锂离子电池负极二氧化钛的制备方法

文档序号:10658811阅读:1237来源:国知局
锂离子电池负极二氧化钛的制备方法
【专利摘要】本发明公开了一种锂离子电池负极二氧化钛的制备方法,属于电极材料领域,其步骤包括:将草酸钛钾、去离子水和二甘醇混合,进行水热反应;分离水热反应后的产物,将分离后的固体在空气中煅烧,冷却后得到所述锂离子电池负极二氧化钛。本发明制备方法得到的锂离子电池负极二氧化钛为锐钛矿相二氧化钛,并且为三维的二氧化钛分层次花状结构。锂离子电池负极二氧化钛具有三维纳米结构,能够缩短锂离子的扩散路径、增大电极材料的反应面积,从而显著提高电极材料的电化学活性及倍率性能。同时,本发明的制备方法工艺简单,时间短,稳定性好,具有很强的实用性。
【专利说明】
锂离子电池负极二氧化钛的制备方法
技术领域
[0001]本发明涉及电极材料领域,特别涉及一种锂离子电池负极二氧化钛的制备方法。
【背景技术】
[0002]锂离子电池具有能量密度大、比功率高、循环寿命长等诸多优点,被认为是下一代混合动力型汽车及电动车的最理想供能器件。同时,随着便携式电子产品的广泛应用,锂离子电池已经成为商业化最为成功的一种能源器件。为了应对未来对能量储存器件需求的挑战,设计并制备新的电极材料显得至关重要。
[0003]目前,商业化的锂离子电池主要采用石墨作为负极材料。然而,碳基材料与金属锂的电极电位相近,在电池过充电时,仍可能会在碳电极表面析出金属锂,而形成枝晶造成短路,以及可能在高温时热失控等,存在的安全隐患问题,限制了其在新型动力储能器件中的应用。
[0004]二氧化钛作为一种“零应变”材料,充放电过程中结构几乎不发生变化,具有高安全性、循环性能稳定等优点。同时钛资源丰富、价格低廉。这些优点使二氧化钛成为锂离子电池负极具发展前景的电极材料。但是其弱导电性、低倍率容量等缺点同样限制了二氧化钛在锂离子电池中的广泛应用。
[0005]为了解决上述问题,申请号为201110398746.9的中国专利中公开了一种制备锂离子电池负极材料氧缺位钛酸锂的合成方法,制备了一种但是其循环性能一般,而且制备方法复杂。

【发明内容】

[0006]为了解决现有技术的问题,本发明实施例提供了一种锂离子电池负极二氧化钛的制备方法,用该方法制备得到的二氧化钛电化学活性好,用作锂离子电池负极材料不仅锂离子电池比容量高而且循环性能好,同时制备方法简单易实现。所述技术方案如下:
[0007]—种锂离子电池负极二氧化钛的制备方法,其步骤包括:
[0008](I)将草酸钛钾、去离子水和二甘醇混合,进行水热反应;
[0009](2)分离步骤(I)中的水热反应后的产物,将分离后的固体在空气中煅烧,冷却后得到所述锂离子电池负极二氧化钛。
[0010]优选的,所述步骤(I)是先将草酸钛钾在去离子水中溶解后,立即加入二甘醇,在40-70 °C下混合溶解的。
[0011]优选的,所述步骤(I)中每0.3-0.9克草酸钛钾中加入3-12毫升去离子水,以及体积为去离子水体积3-10倍的二甘醇。
[0012]优选的,所述步骤(I)中每0.5克草酸钛钾中加入3-12毫升去离子水,以及体积为去离子水体积3-10倍的二甘醇。
[0013]更优选的,所述步骤(I)中每0.5克草酸钛钾中加入3-10毫升去离子水和30-37毫升二甘醇。
[0014]最优选的,所述步骤(I)中每0.5克草酸钛钾中加入10毫升去离子水和30毫升二甘醇。
[0015]所述步骤(I)中的水热反应的温度为160-220°C,水热反应时间为1.5-10小时。更优选水热反应的温度为180-200°C,水热反应的时间为1.5-6小时。
[0016]优选的,所述步骤(2)中煅烧温度为450°C,煅烧时间为1-2小时。
[0017]优选的,所述步骤(2)中分离后的固体是先将水热反应后的产物经过离心,去掉液体部分后用水和乙醇洗涤后得到的。
[0018]优选的,所述步骤(2)中得到的锂离子电池负极二氧化钛为锐钛矿相二氧化钛。
[0019]本发明实施例提供的技术方案带来的有益效果是:
[0020]本发明制备方法得到的锂离子电池负极二氧化钛为锐钛矿相二氧化钛,并且为三维的二氧化钛分层次花状结构,并且优选的表面可以得到纳米线包覆的分层次花状结构。锂离子电池负极二氧化钛具有三维纳米结构,能够缩短锂离子的扩散路径、增大电极材料的反应面积,从而显著提高电极材料的电化学活性及倍率性能。并且,本发明可以通过控制水和二甘醇的比例,水热反应的加热温度、时间参数,来控制纳米二氧化钛的三维形貌,使其具有较高的充放电比容量、较好的循环及高倍率充放电性能。同时,本发明的制备方法工艺简单,时间短,稳定性好,具有很强的实用性。
【附图说明】
[0021]为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0022]图1为本发明的锂离子电池负极二氧化钛3的扫描电子显微图;
[0023]图2为本发明的锂离子电池负极二氧化钛4的扫描电子显微图;
[0024]图3为本发明的锂离子电池负极二氧化钛5的扫描电子显微图;
[0025]图4为本发明的锂离子电池负极二氧化钛6的扫描电子显微图;
[0026]图5为本发明的锂离子电池负极二氧化钛7的扫描电子显微图;
[0027]图6为本发明的锂离子电池负极二氧化钛8的扫描电子显微图;
[0028]图7为本发明的锂离子电池负极二氧化钛9的扫描电子显微图;
[0029]图8为本发明的锂离子电池负极二氧化钛10的扫描电子显微图;
[0030]图9为本发明的锂离子电池负极二氧化钛11的扫描电子显微图;
[0031]图10为本发明的锂离子电池负极二氧化钛6的透射电子显微图;
[0032]图11为本发明的锂离子电池负极二氧化钛11的透射电子显微图;
[0033]图12为本发明的锂离子电池负极二氧化钛6和锂离子电池负极二氧化钛11在相同电流密度下的100次循环寿命曲线图;
[0034]图13为本发明的锂离子电池负极二氧化钛6和锂离子电池负极二氧化钛11在不同电流密度下的100次循环寿命曲线图;
[0035 ]其中,1-锂离子电池负极二氧化钛6,2-锂离子电池负极二氧化钛11。
【具体实施方式】
[0036]为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
[0037]实施例1
[0038](I)将0.9g草酸钛钾(PTO)溶于12mL去离子水中,溶解完全之后快速加入28mL二甘醇,在70 °(:水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在220°C下水热反应5小时。
[0039](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧2小时,即得到锂离子电池负极二氧化钛I。
[0040]实施例2
[0041 ] (I)将0.3g草酸钛钾(PTO)溶于3mL去离子水中,溶解完全之后快速加入37mL二甘醇,在40 °(:水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在160°C下水热反应10小时。
[0042](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70°C真空干燥12小时,然后在空气中450°C煅烧1.5小时,即得到锂离子电池负极二氧化钛2。
[0043]实施例3
[0044](I)将0.5g草酸钛钾(PTO)溶于3mL去离子水中,溶解完全之后快速加入30mL二甘醇,在65 °(:水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在180°C下水热反应6小时。
[0045](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧I小时,即得到锂离子电池负极二氧化钛3。
[0046]实施例4
[0047](I)将0.5g草酸钛钾(PTO)溶于5mL去离子水中,溶解完全之后快速加入35mL二甘醇,在65 °(:水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在180°C下水热反应6小时。
[0048](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧I小时,即得到锂离子电池负极二氧化钛4。
[0049]实施例5
[0050](I)将0.5g草酸钛钾(PTO)溶于SmL去离子水中,溶解完全之后快速加入37mL二甘醇,在4°C水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在160°C下水热反应6小时。
[0051 ] (2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧I小时,即得到锂离子电池负极二氧化钛5。
[0052]实施例6
[0053](I)将0.5g草酸钛钾(PTO)溶于SmL去离子水中,溶解完全之后快速加入32mL二甘醇,在4°C水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在180°C下水热反应6小时。
[0054](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧I小时,即得到锂离子电池负极二氧化钛6。
[0055]实施例7
[0056](I)将0.5g草酸钛钾(PTO)溶于SmL去离子水中,溶解完全之后快速加入32mL二甘醇,在4°C水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在200°C下水热反应6小时。
[0057](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70°C真空干燥12小时,然后在空气中450°C煅烧1.5小时,即得到锂离子电池负极二氧化钛7。
[0058]实施例8
[0059](I)将0.5g草酸钛钾(PTO)溶于1mL去离子水中,溶解完全之后快速加入30mL二甘醇,在65 °(:水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在180°C下水热反应1.5小时。
[0060](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧I小时,即得到锂离子电池负极二氧化钛8。
[0061 ] 实施例9
[0062](I)将0.5g草酸钛钾(PTO)溶于1mL去离子水中,溶解完全之后快速加入30mL二甘醇,在65 °(:水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在180°C下水热反应3小时。
[0063](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧I小时,即得到锂离子电池负极二氧化钛9。
[0064]实施例10
[0065](I)将0.5g草酸钛钾(PTO)溶于1mL去离子水中,溶解完全之后快速加入30mL二甘醇,在65 °(:水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在180 °C下水热反应4.5小时。
[0066](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧2小时,即得到锂离子电池负极二氧化钛10。
[0067]实施例11
[0068](I)将0.5g草酸钛钾(PTO)溶于1mL去离子水中,溶解完全之后快速加入30mL二甘醇,在65 °(:水浴下剧烈搅拌,直到形成均一的混合溶液。然后,将该混合溶液放入10mL水热反应釜中,在180°C下水热反应6小时。
[0069](2)将上述水热反应产物取出并离心分离,去掉液体部分后用去离子水及乙醇离心清洗2-3次,在70 °C真空干燥12小时,然后在空气中450 V煅烧I小时,即得到锂离子电池负极二氧化钛11。
[0070]将上述实施例3-11的锂离子电池负极二氧化钛3-11的扫描电子显微图如图1-9所示,可以看出本发明的锂离子电池负极二氧化钛具有三维分层花状结构,其中锂离子电池负极二氧化钛6、11的透射电子显微图如图10、11所示。从实施例3、4、6、11可以看出,随着水和二甘醇体积比的增加,能得到纳米线包覆花状结构的二氧化钛。从实施例5、6、7可以看出,随着水热温度的升高,能得到纳米线包覆花状结构的二氧化钛。从实施例8、9、10、11可以看出,随着反应时间的增加,能得到纳米线包覆花状结构的二氧化钛。
[0071]将实施例6、11的锂离子电池负极二氧化钛6、11在充放电电压窗口为1-3V,在相同的电流密度340mA g—1下进行循环寿命检测,其100次循环寿命曲线图如图12所示,可以看出其放电容量较高,且曲线平坦,能稳定维持较长的循环寿命。
[0072]将实施例6、11的锂离子电池负极二氧化钛6、11在不同的电流密度下进行循环寿命检测,其100次循环寿命曲线图如图13所示,其中IC= 170mA g—1。可以看出在不同的电流密度下,仍然能维持较长的循环寿命,表现出了很好的稳定性。
[0073]其余实施例的锂离子电池负极二氧化钛能够得到类似结果,由于篇幅原因,因此不进行列举。
[0074]需要说明的是:上述实施例提供的锂离子电池负极二氧化钛在用于锂电池负极时,仅以上述制得的部分二氧化钛进行举例说明,实际应用中,可以根据需要而进行水和二甘醇体积比以及水热反应条件的调整,得到效果相似的锂离子电池负极二氧化钛,其具体制备方法详见方法实施例,这里不再赘述。
[0075]上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
[0076]以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
【主权项】
1.一种锂离子电池负极二氧化钛的制备方法,其步骤包括: (1)将草酸钛钾、去离子水和二甘醇混合,进行水热反应; (2)分离步骤(I)中的水热反应后的产物,将分离后的固体在空气中煅烧,冷却后得到所述锂离子电池负极二氧化钛。2.根据权利要求1所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(I)是先将草酸钛钾在去离子水中溶解后,立即加入二甘醇,在40-70 0C下混合溶解的。3.根据权利要求1所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(I)中每0.3-0.9克草酸钛钾中加入3-12毫升去离子水,以及体积为去离子水体积3-10倍的二甘醇。4.根据权利要求3所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(I)中每0.5克草酸钛钾中加入3-12毫升去离子水,以及体积为去离子水体积3-10倍的二甘醇。5.根据权利要求3所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(I)中每0.5克草酸钛钾中加入3-10毫升去离子水和30-37毫升二甘醇。6.根据权利要求5所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(I)中每0.5克草酸钛钾中加入10毫升去离子水和30毫升二甘醇。7.根据权利要求1所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(1)中的水热反应的温度为160-220°C,水热反应时间为1.5-10小时。8.根据权利要求1所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(2)中煅烧温度为450°C,煅烧时间为1-2小时。9.根据权利要求1所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(2)中分离后的固体是先将水热反应后的产物经过离心,去掉液体部分后用水和乙醇洗涤后得到的。10.根据权利要求1所述锂离子电池负极二氧化钛的制备方法,其特征在于:所述步骤(2)中得到的锂离子电池负极二氧化钛为锐钛矿相二氧化钛。
【文档编号】B82Y40/00GK106025250SQ201610340518
【公开日】2016年10月12日
【申请日】2016年5月20日
【发明人】刘钰旻, 瞿丹丹, 汪少夫, 江云
【申请人】江汉大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1