包括二维材料的电子器件以及制造该电子器件的方法

文档序号:10689130阅读:703来源:国知局
包括二维材料的电子器件以及制造该电子器件的方法
【专利摘要】电子器件包括具有带隙的二维(2D)材料层。该2D材料层包括两个多层2D材料区域和在其间的沟道区。第一电极电接触其中一个多层2D材料层,第二电极电接触另一个多层2D材料层。
【专利说明】
包括二维材料的电子器件以及制造该电子器件的方法
技术领域
[0001]示例实施方式涉及包括二维(2D)材料的电子器件以及制造该电子器件的方法,更具体而言,涉及包括具有2D结构和带隙的2D材料的电子器件以及制造该电子器件的方法。
【背景技术】
[0002]石墨烯是具有二维(2D)六方结构的材料,在该2D六方结构中碳元素在一个面上彼此连接成六边形形状。石墨烯还具有等于仅一个元素层的厚度。因为石墨烯不仅具有非常稳定的电/机械/化学特性而且具有提高的传导性,所以石墨烯作为下一代材料受到关注。然而,因为纯石墨烯没有带隙,所以难以使用纯石墨烯作为半导体器件。
[0003]近来,已经引入了具有与石墨烯类似的2D平面结构但是具有带隙的新2D材料。例如,过渡金属硫属化物(TMD),其是过渡金属和硫属元素的化合物,是既具有带隙又具有2D平面结构的材料。在这方面,已经进行了多个研究以使用TMD来制造半导体器件。

【发明内容】

[0004]根据示例实施方式,一种电子器件包括:具有带隙的二维(2D)材料层;第一电极,电接触第一多层2D材料区域;以及第二电极,电接触第二多层2D材料区域。该2D材料层包括:第一多层2D材料区域和第二多层2D材料区域,该第一多层2D材料区域和第二多层2D材料区域中的每个具有顺序层叠的多个层,以及沟道区,包括比第一和第二多层2D材料区域少的层数,并且具有比第一和第二多层2D材料区域高的能带隙。
[0005]沟道区可以在第一和第二多层2D材料区域之间。
[0006]第一多层2D材料区域的面对沟道区的第一侧壁可以与第一电极的侧壁在竖直方向上对准,第二多层2D材料区域的面对沟道区的第二侧壁可以与第二电极的侧壁在竖直方向上对准。
[0007]该2D材料层还可以包括:在第一多层2D材料区域的第一侧壁上的第一斜坡,该第一侧壁面对沟道区;以及在第二多层2D材料区域的第二侧壁上的第二斜坡,该第二侧壁面对沟道区。
[0008]第一多层2D材料区域、第二多层2D材料区域和沟道区可以在基板上。
[0009]第一电极可以在第一多层2D材料区域的上表面上,第二电极可以在第二多层2D材料区域的上表面上。
[0010]该2D材料层可以包括具有化学式AB的过渡金属硫属化物材料,A包括锡(Sn)、铌(Nb)、钽(Ta)、钼(Mo)和钨(W)中的至少一种,B包括硫⑶、砸(Se)和碲(Te)中的至少一种。
[0011]第一多层2D材料区域和第二多层2D材料区域可以每个均包括顺序层叠的至少四个层。
[0012]电子器件还可以包括:栅绝缘膜;以及在栅绝缘膜的下表面上的栅电极,其中第一多层2D材料区域、第二多层2D材料区域和沟道区可以在栅绝缘膜的上表面上,第一电极可以在第一多层2D材料区域的上表面上,第二电极可以在第二多层2D材料区域的上表面上。
[0013]电子器件还可以包括:在沟道区的上表面上的栅绝缘膜;以及在栅绝缘膜的上表面上的栅电极,其中第一电极可以在第一多层2D材料区域的上表面上并且第二电极可以在第二多层2D材料区域的上表面上。
[0014]沟道区可以具有直接带隙,第一和第二多层2D材料区域可以具有间接带隙。
[0015]根据示例实施方式,一种制造半导体器件的方法包括:在基板上层叠多个层以形成具有带隙的二维(2D)材料层;蚀刻2D材料层的中心区域以在2D材料层中形成沟道区并且在沟道区的第一侧形成第一多层2D材料区域以及在沟道区的第二侧形成第二多层2D材料区域,第一多层2D材料区域和第二多层2D材料区域的每个具有顺序叠层的多个层,以及沟道区包括比第一和第二多层2D材料区域少的层数,并且具有比第一和第二多层2D材料区域高的能带隙;形成电接触第一多层2D材料区域的第一电极;以及形成电接触第二多层2D材料区域的第二电极。
[0016]所述蚀刻可以经由干刻法蚀刻中心区域。
[0017]所述蚀刻可以形成第一多层2D材料区域以具有在竖直方向上与第一电极的侧壁对准且面对沟道区的第一侧壁,并且形成第二多层2D材料区域以具有在竖直方向上与第二电极的侧壁对准且面对沟道区的第二侧壁。
[0018]所述蚀刻可以经由等离子体蚀刻法蚀刻中心区域。
[0019]所述蚀刻可以在第一多层2D材料区域和沟道区之间形成第一斜坡,并且可以在第二多层2D材料区域和沟道区之间形成第二斜坡。
[0020]第一电极和第二电极可以在使用第一和第二电极作为蚀刻掩模的所述蚀刻之前形成。
[0021]2D材料层可以包括具有化学式AB的过渡金属硫属化物材料,A可以包括锡(Sn)、铌(Nb)、钽(Ta)、钼(Mo)和钨(W)中的至少一种,B可以包括硫(S)、砸(Se)和碲(Te)中的至少一种。
[0022]所述蚀刻可以形成包括顺序层叠的至少四个层的第一多层2D材料区域和第二多层2D材料区域。
[0023]所述蚀刻可以形成具有直接带隙的沟道区以及具有间接带隙的第一和第二多层2D材料区域。
【附图说明】
[0024]从结合附图对示例实施方式的以下描述,这些和/或其它方面将变得明显且更易于理解,在附图中:
[0025]图1是根据示例实施方式的电子器件的示意性结构的剖视图;
[0026]图2是图1的电子器件的示意性能带图;
[0027]图3是显示图1的电子器件的电特性的曲线图;
[0028]图4是根据示例实施方式的电子器件的示意性结构的剖视图;
[0029]图5是图4的电子器件的示意性能带图;
[0030]图6A至6C是用于描述制造图1的电子器件的工艺的剖视图;
[0031]图7是根据示例实施方式的电子器件的示意性结构的剖视图;以及
[0032]图8是根据示例实施方式的电子器件的示意性结构的剖视图。
【具体实施方式】
[0033]现在将详细参考示例实施方式,其示例在附图中示出,其中相同的附图标记始终指代相同的部件,并且为清晰起见,每个部件的尺寸度可以被夸大。在这点上,本示例实施方式可具有不同的形式并且不应被理解为限于在此阐述的描述。因此,示例实施方式仅在以下通过参考附图被描述以说明多个方面。诸如“……中的至少之一”的表述,当在一列元素之前出现时,修饰整列元件而不修饰该列中的个别元件。此外,当层设置“在”另一层“上”时,该层可以直接在所述另一层上同时接触所述另一层,或者可以间接地在所述另一层上同时不接触所述另一层。
[0034]将理解,当元件或层被称为“在”另一元件或层“上”、“连接到”或“联接到”另一元件或层时,它可以直接在另一元件或层上、直接连接到或直接联接到另一元件或层,或者可以存在居间元件或层。相反,当元件被称为“直接在”另一元件或层“上”、“直接连接到”或“直接联接到”另一元件或层时,没有居间元件或层存在。相同的附图标记始终指代相同的元件。在此使用时,术语“和/或”包括一个或多个相关列举项目的任意和所有组合。
[0035]将理解,虽然术语第一、第二、第三、第四等可以用于此来描述不同的元件、部件、区域、层和/或部分,但是这些元件、部件、区域、层和/或部分不应受这些术语限制。这些术语仅用于区分一个元件、组件、区域、层或部分与另一区域、层或部分。因而,以下讨论的第一元件、部件、区域、层或部分可以被称为第二元件、部件、区域、层或部分,而不脱离本发明构思的教导。
[0036]为了便于描述,可以在此使用空间关系术语,诸如“在……下面”、“以下”、“下”、“在……上”、“上”等来描述一个元件或特征与其它元件或特征如图中所示的关系。将理解,除了图中所描绘的取向之外,空间关系术语还旨在包含装置在使用或操作中的其它不同取向。例如,如果在图中的装置被翻转,则被描述为在其它元件或特征“下”或“下面”的元件可以取向为在所述其它元件或特征“上”。因而,示例术语“在……下”可以包含上和下两种取向。装置可以被另外地取向(旋转90度或其它取向),并且在此使用的空间关系描述语可以被相应地解释。
[0037]在此使用的术语仅用于描述特定示例实施方式,不旨在限制本发明构思。在此使用时,单数形式“一”、“该”也旨在包括复数形式,除非上下文清晰地另外表示。还将理解,当在本说明书中使用时,术语“包括”、“包含”表示所述特征、整数、步骤、操作、元件和/或部件的存在,但是不排除一个或更多其它特征、整数、步骤、操作、元件、部件和/或其组的存在或添加。
[0038]在此参考横截面图示描述示例实施方式,其中横截面图示是理想化的示例实施方式(和中间结构)的示意性图示。因此,由于例如制造技术和/或公差引起的图示形状的偏离是可以预期的。因而,示例实施方式不应被理解为限于在此示出的区域的具体形状,而是将包括例如由制造引起的形状的偏离。例如,被示为矩形的注入区在其边缘一般将具有圆化或弯曲的特征和/或注入浓度梯度,而不是从注入区到非注入区的二元变化。同样地,通过注入形成的埋入区可导致在埋入区与通过其发生注入的表面之间的区域中的一些注入。因而,在图中示出的区域本质上是示意性的,它们的形状不旨在示出装置的区域的实际形状,并且不旨在限制本发明构思的范围。
[0039]除非另外定义,在此使用的所有术语(包括技术和科学术语)具有与本发明构思所属领域中的普通技术人员通常理解的相同含义。还将理解,术语(诸如在通常使用的字典中所定义的那些)应被理解为具有与其在相关领域的背景中的含义一致的含义,将不被理解为理想化或过度正式的意义,除非在此清楚地如此定义。
[0040]图1是根据示例实施方式的电子器件10的示意性结构的剖视图。参考图1,根据示例实施方式的电子器件10可以包括具有带隙的二维(2D)材料层12、以及每个均电接触2D材料层12的第一电极13和第二电极14。2D材料层12可以包括第一多层2D材料区域12a和第二多层2D材料区域12c以及沟道区12b,其中该第一多层2D材料区域12a和第二多层2D材料区域12c每个均具有其中多个层是一层叠在另一层上的结构,该沟道区12b包括比第一和第二多层2D材料区域12a和12c少的层数。如图1所示,沟道区12b可以设置在第一和第二多层2D材料区域12a和12c之间。此外,第一电极13可以设置在第一多层2D材料区域12a的上表面上以电接触第一多层2D材料区域12a,第二电极14可以设置在第二多层2D材料区域12c的上表面上以电接触第二多层2D材料区域12c。
[0041]此外,根据示例实施方式的电子器件10还可以包括绝缘基板11。2D材料层12可以设置在绝缘基板11上。因此,第一多层2D材料区域12a、沟道区12b和第二多层2D材料区域12c可以全部设置在绝缘基板11上。
[0042]2D材料层12可以由具有像石墨烯一样的2D晶体结构但是具有与石墨烯不同的带隙的2D材料形成。例如,2D材料可以是过渡金属硫属化物(TMD),该TMD是过渡金属和硫属元素的化合物。换言之,TMD可以被表示为MX2,其中M和X分别表示过渡金属和硫属元素。过渡金属可以包括例如锡(Sn)、铌(Nb)、钽(Ta)、钼(Mo)和钨(W)中的至少一种,硫属元素可以包括例如硫(S)、砸(Se)和碲(Te)中的至少一种。详细地,2D材料层12可以主要由MoS2、MoSe2, MoTe2, WS2S WSe 2形成。因为TMD具有2D晶体结构,所以TMD可以形成为层结构。因为TMD的层通过范德华键非常弱地彼此相互作用,所以所述层可以容易地从彼此剥落。
[0043]包括许多层的块体(bulk)状态的TMD具有间接带隙。另一方面,具有相对少的层数例如单层结构的TMD具有直接带隙。因此,因为具有相对少的层数例如单层结构的TMD具有改善的光学特性,因而可以适用于制造光学器件,例如光学传感器和发光器件。
[0044]同时,带隙的大小基于TMD中的层数而不同。通常,当层数增加时,TMD的带隙减小,并且具有单层结构的TMD具有最高的带隙。例如,单层MoS2的带隙是大约1.9eV,块体MoSd^带隙是从大约1.2到大约1.3eV0因为具有单层结构的TMD的带隙高,所以当具有单层结构的TMD被用来制造光学器件时,具有单层结构的TMD的带隙和过渡金属的功函数之间的差异增大,因而金属电极和具有单层结构的TMD之间的肖特基势皇会增加。因此,相对高的接触电阻会发生在金属电极和具有单层结构的TMD之间的界面处。
[0045]如图1所示,根据示例实施方式的电子器件10可以包括:沟道区12b,由具有直接带隙的2D材料形成,作为有源层;以及第一和第二多层2D材料区域12a和12c,具有多层结构和与沟道区12b相比相对小的带隙,作为接触第一和第二电极13和14的区域。因此,第一和第二电极13和14没有直接接触沟道区12b,而是可以分别接触第一和第二多层2D材料区域12a和12c。因此,金属电极和有源层之间的接触电阻可以减小。这里,沟道区12b的2D材料可以包括至少一个层,或可以包括至少两个或三个层,只要沟道区12b具有直接带隙。第一和第二多层2D材料区域12a和12c的层数可以高于沟道区12b的层数。
[0046]图2是图1的电子器件10的示意性能带图。在图2中,MoS2被用作2D材料层12,具有双层结构的金属(金/钛(Au/Ti))被用作第一和第二电极13和14。此外,在图2中,第一和第二多层2D材料区域12a和12c是块体状态,并且沟道区12b是单层。参考图2,第一电极13的功函数和第一多层2D材料区域12a的带隙之差是大约0.16eV,并且第一多层2D材料区域12a的带隙和沟道区12b的带隙之差是至少大约0.3eV。如果第一电极13直接接触沟道区12b而不借助第一多层2D材料区域12a,则第一电极13的功函数和沟道区12b的带隙之差可以是至少大约0.46eV。因此,通过在第一电极13和沟道区12b之间设置第一多层2D材料区域12a,相邻层之间的势皇高度可以减小。
[0047]沟道区12b的带隙与第一和第二多层2D材料区域12a和12c的带隙之差可以基于沟道区12b以及第一和第二多层2D材料区域12a和12c的层数而被调整。如上所述,当第一和第二多层2D材料区域12a和12c的层数增加时,能带隙减小。此外,当第一和第二多层2D材料区域12a和12c的层数是至少某一数目时,能带隙不再减小,而是饱和。为了减小第一电极13的功函数与第一和第二多层2D材料区域12a和12c的带隙之差,第一和第二多层2D材料区域12a和12c的层数可以每个均是例如至少4个。此外,第一和第二多层2D材料区域12a和12c的层数可以是相同的,但是备选地,在需要时,可以彼此不同。
[0048]如上所述,根据示例实施方式的电子器件10可具有改善的光学特性,同时,可具有相对小的接触电阻,因而电子器件10的性能可以改善。例如,图3是显示图1的电子器件10的电特性的曲线图。在图3中,由籲指示的曲线图表示根据示例实施方式的电子器件10的电特性,由指示的曲线图表示根据比较示例的电子器件的电特性,其中仅使用具有单层结构的沟道区12b而没有第一和第二多层2D材料区域12a和12c。参考图3,电流密度根据电子器件10中驱动电压的增加而大大地增加,但是电流密度根据驱动电压的增加而增加的程度在比较示例的电子器件中相对较小。例如,在大约0.3V的驱动电压处,电子器件10的电流密度是比较示例的电子器件的大约4.7倍大,这表示接触电阻可以通过使第一和第二多层2D材料区域12a和12c接触第一和第二电极13和14而大大减小。
[0049]图4是根据示例实施方式的电子器件10’的示意性结构的剖视图。图4电子器件10’的结构与图1的电子器件10的结构相同,除了沟道区12b与第一和第二多层2D材料区域12a和12c之间的界面结构的差异之外。例如,在图1的电子器件10中,沟道区12b与第一和第二多层2D材料区域12a和12c之间的区域可以不是连续的,而是可具有台阶形状。换言之,第一和第二多层2D材料区域12a和12c的面对沟道区12b的侧壁可以竖直地形成。另一方面,在图4的电子器件10’中,沟道区12b与第一和第二多层2D材料区域12a和12c之间的区域可以是连续的。换言之,沟道区12b与第一和第二多层2D材料区域12a和12c之间的厚度(或层数)可以连续地变化。因此,第一多层2D材料区域12a的面对沟道区12b的侧壁具有第一斜坡15a,第二多层2D材料区域12c的面对沟道区12b的侧壁具有第二斜坡15b。
[0050]因为沟道区12b与第一和第二多层2D材料区域12a和12c之间的区域是连续的,所以沟道区12b与第一和第二电极13和14之间的带隙也可以连续地变化。例如,图5是图4的电子器件10’的示意性能带图。参考图5,因为第一电极13与沟道区12b之间的第一多层2D材料区域12a的层数连续地变化,所以第一多层2D材料区域12a的带隙连续地变化。因此,肖特基势皇可以在第一电极13的功函数和沟道区12b的带隙之间连续地变化。因此,接触电阻可以在第一电极13和沟道区12b的界面处减小。
[0051]图6A至6C是用于描述制造图1的电子器件10的工艺的剖视图。
[0052]首先,参考图6A,可以通过层叠多个层而在绝缘基板11上形成具有带隙的2D材料层12。如上所述,2D材料层12可以包括例如TMD。2D材料层12可以经由各种方法中的任一种形成。例如,2D材料层12可以经由化学气相沉积(CVD)方法直接形成在绝缘基板11上。备选地,2D材料层12可以经由CVD方法形成在催化剂金属上,然后2D材料层12可以从催化剂金属转印到绝缘基板11上。备选地,化学构成的块体TMD可以被剥落,然后剥落的TMD层层叠在绝缘基板11上。
[0053]然后,如图6B所示,可以分别在2D材料层12的两个边缘处形成第一和第二电极13和14。为了形成第一和第二电极13和14,金属层可以经由例如溅射方法形成在2D材料层12的整个表面上。然后,金属层的中心区域可以被蚀刻并去除,同时在2D材料层12的所述两个边缘处留下金属层。第一和第二电极13和14可以由金属形成,但是备选地,可以由透明导电金属氧化物例如铟锡氧化物(ITO)形成。
[0054]接着,如图6C所示,可以蚀刻2D材料层12的中心区域。在这时候,第一和第二电极13和14可以用作蚀刻掩模,从而在2D材料层12的中心区域处形成沟道区12b。在这样的蚀刻工艺期间,仅至少一个层可以留在沟道区12b中,使得沟道区12b具有直接带隙。具有直接带隙的最大的层数可以根据2D材料层12的材料而变化。例如,沟道区12b可以包括仅一个层或至少两个或三个层。此外,因为在第一和第二电极13和14下面的2D材料层12没有被蚀刻,所以2D材料层12可以是所述多个层。因而,第一和第二多层2D材料区域12a和12c,其具有其中所述多个层一层叠在另一层上的结构,可以形成在沟道区12b的两侧。
[0055]2D材料层12可以经由例如干刻法被蚀亥I」。在这时候,如图6C所示,沟道区12b和第一多层2D材料区域12a之间的区域以及沟道区12b和第二多层2D材料区域12c之间的区域可具有台阶形状,因而可以形成图1的电子器件10。
[0056]备选地,2D材料层12可以经由等离子体蚀刻方法而不是干刻法被蚀刻。例如,等离子体蚀刻可以通过使用大约30mTorr真空度的氧气以大约5.88nm/min的蚀刻速度进行。备选地,等离子体蚀刻可以通过使用大约30mTorr真空度的氧气和3?6气体(O2 = SF6= 3:1)以大约26.4nm/min的蚀刻速度进行。因此,第一斜坡15a形成在沟道区12b和第一多层2D材料区域12a之间,第二斜坡15b形成在沟道区12b和第二多层2D材料区域12c之间,由此可以形成图4的电子器件10’。
[0057]同时,可以首先蚀刻2D材料层12,然后可以形成第一和第二电极13和14。例如,可以在2D材料层12的两个边缘处形成蚀刻掩模之后蚀刻2D材料层12的中心部分。然后,第一和第二电极13和14可以分别形成在通过蚀刻2D材料层12的中心区域形成的第一和第二多层2D材料区域12a和12c上。
[0058]如此形成的电子器件10或10’可以用作光学器件,例如光学传感器或光源。例如,电子器件10或10’可以通过在光入射到沟道区12b上时读取第一和第二电极13和14之间的电流变化而用作光学传感器。备选地,通过施加驱动电压到第一和第二电极13和14可以从沟道区12b产生光。
[0059]此外,因为2D材料层12可以容易地弯曲,所以可以制造柔性的电子器件,例如柔性的晶体管。例如,图7和8是根据示例实施方式的电子器件100和110的示意性结构的剖视图。图7和8的电子器件100和110每个是使用2D材料层12的柔性场效应晶体管,其中图7的电子器件100具有底栅结构并且图8的电子器件110具有顶栅结构。
[0060]首先,参考图7,电子器件100可以包括栅电极17、设置在栅电极17的上表面上的栅绝缘膜16、设置在栅绝缘膜16的上表面上的2D材料层12、以及设置在2D材料层12上的第一和第二电极13和14。2D材料层12可以包括第一多层2D材料区域12a、沟道区12b以及第二多层2D材料区域12c。第一多层2D材料区域12a、沟道区12b和第二多层2D材料区域12c可以全部设置在栅绝缘膜16上。这里,第一电极13可以设置在第一多层2D材料区域12a的上表面上,第二电极14可以设置在第二多层2D材料区域12c的上表面上。
[0061]此外,参考图8,电子器件110可以包括:绝缘基板11 ;设置在绝缘基板11上的第一多层2D材料区域12a,沟道区12b和第二多层2D材料区域12c ;第一和第二电极13和14,分别设置在第一和第二多层2D材料区域12a和12c上;栅绝缘膜16,设置在沟道区12b的上表面上;以及栅电极17,设置在栅绝缘膜16的上表面上。在图8中,栅绝缘膜16的侧壁接触第一和第二多层2D材料区域12a和12c的侧壁,但是备选地,栅绝缘膜16的两个边缘可以被蚀刻为使得栅绝缘膜16与第一和第二多层2D材料区域12a和12c间隔开。
[0062]以上描述的电子器件100或110的沟道区12b可以用作场效应晶体管的沟道层。此外,第一和第二电极13和14可以分别用作场效应晶体管的源电极和漏电极。根据示例实施方式的电子器件100或100具有相对快的响应速度,并且是柔性的,因而作为柔性的电子器件可以是适当的。
[0063]应该理解,此处描述的示例性实施方式仅应该以说明性含义被理解,而不是用于限制目的。在每个示例实施方式内的特征或方面的描述通常应被理解为可用于其它示例实施方式中的其它类似特征或方面。虽然已经参考附图描述了一个或多个示例实施方式,但是本领域的普通技术人员将理解,可以在其中进行形式和细节的各种改变而不脱离由权利要求限定的精神和范围。
[0064]本申请要求享有2015年4月7日在韩国知识产权局提交的第10-2015-0049075号韩国专利申请的权益,其公开通过全文引用结合于此。
【主权项】
1.一种电子器件,包括: 具有带隙的二维材料层,所述二维材料层包括, 第一多层二维材料区域和第二多层二维材料区域,所述第一多层二维材料区域和所述第二多层二维材料区域中的每个具有顺序层叠的多个层,以及 沟道区,包括比所述第一和第二多层二维材料区域少的层数,并且具有比所述第一和第二多层二维材料区域高的能带隙; 第一电极,电接触所述第一多层二维材料区域;以及 第二电极,电接触所述第二多层二维材料区域。2.根据权利要求1所述的电子器件,其中所述沟道区在所述第一和第二多层二维材料区域之间。3.根据权利要求2所述的电子器件,其中 所述第一多层二维材料区域的面对所述沟道区的第一侧壁与所述第一电极的侧壁在竖直方向上对准,以及 所述第二多层二维材料区域的面对所述沟道区的第二侧壁与所述第二电极的侧壁在竖直方向上对准。4.根据权利要求2所述的电子器件,其中所述二维材料层还包括: 在所述第一多层二维材料区域的第一侧壁上的第一斜坡,所述第一侧壁面对所述沟道区;以及 在所述第二多层二维材料区域的第二侧壁上的第二斜坡,所述第二侧壁面对所述沟道区。5.根据权利要求1所述的电子器件,其中所述第一多层二维材料区域、所述第二多层二维材料区域和所述沟道区在基板上。6.根据权利要求1所述的电子器件,其中 所述第一电极在所述第一多层二维材料区域的上表面上,以及 所述第二电极在所述第二多层二维材料区域的上表面上。7.根据权利要求1所述的电子器件,其中 所述二维材料层包括具有化学式AB的过渡金属硫属化物材料, A包括锡(Sn)、铌(Nb)、钽(Ta)、钼(Mo)和钨(W)中的至少一种,以及 B包括硫(S)、砸(Se)和碲(Te)中的至少一种。8.根据权利要求1所述的电子器件,其中所述第一多层二维材料区域和所述第二多层二维材料区域每个包括顺序层叠的至少四个层。9.根据权利要求1所述的电子器件,还包括: 栅绝缘膜;以及 在所述栅绝缘膜的下表面上的栅电极, 其中所述第一多层二维材料区域、所述第二多层二维材料区域和所述沟道区在所述栅绝缘膜的上表面上,以及 所述第一电极在所述第一多层二维材料区域的上表面上,所述第二电极在所述第二多层二维材料区域的上表面上。10.根据权利要求1所述的电子器件,还包括: 在所述沟道区的上表面上的栅绝缘膜;以及 在所述栅绝缘膜的上表面上的栅电极, 其中所述第一电极在所述第一多层二维材料区域的上表面上,并且所述第二电极在所述第二多层二维材料区域的上表面上。11.根据权利要求1所述的电子器件,其中 所述沟道区具有直接带隙,以及 所述第一和第二多层二维材料区域具有间接带隙。12.—种制造半导体器件的方法,所述方法包括: 在基板上层叠多个层以形成具有带隙的二维材料层; 蚀刻所述二维材料层的中心区域以在所述二维材料层中形成沟道区并且在所述沟道区的第一侧上形成第一多层二维材料区域以及在所述沟道区的第二侧上形成第二多层二维材料区域,所述第一多层二维材料区域和所述第二多层二维材料区域的每个具有顺序叠层的多个层,以及所述沟道区包括比所述第一和第二多层二维材料区域少的层数,并且具有比所述第一和第二多层二维材料区域高的能带隙; 形成电接触所述第一多层二维材料区域的第一电极;以及 形成电接触所述第二多层二维材料区域的第二电极。13.根据权利要求12所述的方法,其中所述蚀刻经由干刻法蚀刻所述中心区域。14.根据权利要求13所述的方法,其中所述蚀刻形成所述第一多层二维材料区域以具有在竖直方向上与所述第一电极的侧壁对准且面对所述沟道区的第一侧壁,并且形成所述第二多层二维材料区域以具有在竖直方向上与所述第二电极的侧壁对准且面对所述沟道区的第二侧壁。15.根据权利要求12所述的方法,其中所述蚀刻经由等离子体蚀刻法蚀刻所述中心区域。16.根据权利要求15所述的方法,其中所述蚀刻形成在所述第一多层二维材料区域和所述沟道区之间的第一斜坡,并且形成在所述第二多层二维材料区域和所述沟道区之间的第二斜坡。17.根据权利要求12所述的方法,其中所述形成第一电极和所述形成第二电极是在使用所述第一和第二电极作为蚀刻掩模蚀刻所述二维材料层的中心区域之前形成所述第一和第二电极。18.根据权利要求12所述的方法,其中 所述二维材料层包括具有化学式AB的过渡金属硫属化物材料, A包括锡(Sn)、铌(Nb)、钽(Ta)、钼(Mo)和钨(W)中的至少一种,以及 B包括硫(S)、砸(Se)和碲(Te)中的至少一种。19.根据权利要求12所述的方法,其中所述蚀刻形成包括顺序层叠的至少四个层的所述第一多层二维材料区域和所述第二多层二维材料区域。20.根据权利要求12所述的方法,其中所述蚀刻形成具有直接带隙的沟道区以及具有间接带隙的所述第一和第二多层二维材料区域。
【文档编号】H01L21/336GK106057880SQ201510737327
【公开日】2016年10月26日
【申请日】2015年11月3日
【发明人】罗昌皓, 刘元钟, F.阿梅德, 杨政, 刘晓迟, 朴晟准, 李载昊
【申请人】三星电子株式会社, 成均馆大学校产学协力团
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1