一种钙钛矿薄膜电池及其吸收层和吸收层制备方法

文档序号:10666107
一种钙钛矿薄膜电池及其吸收层和吸收层制备方法
【专利摘要】本发明一种钙钛矿薄膜电池及其吸收层和吸收层制备方法,所述的吸收层制备方法包括如下步骤,1)制备钙钛矿前驱体溶液;2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;3)将添加剂加入到钙钛矿前驱体溶液中得到混合物,再将混合物通过成膜方法制备得到吸收层。所述的钙钛矿薄膜电池,包括依次设置的空穴传输层、钙钛矿吸收层和电子传输层;所述的钙钛矿吸收层如本发明所述。所述的制备,通过一步法直接制备钙钛矿吸收层,另外,添加剂也是一步法加入到钙钛矿前驱体溶液中,其方法操作简单,方便实现均相掺杂。薄膜粗糙度低,缺陷态密度低,载流子寿命长,从而提高了电池的性能,尤其是在电池的开路电压和短路电流上。
【专利说明】
一种钙钛矿薄膜电池及其吸收层和吸收层制备方法
技术领域
[0001] 本发明涉及太阳能电池技术领域,具体为一种钙钛矿薄膜电池及其吸收层和吸收 层制备方法。
【背景技术】
[0002] 将太阳能转化为电能是解决能源问题的一条可持续的道路,是当前乃至今后长时间 需要研发和攻克的课题,关系到民生、社会发展以及子孙的千秋万代,具有十分重要的意义。
[0003] 基于钙钛矿结构的ABX3U代表卤族元素)材料在最近几年引起了光伏研究领域的 极大关注,并且广泛应用于高效太阳电池的技术研究。经过短短6年的发展,到目前为止,钙 钛矿太阳电池的小面积最高认证效率已达到了 22%,大面积(Icm2)认证效率也已达到 20.5%。钙钛矿太阳能电池的快速的发展足以说明其具有潜力能承担起未来能源转化的重 任。然而,由于其材料本身发展起步较晚,时间尚短,其还存在很多的问题。例如:如器件稳 定性差,容易受湿度和温度等的影响,产生迟滞现象等。
[0004] 目前制备钙钛矿吸收层主要分为真空法和溶液法,溶液法由于其更易于实现低成 本、大面积生产而更受青睐,在溶液法制备吸收层时,又分为一步溶液法和两步法。两步法 首先需要制备多孔的卤化铅薄膜,然后在卤化铅薄膜上继续旋涂或者喷涂碘甲胺及类似溶 液,从而制备钙钛矿薄膜材料。一步溶液法为直接配置前驱体溶液,通过旋涂退火或喷雾热 解等方法一步成膜,其操作方便简单,从制备方法上又进一步降低了电池的成本。然而一步 法较两步法相比,薄膜质量相对较差,粒子尺寸小,效率较低,迟滞现象明显。现有的钙钛矿 薄膜电池缺陷密度大,载流子寿命短,电池性能低下。

【发明内容】

[0005] 针对现有技术中存在的问题,本发明提供一种钙钛矿薄膜电池及其吸收层和吸收层 制备方法。操作简单,薄膜粗糙度低,缺陷态密度降低,载流子寿命增长,电池性能得到了提高。
[0006] 本发明是通过以下技术方案来实现:
[0007] -种钙钛矿薄膜电池的吸收层制备方法,包括如下步骤,
[0008] 1)制备钙钛矿前驱体溶液;
[0009] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0010] 3)将添加剂加入到钙钛矿前驱体溶液中得到混合物,再将混合物通过成膜方法制 备得到吸收层。
[0011]优选的,所述的碱金属盐采用与其相对应的卤化物、硝酸盐、硫酸盐、亚硝酸盐、碳 酸盐、醋酸盐、氢氧化物、氧化物、硫化物和金属单质中的一种或多种。
[0012]优选的,混合物中的碱金属离子为Li'Na'K'Cs+中的一种或多种。
[0013]优选的,具体的步骤如下,
[0014] 步骤1)采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿前驱体溶液;
[0015] 步骤2)采用有机溶剂分散碱金属盐得到添加剂溶液;
[0016] 步骤3)将添加剂溶液加入到钙钛矿前驱体溶液中得到混合物,再将混合物通过成 膜方法制备得到吸收层;
[0017] 所述的有机溶剂采用二甲亚砜、DMF、γ -丁内酯和N-甲基吡咯烷酮中的一种或多种。
[0018] 进一步,步骤3)中添加剂和钙钛矿前驱体的摩尔比为0-1.5%,不包括0。
[0019] 进一步,步骤1)中钙钛矿前驱体溶液的浓度为0.6-1.5mol/L,步骤2)添加剂溶液 的浓度为 〇. 6-1.5mol/L。
[0020] 优选的,步骤3)中将混合液通过成膜方法制备得到吸收层,具体包括如下步骤,先 将混合液经旋涂、喷涂或刮涂得到预制膜后,再将预制膜退火处理后得到吸收层。
[0021] 优选的,所述的钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3 +、H2N-CH=NH2+、( CH3) 4N+、C7H7+或Cs+; B为Pb、Ge 或 Sn; X为Cl、Br 或 I。
[0022] -种钙钛矿薄膜电池的吸收层,由本发明所述的制备方法得到。
[0023] -种钙钛矿薄膜电池,包括依次设置的空穴传输层、钙钛矿吸收层和电子传输层; 所述的钙钛矿吸收层如本发明所述。
[0024] 与现有技术相比,本发明具有以下有益的技术效果:
[0025] 本发明的高效钙钛矿薄膜电池的制备,通过一步法直接制备钙钛矿吸收层,另外, 添加剂也是一步法加入到钙钛矿前驱体溶液中,其方法操作简单,方便实现均相掺杂。添加 剂的加入明显地提高了钙钛矿吸收层的薄膜质量,薄膜粗糙度降低,缺陷态密度降低,载流 子寿命增长,从而提高了电池的性能,尤其在电池的开路电压和短路电流上。
[0026] 进一步,通过添加剂溶液的配制,能够更加方便的对方法进行操作,并且控制添加 剂的量;控制优选的添加剂溶液浓度,使得添加剂溶液的加入对钙钛矿前驱体溶液的浓度 影响在±1.0%左右。
【附图说明】
[0027] 图1为本发明实例中所述的钙钛矿薄膜电池的结构示意图。
[0028] 图2为本发明实例中所述的无掺杂和不同含量LiI掺杂的钙钛矿薄膜电池在不同 添加剂下的瞬态荧光光谱。
[0029 ]图3为本发明实例中所述的无掺杂和不同含量Li I掺杂的钙钛矿薄膜电池的J-V曲线。
【具体实施方式】
[0030] 下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而 不是限定。
[0031] 本发明一种钙钛矿薄膜电池的吸收层制备方法,能够减少钙钛矿吸收层缺陷态密 度、提高载流子寿命,从而提高电池性能,生产成本低,明显的减少了电池的迟滞现象。所述 的钙钛矿电池包括电子传输层,太阳光吸收层和空穴传输。本发明针对吸收层进行改进,采 用了一种简单的晶界钝化的方式提高了吸收层的载流子寿命,同时还通过掺杂的碱金属有 利于促进薄膜晶体质量的提高,粗糙度降低,载流子浓度减小,从而提高电池性能。方法简 单,材料成本低,为高效率、低成本钙钛矿电池提供了新的技术革新。
[0032] 实例 1
[0033] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0034] I)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0035] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0036] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0037] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,二甲亚砜和 γ - 丁内酯的混合物。添加剂和钙钛矿前驱体的摩尔比分别为1.5%。本优选实例中,钙钛矿 前驱体溶液的浓度为1.2moI/L,添加剂溶液的浓度为0.6moI/L。
[0038]其中,妈钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH 3+;B为Pb;X 为I。钙钛矿前驱体溶液的浓度为1.2mol/l(以B的含量为基准),B/A= 1.0。溶液的浓度直接 影响着后期吸收层的厚度,而B/A的比例接近化学计量比,也是为了减少薄膜中的缺陷。
[0039] 所述的碱金属盐采用与其相对应的碘化锂。
[0040] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行旋涂;成膜退火温度为l〇〇°C,退火处理即可得到亮黑色的钙钛 矿吸收层。
[0041] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,电子传输层采用二氧化钛,无掺杂或不同含量 Li I掺杂的CH3NH3PbI3为吸收层,Spiro-OMeTAD为空穴传输层,Au为顶电极,FTO玻璃为基底, 电池活性面积为9mm 2。
[0042] 在上述结构基础上,无掺杂和不同含量LiI掺杂的钙钛矿薄膜电池在不同添加剂 下的瞬态荧光光谱如图2所示;无掺杂和不同含量LiI掺杂的钙钛矿薄膜电池的J-V曲线如 图3所示;图2所示的各钙钛矿薄膜电池的具体的寿命参数如表1所示。
[0043] 表 1
[0046] 实例2
[0047] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0048] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0049] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0050] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0051] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用DMF 作为溶剂。添加剂和钙钛矿前驱体的摩尔比为1 .〇%。本优选实例中,钙钛矿前驱体溶液的 浓度为1.5mol/L,步骤2)添加剂溶液的浓度为1.5mol/L。
[0052] 其中,妈钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中ASH2N-CH = NH2+;B 为3113为阶。钙钛矿前驱体溶液的浓度为1.5111〇1/1(以8的含量为基准),8/^=1.1。
[0053]所述的碱金属盐采用与其相对应的溴化钠。
[0054]步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为150°C,退火处理即可得到橘黄色钙钛矿 吸收层。
[0055] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,(H 2N)2CHSnBr3为吸收层,电池活性面积为2cm2。
[0056] 实例3
[0057]本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0058] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0059] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0060] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0061] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用二甲 亚砜作为溶剂。添加剂和1丐钛矿前驱体的摩尔比为1 .〇%。本优选实例中,1丐钛矿前驱体溶 液的浓度为1.2moI/L,步骤2)添加剂溶液的浓度为0.6moI/L。
[0062]其中,妈钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中ASH2N-CH = NH2+;B 为Pb; X为Br。钙钛矿前驱体溶液的浓度为1.2moI/L(以B的含量为基准),B/A = 1.0。
[0063] 所述的碱金属盐采用与其相对应的溴化钾。
[0064] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为150°C,退火处理即可得到钙钛矿吸收 层。
[0065] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,(NH 2)2CHPbBr3为吸收层,电池活性面积为2cm2。
[0066] 实例4
[0067] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0068] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0069] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0070] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。 [0071 ]其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用二甲 亚砜作为溶剂。添加剂和1丐钛矿前驱体的摩尔比为1 .〇%。本优选实例中,1丐钛矿前驱体溶 液的浓度为0.6moI/L,步骤2)添加剂溶液的浓度为1.2moI/L。
[0072]其中,妈钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为C7H7+;B为Pb;X为 I。钙钛矿前驱体溶液的浓度为0.6mol/L(以B的含量为基准),B/A= 1.0。
[0073] 所述的碱金属盐采用与其相对应的溴化钠。
[0074] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为150°C,退火处理即可得到钙钛矿吸收 层。
[0075] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,C7H 7PbI3为吸收层,电池活性面积为0.9mm2。
[0076] 实例5
[0077] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0078] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0079] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0080] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。 [0081 ]其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用二甲 亚砜作为溶剂。添加剂和1丐钛矿前驱体的摩尔比为〇. 5%。本优选实例中,|丐钛矿前驱体溶 液的浓度为1.2mol/L,步骤2)添加剂溶液的浓度为1.2mol/L。
[0082] 其中,妈钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为Cs+; B为Ge; X为 I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),Β/Α = 0.9。
[0083] 所述的碱金属盐采用与其相对应的硝酸钾。
[0084] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行旋涂;成膜退火温度为150°C,退火处理即可得到钙钛矿吸收 层。
[0085] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,CsGeI 3为吸收层,电池活性面积为0.9mm2。
[0086] 实例6
[0087] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0088] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0089] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0090] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0091] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为〇. 1 %。本优选实例中,钙钛矿前驱 体溶液的浓度为0.6moI/L,步骤2)添加剂溶液的浓度为1.2moI/L。
[0092]其中,妈钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+;B为Pb;X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0093] 所述的碱金属盐亚硝酸钠。
[0094] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0095] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0096] 实例7
[0097] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0098] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0099] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0100] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0101] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,钙钛矿前驱 体溶液的浓度为1.2moI/L,步骤2)添加剂溶液的浓度为0.6moI/L。
[0102] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0103] 所述的碱金属盐为硫酸钾。
[0104] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为60°C,退火处理即可得到钙钛矿吸收层。
[0105] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0106] 实例8
[0107] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0108] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0109] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0110] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0111] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,钙钛矿前驱 体溶液的浓度为1.2moI/L,步骤2)添加剂溶液的浓度为0.6moI/L。
[0112] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0113] 所述的碱金属盐为碳酸钠。
[0114] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0115] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0116] 实例9
[0117] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0118] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0119] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0120] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0121] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,钙钛矿前驱 体溶液的浓度为1.2moI/L,步骤2)添加剂溶液的浓度为0.6moI/L。
[0122] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0123] 所述的碱金属盐为醋酸钠。
[0124] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0125] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0126] 实例10
[0127] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0128] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0129 ] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0130] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0131] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,钙钛矿前驱 体溶液的浓度为1.5moI/L,步骤2)添加剂溶液的浓度为0.8moI/L。
[0132] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.5mol/L(以B的含量为基准),B/A= 1.0。
[0133] 所述的碱金属盐为氢氧化钠。
[0134] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为180°C,退火处理即可得到钙钛矿吸收 层。
[0135] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0136] 实例 11
[0137] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0138] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0139] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0140] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0141] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,钙钛矿前驱 体溶液的浓度为1.2moI/L,步骤2)添加剂溶液的浓度为0.6moI/L。
[0142] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0143] 所述的碱金属盐为氧化钾。
[0144] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0145] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0146] 实例 12
[0147] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0148] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0149] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0150] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0151] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为0.05%。本优选实例中,钙钛矿前驱 体溶液的浓度为1.2moI/L,步骤2)添加剂溶液的浓度为0.6moI/L。
[0152] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0153] 所述的碱金属盐为硫化钠。
[0154] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0155] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0156] 实例 13
[0157] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0158] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0159] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0160] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0161] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用γ_ 丁内酯为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,钙钛矿前驱体溶 液的浓度为1.2mol/L,步骤2)添加剂溶液的浓度为1.2mol/L。
[0162] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0163] 所述的碱金属为钾单质。
[0164] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0165] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0166] 实例14
[0167] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0168] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0169] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0170] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0171] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,钙钛矿前驱 体溶液的浓度为0.8moI/L,步骤2)添加剂溶液的浓度为1.2moI/L。
[0172] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为0.8mol/L(以B的含量为基准),B/A= 1.0。
[0173] 所述的碱金属盐为碘化钾和碘化钠,两者比例为1: 1。
[0174] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为200°C,退火处理即可得到钙钛矿吸收 层。
[0175] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0176] 实例 15
[0177] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0178] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0179] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0180] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0181] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,钙钛矿前驱 体溶液的浓度为1.2mol/L,步骤2)添加剂溶液的浓度为1.2mol/L。
[0182] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0183] 所述的碱金属盐为溴化铯。
[0184] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0185] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0186] 实例 15
[0187] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0188] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0189] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0190] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0191] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用N-甲 基吡咯烷酮为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.5%。本优选实例中,钙钛矿前驱 体溶液的浓度为〇.6mol/L,步骤2)添加剂溶液的浓度为I. lmol/L。
[0192] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为0.6mol/L(以B的含量为基准),B/A= 1.0。
[0193] 所述的碱金属盐为醋酸锂和氟化钠,两者比例为1: 1。
[0194] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行刮涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0195] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0196] 实例16
[0197] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤:
[0198] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0199] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0200] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0201] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用DMF 和DMSO为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,|丐钛矿前驱体溶 液的浓度为1.2mol/L,步骤2)添加剂溶液的浓度为1.2mol/L。
[0202] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.2mol/L(以B的含量为基准),B/A= 1.0。
[0203] 所述的碱金属盐为醋酸锂和氟化钠,两者比例为1: 1。
[0204] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行旋涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0205] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
[0206] 实例17
[0207] 本发明一种钙钛矿薄膜电池的吸收层制备方法,具体制备方法包含以下步骤: [0208] 1)配备钙钛矿前驱体溶液;能够采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿 前驱体溶液;
[0209] 2)选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂;
[0210] 3)可以直接加入前驱体溶液中混合均匀,也能够通过有机溶剂分散碱金属盐得到 添加剂溶液然后加入到前驱体溶液中混合均匀得到混合物;再将钙钛矿前驱体溶液通过成 膜方法在制备过电子传输层的基底上得到预制膜,再将预制膜退火处理后得到吸收层。
[0211] 其中,采用有机溶剂进行分散时,步骤1)和步骤3)中的有机溶剂相同,均采用DMF 和DMSO为溶剂。添加剂和钙钛矿前驱体的摩尔比为1.0%。本优选实例中,|丐钛矿前驱体溶 液的浓度为1.4mol/L,步骤2)添加剂溶液的浓度为1.2mol/L。
[0212] 其中,钙钛矿薄膜采用具有ABX3钙钛矿结构的多晶薄膜,其中A为CH3NH3+; B为Pb; X 为I。钙钛矿前驱体溶液的浓度为1.4mol/L(以B的含量为基准),B/A= 1.0。
[0213] 所述的碱金属盐氧化钠。
[0214] 步骤3)中得到混合物后采用0.45μπι的有机滤膜进行过滤。成膜方法是在空气中或 氮气保护的操作环境中进行旋涂;成膜退火温度为l〇〇°C,退火处理即可得到钙钛矿吸收 层。
[0215] 采用本发明所述的吸收层,按照图1的电池结构,依次设置的空穴传输层、钙钛矿 吸收层和电子传输层制备电池器件,其中,MaPbI 3为吸收层,电池活性面积为0.9mm2。
【主权项】
1. 一种钙钛矿薄膜电池的吸收层制备方法,其特征在于,包括如下步骤, 1) 制备钙钛矿前驱体溶液; 2) 选取能够均匀分散在钙钛矿电池前驱体溶液中的碱金属盐作为添加剂; 3) 将添加剂加入到钙钛矿前驱体溶液中得到混合物,再将混合物通过成膜方法制备得 到吸收层。2. 根据权利要求1所述的一种钙钛矿薄膜电池的吸收层制备方法,其特征在于,所述的 碱金属盐采用与其相对应的卤化物、硝酸盐、硫酸盐、亚硝酸盐、碳酸盐、醋酸盐、氢氧化物、 氧化物、硫化物和金属单质中的一种或多种。3. 根据权利要求1所述的一种钙钛矿薄膜电池的吸收层制备方法,其特征在于,混合物 中的碱金属离子为Li'Na'K'Cs+中的一种或多种。4. 根据权利要求1所述的一种钙钛矿薄膜电池的吸收层制备方法,其特征在于,具体的 步骤如下, 步骤1)采用有机溶剂分散钙钛矿前驱体得到制备钙钛矿前驱体溶液; 步骤2)采用有机溶剂分散碱金属盐得到添加剂溶液; 步骤3)将添加剂溶液加入到钙钛矿前驱体溶液中得到混合物,再将混合物通过成膜方 法制备得到吸收层; 所述的有机溶剂采用二甲亚砜、DMF、y-丁内酯和N-甲基吡咯烷酮中的一种或多种。5. 根据权利要求4所述的一种钙钛矿薄膜电池的吸收层制备方法,其特征在于,步骤3) 中添加剂和钙钛矿前驱体的摩尔比为0-1.5 %,不包括0。6. 根据权利要求4所述的一种钙钛矿薄膜电池的吸收层制备方法,其特征在于,步骤1) 中钙钛矿前驱体溶液的浓度为0.6-1.5mol/L,步骤2)添加剂溶液的浓度为0.6-1.5mol/L。7. 根据权利要求1所述的一种钙钛矿薄膜电池的吸收层制备方法,其特征在于,步骤3) 中将混合液通过成膜方法制备得到吸收层,具体包括如下步骤,先将混合液经旋涂、喷涂或 刮涂得到预制膜后,再将预制膜退火处理后得到吸收层。8. 根据权利要求1所述的一种钙钛矿薄膜电池的吸收层制备方法,其特征在于,所述的 钙钛矿薄膜采用具有ΑΒΧ3钙钛矿结构的多晶薄膜,其中A为CH 3NH3+、H2N-CH=NH2+、( CH3 )4N+、 C7H7+或Cs+;B 为 Pb、Ge或 Sn;X 为 Cl、Br或 I。9. 一种钙钛矿薄膜电池的吸收层,其特征在于,由权利要求1-8中任意一项制备得到。10. -种钙钛矿薄膜电池,其特征在于,包括依次设置的空穴传输层、钙钛矿吸收层和 电子传输层;所述的钙钛矿吸收层如权利要求9所述。
【文档编号】H01L51/42GK106033796SQ201610616776
【公开日】2016年10月19日
【申请日】2016年7月29日
【发明人】刘生忠, 赵婉亘, 杨栋
【申请人】陕西师范大学
再多了解一些
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1