具有通过电镀制造的金属栅的太阳能电池的制作方法

文档序号:10689166阅读:584来源:国知局
具有通过电镀制造的金属栅的太阳能电池的制作方法
【专利摘要】本发明涉及具有通过电镀制造的金属栅的太阳能电池。本发明的一个实施例提供具有通过电镀制造的金属栅的太阳能电池及其制造方法。该太阳能电池包括光生伏打结构、位于光生伏打结构之上的透明导电氧化物(TCO)层、以及位于TCO层之上的前侧金属栅。TCO层与光生伏打结构的前表面接触。金属栅包括以下项中至少之一:Cu和Ni。
【专利说明】具有通过电镀制造的金属栅的太阳能电池
[0001 ] 本申请是申请号为201110129691.1、申请日为2011年5月13日、发明名称为“具有通过电镀制造的金属栅的太阳能电池”的发明专利申请的分案申请。
[0002]相关申请
[0003]本申请要求于2010年5月14日提交的、发明人为Jianming Fu,Zheng Xu,ChentaoYu和Jiunn Benjamin Heng的、名称为“SOLAR CELL WITH METAL GRIDS FABRICATED BYUSING ELECTROPLATING”的、代理人案卷号为SSP10-1001PSP的美国临时申请N0.61/334,579的权益。
技术领域
[0004]本公开总体涉及太阳能电池的设计。更具体而言,本公开涉及包括通过电镀技术制造的金属栅的太阳能电池。
【背景技术】
[0005]通过使用化石燃料造成的负面环境影响及其提升的成本已导致对更洁净、廉价替代能源的急切需求。在不同形式的替代能源中,太阳能因其洁净性和广泛可用性而受到青睐。
[0006]太阳能电池利用光生伏打效应将光转换成电。有数种基本的太阳能电池结构,包括单p-n结太阳能电池、p-1-n/n-1-p太阳能电池以及多结太阳能电池。典型的单p_n结结构包括P型掺杂层和η型掺杂层。具有单p-n结的太阳能电池可以是同质结太阳能电池或是异质结太阳能电池。如果P掺杂层和η掺杂层由相似材料(具有相等带隙的材料)制成,则该太阳能电池称为同质结太阳能电池。相反,异质结太阳能电池包括至少两层具有不同带隙的材料。p-1-n结构和n-1-p结构包括P型掺杂层、η型掺杂层和夹于P层和η层之间的本征(未掺杂)半导体层(i层)。多结结构包括在彼此顶部上互相堆叠的具有不同带隙的多个单结结构。
[0007]在太阳能电池中,光在靠近p-n结处被吸收,从而产生载流子。载流子扩散进入p-n结并由内建电场分离,从而产生穿过器件和外部电路的电流。确定太阳能电池质量的重要度量是其能量转换效率,其定义为当太阳能电池连接至电路时转换功率(从被吸收的光转换成电能)与收集功率的比率。
[0008]图1展示了示出基于晶态-Si(C-Si)衬底的示例性同质结太阳能电池的图(现有技术)。太阳能电池100包括前侧Ag电极栅102、抗反射层104、基于C-Si的发射极层106、p型C-Si衬底108和铝(Al)背侧电极110。图1中的箭头表示入射太阳光。
[0009]在常规的基于C-Si的太阳能电池中,前侧Ag栅102收集电流。为了形成Ag栅102,常规方法涉及在晶圆上印刷Ag浆并随后以介于700 °(:和800 °C之间的温度焙烧Ag浆。高温焙烧银浆确保Ag和Si之间的良好的接触以及Ag线的低电阻率。
[0010]许多新研发出的太阳能电池基于无定形Si(a-Si),无定形Si可以用于与C-Si层形成异质结或提供对发射极的表面钝化。a-Si层的存在妨碍了太阳能电池经历Ag浆的高温焙烧。为了避免a-Si层的晶化并为了维持钝化效果,金属化的温度需要低于200°C。一种方法是施加可以在低于200°C的温度下固化的低温Ag浆。然而,在低温下固化的Ag浆的电阻率通常是在较高温度下固化的Ag浆的电阻率的五倍至十倍。因而,这样的方法可以导致Ag栅的高串联电阻,这继而导致较低的太阳能电池效率。印刷具有较大截面的Ag栅(较厚Ag层)可以降低串联电阻。然而,这样的方法要求多个印刷步骤,因此不但增加了生产复杂性,还需要消耗较大量的昂贵的Ag。

【发明内容】

[0011 ]本发明的一个实施例提供一种太阳能电池。该太阳能电池包括光生伏打结构、位于光生伏打结构之上的透明导电氧化物(TCO)层、以及位于TCO层之上的前侧金属栅。TCO层与光生伏打结构的前表面接触。金属栅包括以下项中至少之一:Cu和Ni。
[0012]在实施例的一个变化形式中,光生伏打结构包括以下项中至少之一:同质结、异质结、异质隧穿结和多p-n结。
[0013]在实施例的一个变化形式中,前侧金属层的电阻率小于2 X 10—5 Ω.cm。
[0014]在实施例的一个变化形式中,前侧金属栅还包括以下项中的一项或多项:Sn层和Ag层。Ag层或Sn层可以覆盖Cu线的顶部和/或侧壁。
[0015]在实施例的一个变化形式中,使用电镀技术形成前侧金属栅。
[0016]在实施例的一个变化形式中,TCO层包括以下项中至少之一:氧化铟锡(ΙΤ0)、掺铝氧化锌(ZnO:Al)、掺镓氧化锌(ZnO:Ga)、掺钨氧化铟(IWO)以及Zn-1n-Sn-O(ZITO)。
[0017]在实施例的一个变化形式中,光生伏打结构包括以下项中至少之一:重掺杂无定形Si (a-Si)的层、本征a-Si层、缓变掺杂的a-Si层以及与晶态硅(C-Si)衬底接触的氧化硅层。
[0018]在实施例的一个变化形式中,太阳能电池还包括背侧电极,该背侧电极包括可以是连接的线或连续的层的金属栅。
[0019]在又一变化形式中,使用以下技术中至少之一来形成背侧金属栅:丝网印刷、电镀、包括蒸发和溅射沉积的物理气相沉积、以及气溶胶喷射印刷。
[0020]在实施例的一个变化形式中,太阳能电池还包括位于光生伏打结构背侧上的背侧TCO层以及位于背侧TCO层上的背侧金属栅。背侧TCO层与光生伏打结构的背表面接触,以及金属栅包括以下项中至少之一:Cu和Ni。
[0021]在又一变化形式中,太阳能电池还包括位于背侧TCO层和背侧金属栅之间的金属粘合层,其中金属粘合层包括以下项中至少之一:(:11、附^8、1^&、¥、附¥、1^了&1¥11'1和NiCr。
[0022]在实施例的一个变化形式中,太阳能电池还包括位于TCO层和前侧金属栅之间的金属粘合层。
[0023]在又一变化形式中,金属粘合层包括以下项中至少之一:(:11、祖^8、1^&、¥、祖¥、TiN、TaN、WN、TiW和NiCr。
【附图说明】
[0024]图1展示了示出基于晶态-Si衬底的示例性同质结太阳能电池的图(现有技术)。
[0025]图2展示了示出依据本发明实施例的太阳能电池示例性制造工艺的图。
[0026]图3展示了示出依据本发明实施例的太阳能电池示例性制造工艺的图。
[0027]在附图中,相同的附图标记指代相同的附图元素。
【具体实施方式】
[0028]呈现下面的描述以使本领域任何技术人员能够制作和使用实施例,并且在具体的应用和其要求的上下文中提供下面的描述。在不偏离本公开的精神和范围的前提下,对已公开实施例的各种修改对于本领域技术人员而言是容易明白的,并且在此限定的一般原理可以应用至其他实施例和应用。因此,本发明不限于所示的实施例,而是应该被赋予与此处公开的原理和特征相一致的最广泛的范围。
[0029]抵莖
[0030]本发明的实施例提供包括通过电镀形成的金属栅的太阳能电池。太阳能电池包括η型晶态Si(C-Si)衬底、包括P型掺杂发射极层和钝化层的无定形-Si(a-Si)层堆叠、透明导电氧化物(TCO)层、前侧电极金属栅和背侧电极金属栅。通过电镀金属堆叠来形成前侧金属栅,前侧金属栅可以是单层或多层结构。通过丝网印刷金属栅、电镀金属栅或气溶胶喷射印刷金属栅来形成背侧电极。
[0031]制造工艺
[0032]图2展示了示出依据本发明实施例的太阳能电池示例性制造工艺的图。
[0033]在工序2A中,制备Si衬底200。在一个实施例中,Si衬底200可以是晶态Si(C-Si)衬底。
[0034]在工序2B中,在c-Si衬底200上生长氧化硅层202以形成钝化层,并在氧化硅层202上沉积缓变掺杂的无定形Si (a-Si)层204以形成发射极。基于c-Si衬底200s的掺杂类型,a-Si层204可以是η型掺杂或是P型掺杂。在一个实施例中,使用P型掺杂剂来重掺杂部分的前a-Si层204。最高掺杂浓度可以介于I X 117/cm3和I X 120/cm3之间d-Si层204的厚度可以介于1nm和50nm之间,氧化娃层202的厚度可以介于0.5nm和2nm之间。这些形成了异质隧穿结,因为载流子隧穿通过薄氧化物。可以使用等离子体增强化学气相沉积(PECVD)沉积无定形Si层204。尽管a-Si层204因其直接带隙而具有较高的吸收系数,但是因为a-Si层204的厚度可以远小于同质结太阳能电池中发射极层的厚度,所以明显地减少了对短波长光的吸收,从而导致较高的太阳能电池效率。注意,Si衬底200、氧化物层202和a-Si 204构成了光生伏打结构的基本构造块。基于所选用以形成不同层的材料,光生伏打结构可以包括以下项中至少之一:同质结、异质结、异质隧穿结或多p-n结。
[0035]在工序2C中,在a-Si层204的顶部上沉积透明导电氧化物(TCO)层以形成抗反射层206和用于收集电流的导电层。TCO的示例包括但不限于:氧化铟锡(ΙΤ0)、掺铝氧化锌(ZnO:Al)、掺镓氧化锌(ZnO = Ga)、掺钨氧化铟(IWO)以及Zn-1n-Sn-O(ZITO)。用于形成抗反射层206的技术包括但不限于:PECVD、溅射和电子束蒸发。除了在晶圆的前侧上沉积TCO材料层作为TCO层206之外,还可以在晶圆的两侧上沉积TCO层。在一个实施例中,在晶圆前侧、晶圆背侧和晶圆边缘上的垂直斜面上沉积TCO层。
[0036]在工序2D中,在TCO层206的顶部上沉积已构图的掩模层208。诸如开口 210之类的掩模层208的开口对应于设计的前金属栅的位置。掩模层208可以包括可以使用光刻技术形成的已构图的光致抗蚀剂层。在一个实施例中,通过在晶圆顶部上丝网印刷光致抗蚀剂来形成光致抗蚀剂层。随后烘焙光致抗蚀剂以移除溶剂。在光致抗蚀剂上设置掩模,并将晶圆暴露于紫外光。在紫外曝光之后去除掩模,并在光致抗蚀剂显影剂中对光致抗蚀剂进行显影。显影之后形成开口 210。还可以通过喷洒、浸涂或幕涂来施加光致抗蚀剂。还可以使用干膜抗蚀剂。备选地,掩模层208可以包括已构图的氧化硅(S12)层。在一个实施例中,通过首先使用低温等离子体增强化学气相沉积(PECVD)技术沉积S12层来形成掩模层208。在又一实施例中,通过使用氧化硅浆浸涂晶圆的前表面并随后丝网印刷包括氢氟酸或氟化物的蚀刻剂来形成掩模层208。还可以使用其他掩模材料,只要该掩模材料电绝缘。
[0037]在工序2E中,在掩模层208的开口处沉积一个或多个金属层以形成金属栅212。可以使用电镀技术来形成金属栅212,电镀技术可以包括电沉积和/或无电沉积。在一个实施例中,TCO层206通过电极耦合至电镀电源的阴极,电镀电源可以是直流电源。TCO层206和包括开口的掩模层208浸没在允许电流动的电解液溶液中。注意,由于仅掩模层208内的开口是导电的,所以金属将选择性地沉积入开口中,从而形成具有设计的图案的金属栅。金属栅212可以是单层结构,诸如Cu单层或Ag单层;或者金属栅212可以是多层结构,诸如Ni/Cu双层结构、Cu/Sn双层结构、Ni/Cu/Sn三层结构以及Ni/Cu/Ag三层结构。金属栅212的顶部和侧壁也可以涂覆有Ag或Sn。当沉积Cu层时,在阳极处使用Cu板,并且太阳能电池浸没在适于Cu电镀的电解液中。对于具有125mm X 125mm尺寸的晶圆而言,用于Cu电镀的电流介于0.1安培和2安培之间,并且Cu层的厚度大约为数十微米。Ni层的沉积也可以是电镀工艺,期间在阳极处使用Ni板,并且太阳能电池浸没在适于Ni电镀的电解液中。用于Ni电镀的电压可以介于IV和3V之间。在晶圆的背侧也覆盖有TCO层的情形中,电镀电源的阴极可以耦合至晶圆背侧上的TCO层,并且整个晶圆浸没在电解液溶液中。还可以通过使用在掩模层208的开口处的接触引线使阴极与前侧直接接触。相比于低温固化银浆层,使用电镀技术沉积的金属堆叠通常具有较低的电阻率。在一个实施例中,金属栅212的电阻率小于2 X 10—5 Ω.cm。在又一实施例中,金属栅212的电阻率等于或小于5 X 10—6 Ω.cm。相对而言,200°C固化的Ag浆经常具有高于2X10—5Ω.cm的电阻率。金属栅较低的电阻率可以明显增强太阳能电池效率。
[0038]在工序2F中,移除掩模层208。因而,前侧电极栅(金属栅)212实现为设计的图案和线宽。图2G示出了依据本发明实施例的示例性的前侧电极栅212的顶部视图。前侧电极栅212包括母线(诸如母线214和216)和指线(诸如指线218和220)。母线是直接连接至外部导线的较厚的金属条,而指线是收集电流以传送给母线的较细的金属条。
[0039]在工序2H中,使用如上述工序2A至2C所述的方法来形成背侧氧化物层224、背侧a-Si层226和背侧TCO层228。此外,在背侧TCO层228上形成背侧电极栅222。可以使用与用于形成前侧电极栅212的电镀方法相同的电镀方法来形成背侧电极栅222 ο背侧栅的密度或厚层可以不同于前侧。
[0040]图3展示了示出的依据本发明实施例的太阳能电池的另一示例性制造工艺的图。[0041 ] 在工序3A中,制备Si衬底300。用于制备Si衬底300的工艺与在工序2A中使用的工艺相同。
[0042]在工序3B中,在Si衬底300上生长氧化物层302以形成钝化层,并且在氧化物层302上沉积缓变掺杂的a-Si层304以形成发射极。用于沉积层304和302的沉积技术类似于工序2B中使用的沉积技术。
[0043]在工序3C中,在a-Si层304的顶部上沉积TCO材料层以形成抗反射层306。抗反射层(或TCO层)306的形成工艺与工序2C中使用的形成工艺相似。
[0044]在工序3D中,在TCO层306的顶部上沉积薄金属层308。可以使用物理气相沉积(PVD)技术来沉积薄金属层308,物理气相沉积技术诸如溅射沉积或蒸发。薄金属层308可以包括 Cu、N1、Ag、NiV、T1、Ta、W、TiN、TaN、WN、TiW、NiCr 以及它们的组合。在 TCO 层 306 的顶部上形成薄金属层308改进TCO层306和随后沉积的前侧金属栅之间的粘合性。
[0045]在工序3E中,使用类似于工序2D中使用的工艺在薄金属层308的顶部上沉积已构图的掩模层310。诸如开口 312之类的掩模层310的开口对应于设计的前侧金属栅的位置。
[0046]在工序3F中,使用类似于工序2E中使用的工艺和材料在掩模层310的开口处沉积一个或多个金属层以形成金属栅314。
[0047]在工序3G中,移除掩模层310和部分的薄金属层308以露出TCO层306的未被金属栅314覆盖的部分。因而,前侧电极栅(金属栅)314实现为设计的图案和线宽。如果薄金属层308是透明的,则工序3G可以仅移除掩模层310。在一个实施例中,薄金属层308包括超薄NiCr层,超薄NiCr层透明并且在工序3G之后保持完整。
[0048]图3H示出了依据本发明实施例的前侧电极栅314的示例性俯视图。前侧电极栅314包括母线(诸如母线316和318)和指线(诸如指线320和322)。母线是直接连接至外部导线的较厚的金属条,而指线是收集电流以递送给母线的较细的金属条。
[0049]在工序31中,使用类似于工序3B至3G的工艺在晶圆的背侧上形成背侧氧化物326、背侧a-Si层328、背侧TCO层330、粘合金属层332和背侧电极栅324。
[0050]所呈现的对各种实施例的在前描述仅用于示例和说明的目的。它们无意于是穷尽性的或是将本发明限制于已公开的形式。因此,对于本领域从业者而言,许多修改和变化是明显的。此外,上面的公开内容无意于限制本发明。
【主权项】
1.一种太阳能电池,包括: 晶态娃衬底; 分别位于所述晶态硅衬底的前侧和背侧上的前氧化硅层和背氧化硅层; 分别位于所述前氧化硅层和背氧化硅层上的前缓变掺杂的无定形硅层和背缓变掺杂的无定形娃层; 分别位于所述前缓变掺杂的无定形硅层和背缓变掺杂的无定形硅层上的前透明导电氧化物层和背透明导电氧化物层;以及 位于所述前透明导电氧化物层和背透明导电氧化物层中的每一个上的电极栅,每个电极栅包括: 通过物理气相沉积技术直接沉积到对应的透明导电氧化物层上的铜种子层,该对应的透明导电氧化物层位于所述铜种子层和对应的缓变掺杂的无定形硅层之间并且与所述铜种子层和对应的缓变掺杂的无定形硅层直接接触; 位于所述铜种子层上并且与所述铜种子层直接接触的电镀的铜层。2.根据权利要求1的太阳能电池,其中所述电极栅的电阻率小于2X10—5Ω.cm。3.根据权利要求1的太阳能电池,其中所述电极栅还包括以下项中一项或多项:Sn和Ag。4.根据权利要求1的太阳能电池,其中所述透明导电氧化物层包括以下项中至少之一: 氧化铟锡(ITO); 掺铝氧化锌(ZnO: Al); 掺镓氧化锌(ZnO: Ga); 掺钨氧化铟(IW0);以及 Zn-1n-Sn-O(ZITO)。5.根据权利要求1的太阳能电池,其中所述前缓变掺杂的无定形硅层和背缓变掺杂的无定形娃层中的每一个的厚度在1nm和50nm之间。6.根据权利要求1的太阳能电池,其中每个缓变掺杂的无定形娃层的最高掺杂浓度在IX 1017/cm3和 I X I O2Vcm3之间。7.根据权利要求1的太阳能电池,其中所述前氧化硅层和后氧化硅层的厚度在0.5nm和2nm之间ο8.根据权利要求1的太阳能电池,其中所述电镀的铜层的厚度为至少ΙΟμπι。9.一种太阳能电池制造方法,包括: 在晶态硅衬底的前侧和背侧上分别沉积前氧化硅层和背氧化硅层; 在所述前氧化硅层和后氧化硅层上分别沉积前缓变掺杂的无定形硅层和背缓变掺杂的无定形娃层; 在所述前缓变掺杂的无定形硅层和背缓变掺杂的无定形硅层上分别沉积前透明导电氧化物层和背透明导电氧化物层;以及 在所述前透明导电氧化物层和背透明导电氧化物层中的每一个上形成电极栅,形成所述电极栅的步骤包括: 使用物理气相沉积技术把铜种子层直接沉积到对应的透明导电氧化物层上,该对应的透明导电氧化物层位于所述铜种子层和对应的缓变掺杂的无定形硅层之间并且与所述铜种子层和对应的缓变掺杂的无定形硅层直接接触; 在铜种子层上电镀主体铜层。10.根据权利要求9的方法,其中所述电极栅的电阻率小于2X10—5Ω.Cm。11.根据权利要求9的方法,其中形成所述电极栅还包括沉积保护性金属层,所述保护性金属层包括Sn和Ag中的一个或多个。12.根据权利要求9的方法,其中形成所述电极栅还包括沉积和/或移除在所述铜种子层上的已构图的掩膜层。13.根据权利要求9的方法,其中所述透明导电氧化物层包括以下项中至少之一: 氧化铟锡(ITO); 掺铝氧化锌(ZnO: Al); 掺镓氧化锌(ZnO: Ga); 掺钨氧化铟(IW0);以及 Zn-1n-Sn-O(ZITO)。14.根据权利要求9的方法,其中所述前缓变掺杂的无定形硅层和背缓变掺杂的无定形娃层中的每一个的厚度在1nm和50nm之间。15.根据权利要求9的方法,其中每个缓变掺杂的无定形娃层的最高掺杂浓度在IXI O1Vcm3和 I X I O2Vcm3之间。16.根据权利要求9的方法,其中所述前氧化硅层和背氧化硅层的厚度在0.5nm和2nm之间。17.根据权利要求9的方法,其中所述主体铜层的厚度为至少ΙΟμπι。18.根据权利要求9的方法,其中所述物理气相沉积技术包括蒸发和溅射沉积之一。
【文档编号】H01L31/0224GK106057919SQ201610402258
【公开日】2016年10月26日
【申请日】2011年5月13日
【发明人】傅建明, 徐征, 游晨涛, J·B·衡
【申请人】光城公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1