克的SilGel 612硅凝胶中,室温8小时吸湿固化后均匀涂于日本滨松公司的硅基PIN结构光电二极管S10783的无色透明环氧树脂表面。荧光胶层的厚度在0.5mm左右。发送端使用375nm近紫外激光器(模拟调制带宽可以到200MHz),分别发送IMHz、1MHz的方波以及扫频正弦波信号。接收端由被荧光粉胶层覆盖的硅基PIN光电二极管后面接入放大电路模块构成,放大后的信号通过示波器分析方波波形。该实验设计的放大电路对接收信号电压取了负号。
[0037]图5为本发明实施例提供比较实验结果(一):带或不带红色荧光粉层光电二极管对IMHz方波近紫外激光的接收响应波形。(a)带荧光粉层并不加反向偏压;(b)带荧光粉层并加2V反向偏压;(C)带荧光粉层并加3V反向偏压;(d)不加荧光粉并不加反向偏压。
[0038]图6为本发明实施例提供比较实验结果(二):带或不带红色荧光粉层光电二极管对1MHz方波近紫外激光的接收响应波形。(a)带荧光粉层并不加反向偏压;(b)带荧光粉层并加2V反向偏压;(C)带荧光粉层并加3V反向偏压;(d)不加荧光粉并不加反向偏压。
[0039]如图5-图6所示,红色荧光粉层对光电二极管的响应有显著的影响。带发光层的光电二极管对以方波调制的近紫外激光响应包含两部分:(I)对直射或被荧光粉颗粒散射的375nm近紫外光的响应,(2)对荧光粉受激发射的630nm红光的响应。一般的荧光粉的受激发射3dB频率响应带宽在ΙΟΚΗζ-ΙΜΗζ之间。比较图5(a)和图5(d)我们可以很清楚地看到,由于红色荧光粉的较小频率响应带宽,导致接收信号不能回到零点。在本实验中采用的荧光粉3dB带宽明显小于1MHz。即使这样,比较图6(a)和图6(d),我们也可以发现红色荧光粉胶层可以提升S10783光电二极管对1MHz方波调制近紫外激光响应的信号峰峰值3dB左右。这种红色荧光增强光电二极管频谱响应的内在机制将来需要实验结合理论模型进一步分析。初步分析最可能的因素主要有两个:(I)荧光粉响应1MHz激发光发射的红光导致的电信号不仅抵消了近紫外光散射吸收导致的电信号损失,还有所增益;(2)荧光粉层作为一个发光扩散层,有效缓解了光电二极管接收激光信号时需要的精确瞄准。实际进行比较测试时,当没有荧光粉胶层时,激光光斑很难真正与光电二极管圆形窗口对准。我们用蓝光LED也比较测试过两种结构的光电二极管的响应,并得到了相似的结果。
[0040]另外也可以看到,不加反向偏压时的波形最好,加上反向偏压后,光电二极管后的放大电路引入频率为50MHz且振幅较大的抖动。当方波频率增大后,受50MHz抖动的影响增大,波形严重失真。经过对接收信号进行滤波等处理,从上升沿时间可以看到,即使加了荧光粉层,接收端带宽依旧可以到几十兆赫兹。这主要是因为荧光粉的浓度比较小,光电二极管的高频响应信号主要来源于被散射或直射的375nm近紫外光。进一步研究荧光粉胶层的浓度和形状对红色荧光体增强型硅基光电二极管的频谱响应的影响将是很有必要的。当荧光粉浓度变大时,更多的近紫外光被转化为红光,同时也有更多的近紫外光被散射,实际上相当于改变了光电探测器的外部量子效率、光谱响应曲线和频率响应曲线。
[0041]以上所述,仅为本发明较佳的【具体实施方式】,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。
【主权项】
1.一种适用于可见光通信的光信号接收器件,其特征在于,包括:设置在前端的聚光透镜、设置在后端的硅基光电二极管,以及设置在聚光透镜与硅基光电二极管之间的红色荧光粉层; 其中,所述硅基光电二极管对可见光波段和近红外波段有响应,最大响应波长在600nm与640nm之间;所述红色焚光粉层中的红色焚光粉激发谱最高峰位于430nm和470nm之间,发射谱为峰值波长位于600nm和640nm之间的红光光谱。2.根据权利要求1所述的一种适用于可见光通信的光信号接收器件,其特征在于,所述红色荧光粉层紧贴硅基光电二极管的窗口,且红色荧光粉层的尺寸与硅基光电二极管窗口的尺寸相同。3.根据权利要求1或2所述的一种适用于可见光通信的光信号接收器件,其特征在于,所述红色荧光粉层以半导体工艺溅镀在硅基光电二极管的窗口表面。4.根据权利要求1或2所述的一种适用于可见光通信的光信号接收器件,其特征在于,所述红色荧光粉层中红色荧光粉的载体为玻璃、环氧树脂、硅树脂或硅凝胶。5.根据权利要求1或2所述的一种适用于可见光通信的光信号接收器件,其特征在于,所述红色荧光粉层的厚度为100微米-300微米。6.根据权利要求1所述的一种适用于可见光通信的光信号接收器件,其特征在于,所述娃基光电二极管包括:PIN型光电二极管或者是雪崩光电二极管,且外量子效率大于50%。7.根据权利要求1所述的一种适用于可见光通信的光信号接收器件,其特征在于,所述聚光透镜为自由曲面型透镜、半球透镜或菲涅耳透镜。
【文档编号】H01L31/107GK106024967SQ201610316023
【公开日】2016年10月12日
【申请日】2016年5月11日
【发明人】李上宾, 徐正元, 黄博扬
【申请人】中国科学技术大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1