使用基于碳的膜的间隙填充的制作方法

文档序号:10698159阅读:515来源:国知局
使用基于碳的膜的间隙填充的制作方法
【专利摘要】本发明提供了一种使用基于碳的膜的间隙填充。提供了使用高密度等离子体化学气相沉积(HDP CVD)填充间隙的方法。根据多个实施方案,通过HDP CVD将诸如无定形碳和无定形碳化物膜之类的含碳膜沉积到衬底上的间隙内以填充间隙。这些方法可涉及在HDP CVD期间使用高氢含量的工艺气体来提供自底向上的填充。此外,还提供了相关装置。
【专利说明】
使用基于碳的膜的间隙填充
技术领域
本发明总体上涉及半导体领域,更具体涉及使用基于碳的膜的间隙填充。
【背景技术】
[0001]半导体集成操作可涉及用隔离材料填充高深宽比的间隙。这是针对浅沟槽隔离、金属间电介质层、钝化层等情况。随着器件几何尺寸缩小和热预算减少,由于现有沉积工艺的局限性,高深宽比(AR)间隙的无空隙填充变得越来越困难。
[0002]相比于在间隙侧壁的下部区域上,大多数沉积方法沉积更多的材料在上部区域,并可以在间隙的入口处形成“顶帽(top-hat)”。其结果是,高深宽比结构的顶部部分有时过早地关闭,在间隙的下部部分内留有空隙。这个问题在小的间隙中加剧。此外,随着深宽比增加,间隙本身的形状可能带来问题。高深宽比间隙常常表现出内凹特征(r e e n t r a n tf eature),这使得间隙填充更加困难。内凹特征是从间隙底部变窄的一种特征。一个这样问题性的内凹特征是在间隙顶部变窄,而间隙侧壁在间隙的顶部附近向内倾斜。对于给定深宽比的特征,这增加了在沉积期间间隙体积与由反应器物质所涉及的间隙访问区域(gapaccess area)的比率。空隙和接缝的形成在这些条件下更可能发生。如果间隙顶部过早地封闭,则在间隙被重新打开之后,更多膜才能被沉积在间隙中。

【发明内容】

[0003]本文提供了用于以诸如无定形碳和碳化硅之类的基于碳的膜填充间隙的方法和装置。在一些实施方式中,方法涉及引入工艺气体到容纳具有间隙的衬底的高密度等离子体化学气相沉积(HDP CVD)室,其中所述工艺气体包括烃类反应物并且具有至少4:1的H:C比;以及通过所述工艺气体的HDP CVD反应来用基于碳的膜填充所述间隙。
[0004]在一些实施方式中,所述间隙在单个沉积操作中被填充而没有中间蚀刻操作。在一些实施方式中,使用两个或更多个沉积操作和一个或更多个中间蚀刻操作填充间隙。中间蚀刻操作可以在HDP CVD室内或者在分离的蚀刻室内执行。在一些实施方式中,中间蚀刻操作是基于氢的蚀刻。
[0005]在一些实施方式中,基于碳的膜是无定形碳膜。在这样的情况下,工艺气体可包括烃类反应物和可选的载气。工艺气体可基本上由烃类反应物和可选的载气组成。工艺气体基本上由烃类反应物、氢分子或其它氢源、以及可选的载气组成。一种或更多种掺杂物也可存在于工艺气体中。
[0006]在一些实施方式中,基于碳的膜是无定形碳化物膜。实施例包括:氧掺杂SiC,也称为碳氧化硅(S1C);氮掺杂SiC,也被称为碳氮化硅(SiNC);氧和氮掺杂SiC,也被称为碳氧氮化娃(silicon oxynitricarbide,S1NC);硼掺杂的碳化物(SiBC);以及未掺杂的碳化娃(SiC)。在一些实施方式中,工艺气体包括含硅反应物。含硅反应物可具有至少4的H: Si比。在一些情况下,工艺气体可包括烃类反应物、含硅反应物和可选的载气。工艺气体可基本上由烃类反应物、含硅反应物和可选的载气组成。工艺气体可基本上由烃类反应物、含硅反应物、氢分子或其它氢源、以及可选的载气组成。一种或更多种掺杂物也可存在于工艺气体中。
[0007]在一些实施方式中,烃类反应物具有至少3:1或至少4:1的H: C比。实施例包括甲烷(CH4)。在一些实施方式中,工艺气体包括氢分子(H2)。方法可包括生成氢自由基。在一些实施方式中,填充间隙包括在HDP CVD反应期间的氢自由基蚀刻。氢自由基可优先蚀刻在间隙顶部处所沉积的基于碳的材料。
[0008]在一些实施方式中,装置包括:等离子体生成器;具有基座的室;到所述室的一个或多个入口 ;以及控制器,该控制器包括用于以下操作的机器可读指令:引入包含烃类反应物的工艺气体,其中所述工艺气体具有至少4:1的H:C比;以及在所述室内生成高密度等离子体,从而在所述室内填充衬底上的间隙。
[0009]这些和其它方面参考附图在下面进一步进行描述。
I.一种方法,其包括:
引入工艺气体到容纳具有间隙的衬底的高密度等离子体化学气相沉积(HDP CVD)室,其中所述工艺气体包括烃类反应物并且具有至少4:1的H:C比;以及通过所述工艺气体的HDP CVD反应来用基于碳的膜填充所述间隙。
2.根据条款I所述的方法,其中所述间隙在没有中间蚀刻操作的单个沉积操作中被填充。
3.根据条款I所述的方法,其中所述基于碳的膜是无定形碳(a-C)膜。
4.根据条款I所述的方法,其中所述基于碳的膜是无定形碳化物膜。
5.根据条款I所述的方法,其中所述基于碳的膜是掺杂的或非掺杂的无定形碳化硅膜。
6.根据条款5所述的方法,其中所述工艺气体包括具有至少4的H:Si比的含硅反应物。
7.根据条款I所述的方法,其中所述烃类反应物具有至少3:1的H:C比。
8.根据条款I所述的方法,其中所述烃类反应物具有至少4:1的H:C比。
9.根据条款I所述的方法,其中所述工艺气体包括氢分子(Hs)。
10.根据条款I所述的方法,其进一步包括生成包括氢自由基的等离子体。
11.根据条款I所述的方法,其中填充所述间隙包括在所述HDPCVD反应期间在所述间隙的顶部处的氢自由基蚀刻。
12.根据条款I所述的方法,其中用基于碳的膜填充所述间隙包括两个或更多个沉积阶段和一个或更多个中间蚀刻操作。
13.根据条款12所述的方法,其中所述一个或多个中间蚀刻操作是基于氢的蚀刻。
14.一种装置,其包括:
等离子体生成器;
室,其包括基座;
通向所述室的一个或多个入口;以及控制器,其包括用于以下操作的机器可读指令:引入包含烃类反应物的工艺气体,其中所述工艺气体具有至少4:1的H:C比;以及在所述室内生成高密度等离子体,从而在所述室内填充衬底上的间隙。
15.根据条款14所述的装置,其中所述烃类反应物具有至少3:1的H:C比。
16.根据条款14所述的装置,其中所述烃类反应物具有至少4:1的H:C比。
17.根据条款14所述的装置,其中所述工艺气体包括具有至少4的H:Si比的含硅反应物。
18.根据条款14所述的装置,其中所述工艺气体包括氢分子(Hs)。
【附图说明】
[0010]图1提供了说明根据不同实施方式填充间隙的方法实施例中的操作的工艺流程图。
[0011]图2描绘了相比于使用甲烷作为碳源(工艺气体He/SiH4/CH4)的单个阶段特征填充、在使用乙炔作为碳源(工艺气体He/SiH4/C2H2)的单个沉积阶段内以SiC填充的特征的横截面示意图。
[0012]图3示出了与图2中所示意描述的那些类似、分别使用乙炔(图像310)和甲烷(图像320)作为HDP CVD处理中的碳源来以S i C填充的3:1 AR、25nm宽沟槽的SEM图像。
[0013]图4示出了在沉积期间不同阶段处的HDPCVD处理中使用He/CH4工艺气体来以无定形碳填充的3:1AR、25纳米特征的截面示意图和对应的SEM图像。
[0014]图5提供了说明根据不同实施方式填充间隙的方法实施例中的操作的工艺流程图。
[0015]图6提供了描绘配置成可在反应器中配置的各种反应器组件的简单方块图。
[0016]图7是根据所公开的实施方式适于执行沉积处理的一个系统的方块图。
[0017]图8提供了包括在自对准连接集成处理中基于碳的间隙填充的操作实施例。
【具体实施方式】
[0018]半导体集成操作可涉及用各种材料填充高深宽比间隙。这是针对浅沟槽隔离、金属间电介质层、钝化层等情况。随着器件几何尺寸缩小和热预算减少,由于现有沉积工艺的局限性,高深宽比(AR)间隙的无空隙填充变得越来越困难。
[0019]本发明提供了使用高密度等离子体化学气相沉积(HDPCVD)填充间隙的方法。根据不同实施方式,含碳膜(例如无定形碳和无定形碳化物膜)通过HDP CVD沉积到衬底上的间隙内,以填充间隙。方法可涉及在HDP CVD沉积期间使用高含氢量的工艺气体以提供自下而上的填充。还提供了相关的装置。
[0020]大部分沉积方法在上部区域比在间隙侧壁的下部区域沉积更多的材料,并且可以在间隙入口处形成“顶帽”。其结果是,高深宽比结构的顶部部分有时过早地关闭而在间隙的下部部分内留有空隙。这个问题在小的间隙中加剧。此外,随着深宽比增大,间隙本身的形状可能导致问题。高深宽比间隙常常呈现出内凹特征,这使得间隙填充更加困难。内凹特征是从间隙底部变窄的特征。一个这样问题性的内凹特征是在间隙顶部变窄,而间隙侧壁在间隙顶部附近向内倾斜。对于给定深宽比的特征,这增加了沉积期间间隙体积与由前体物质所涉及的间隙接入区域的比率。空隙和接缝的形成在这些情况下更可能发生。如果间隙顶部过早地关闭,则重新打开间隙后,更多膜才能被沉积在间隙中。
[0021]HDP CVD是定向CVD工艺,其涉及朝向衬底引导带电的电介质前体物质。虽然HDPCVD并非单纯各向同性的、基于扩散的工艺,但一些悬垂物或顶帽的形成仍然仍然会发生在待填充间隙的入口区域处。这可能是由于在等离子体反应器中中性物质的非定向沉积反应以及溅射和再沉积工艺。沉积工艺的定向方面产生了一些远离底部填充溅射的高动量带电物质。溅射材料趋向于重新沉积在侧壁上。随着待填充间隙的宽度减小和深宽比增大,归因于悬垂物形成的限制变得更为严重。根据不同实施方式,本文提供的方法通过使用富含氢气的工艺气体抑制内凹特征的形成来提供间隙填充。
[0022]在本文提供的方法的实施方式中,间隙填充有无定形含碳材料,如无定形碳(a-C)和无定形碳化物,该无定形碳化物包括无定形碳化娃(a-SiC)。SiC类包括:氧掺杂SiC,也称为碳氧化硅(S1C);氮掺杂SiC,也被称为碳氮化硅(SiNC);氧和氮掺杂SiC,也被称为碳氧氮化娃(silicon oxynitricarbide,S1NC);硼掺杂的碳化物(SiBC);以及未掺杂的碳化娃(SiC)。例如,拓扑衬底上的沟槽可以以在图案转印方案中充当牺牲硬掩模的a-C膜填充。a-SiC和其它无定形碳化物层可以被用作例如在VLSI后端处理中的阻挡层。在一些集成方案中,SiC或其他碳化物膜的无空隙间隙填充是很有用的。图8提供了包括在自对准连接集成处理中基于碳的间隙填充的操作的实施例。在图8中描绘了金属栅极801和间隔物802。金属栅极801凹陷,形成间隔物之间的间隙804。栅帽803(其可以是例如SiC膜)在限定连接孔之前沉积在间隙804内。栅帽803的存在放宽了连接孔限定的对准精度;在图8中,连接孔805是由栅帽803提供的增大的公差范围内。
[0023]图1提供了说明根据不同实施方式填充间隙的方法示例中的操作的工艺流程图。过程100涉及提供包括间隙的基底到HDP CVD室。块1010HDP CVD室在下面结合图6进一步讨论。衬底可以是适合于半导体处理的晶片,例如200毫米、300毫米或450毫米的硅晶片。可以使用不同组成和/或尺寸的晶片。此外,该方法不限于半导体衬底,可以用包括待填充的间隙的任何合适的衬底来实现,合适的衬底包括玻璃和塑料板等。
[0024]富含氢(H)的工艺气体被引入到HDPCVD室。块103。根据不同实施方式,块103可涉及使用富含H的反应物和除反应物外还引入氢气(H2)到室中的一者或两者。术语“工艺气体”被用来表示被引入到室中的多组分气体或其混合物。在一些实施方式中,工艺气体可包括夹带在载气中或以其他方式提供给室的液体反应物。工艺气体包括一种或多种碳反应物以供应基于碳的间隙填充材料,并且在适当的情况下包括一种或多种共反应物,如含硅化合物、含氮化合物、含硼化合物等等。
[0025]根据不同实施方式,富含H的处理气体可以以下中的一个或多个为特征:至少3:1的H: C比,超过3:1的H: C比,或至少4:1的H: C比。在一些实施方式中,使用具有至少3:1的H: C比、超过3:1的H:C比或至少4:1的H:C比的碳前体。实施例包括乙烷(C2H6)、甲烷(CH4)。具有较低H:C比的碳前体可以与添加的H2或来自另一个源的氢一起使用。例如,工艺气体可以包括乙炔(C2H2WPH2。工艺气体可包括惰性载气,其实施例包括氦(He)、氩(Ar)等等。
[0026]如上所述,工艺气体可以包括一种或多种附加反应物,具体取决于要沉积的膜类型。对于包括SiC、SiCN、SIBC等的硅碳化物,含硅反应物(例如一种或多种硅烷)可以用作硅源。通常,含硅反应物中不包括碳。硅烷的非限制性实例包括硅烷、乙硅烷、丙硅烷和更高级的硅烷。
[0027]可适当地使用其它含硅反应物,包括使用硅氧烷、烷基硅烷、烷氧基硅烷和氨基硅烷等等。烷基硅烷的非限制性实例包括二甲基硅烷、三甲基硅烷、四甲基硅烷、三乙基硅烷、以及五甲基乙娃杂甲烧(pentamethyIdisi Iamethane)。还包括氧原子的含娃碳的膜(例如,硅碳氧化物和硅碳氮氧化物)可以使用包含氧的有机硅反应物(如硅氧烷和烷氧基硅烷)而形成。硅氧烷的非限制性实例包括环四硅氧烷(例如,2,4,6,8_四甲基环四硅氧烧;八甲基环四硅氧烷;以及七甲基环四硅氧烷);其它环硅氧烷;具有三维或笼形结构的硅氧烷(即,其中硅原子经由氧原子彼此桥连,形成三维结构或多面体),如倍半硅氧烷;和线性硅氧烷,如一■娃氧烧(例如,五甲基一■娃氧烧,四甲基一■娃氧烧,和八甲基二娃氧烧)。烧氧基娃烧的非限制性实例包括甲氧基硅烷、二甲氧基硅烷、三甲氧基硅烷、甲基二甲氧基硅烷、二乙氧基甲基硅烷、二甲基乙氧基硅烷和二甲基甲氧基硅烷。还包括氮原子的含硅碳的膜(例如,硅碳氮化物和硅碳氮氧化物)可以使用包含氮的有机硅反应物(例如,氨基硅烷和硅氮烷)而形成。氨基硅烷的非限制性实例包括2,2_双(二甲基氨基)-4,4-二甲基-2,4-二硅杂戊烷(2,2-bis(dimethylamino)-4,4-dimethyl-2,4-disilapentane)、2,2,4-三甲基-4-二甲基氨基-3,4-二硅杂戊烷、二甲氨基二甲基硅烷、双(二甲基氨基)甲基硅烷和三(二甲基氨基)硅烷。I,I,3,3-四甲基硅氮烷是硅氮烷的非限制性实例。
[0028]根据不同实施方式,含硅反应物和烃可以被以约1:1的比率提供给室以填充间隙。这包括介于1: 1.5和1.5:1之间的比率。在某些情况下,该比率介于1: 1.25和1.25:1之间或者介于1: 1.1和1.1:1之间。在一些实施方式中,含硅反应物富含氢,具有至少3:1或者至少4:1的H:Si比率。
[0029]用于沉积a-C膜的富含氢的工艺气体的非限制性实例包括He/CH4、He/C2H2/H2、He/OWH2和He/C2H6/H2。用于沉积a-SiC膜的富含氢的工艺气体的非限制性实例包括He/SiH4/CH4、He/SiH4/C2H2/H2、He/SiH4/CH4/H2、和 He/SiH4/C2H6/H2。在这些实施例中,可以除了使用He之外还使用任何适当的载气或者可以使用任何适当的载气来代替He。同样地,在这些实施例中,可以除了使用SiH4之外还使用任何适当的含硅反应物或可以使用任何适当的含硅反应物来代替SiH4。
[0030]基于碳的膜然后被沉积以填充间隙。块105。根据不同实施方式,填充间隙可以在单个沉积期间或在多个通过插入蚀刻操作而分开的沉积期间执行。后一技术的一个实施例相对于图5被描述如下。
[0031]通过在HDPCVD沉积中使用富含氢的碳前体,也可以提供自下而上的间隙填充。这被示意地表示于图2中,其描述了相比于使用甲烷作为碳源(工艺气体He/SiH4/CH4)的单阶段特征填充、在单个沉积阶段使用乙炔作为碳源(He/SiH4/C2H2)以SiC填充的特征的横截面图。处理210描述了根据He/SiH4/C2H2的碳化硅沉积期间的沟槽201。随着沉积的进行,形成尖端204。这导致了沟槽201的顶部205的封闭,进而导致空隙203。相比较而言,使用He/SiH4/CH4处理气体的处理220导致没有空隙形成的自下而上的填充。随着沉积进行,尖端在206处被抑制,使沟槽能够保持开放并提供无空隙的填充。图3示出了与图2中所示意描述的那些类似、分别使用乙炔(图像310)和甲烷(图像320)作为在HDP CVD处理中的碳源的填充有SiC的3: lAR、25nm宽沟槽的SEM图像。空隙303可见于图像310中。相比之下,采用甲烷填充的沟槽是无空隙的。
[0032]在沟槽上沉积a-C膜期间观察到类似效果。图4示出了在沉积过程的各个阶段中的HDP CVD处理中使用He/CH4处理气体填充的3:1AR、25纳米的沟槽401的截面示意图和对应的SEM图像。沉积可表征为基本上自下而上,导致用无空隙的a-C填充的沟槽。相比之下,由于侧壁尖端发展和过早的间隙封闭(未示出),He/C2H2处理气体导致空隙形成。
[0033]不受具体理论限制,认为,尖端抑制归因于在沉积期间通过诸如氢自由基(S卩,原子H)之类的H物质在间隙顶部蚀刻。在等离子体中的中性和低质量物质优先在间隙顶部蚀亥IJ,允许在特征底部部分填充和在顶部蚀刻。这种效果可以抵消导致尖端沉积的上述因素。
[0034]使用非富含氢的工艺气体、其它烃类前体或其它技术(例如等离子体增强化学气相沉积(PECVD))的基于碳的膜的间隙沉积没有表现出与由富含氢的HDP CVD处理所表现出的相同尖端抑制。因此,它们不能用于高质量、无空隙、单阶段的间隙填充。
[0035]在一些实施方式中,方法可以包括一个或多个沉积-蚀刻-沉积循环。也可以使用这样的方法来例如特别地填充具有挑战性的结构。图5提供了说明根据不同实施方式填充间隙的一个方法示例中的操作的过程流程图。
[0036]如图所示,沉积处理500开始于块101,在该块101中,包含间隙的衬底被提供到HDPCVD反应室。该操作可以如以上参照图1所述地执行。富含H的工艺气体然后被引入到HDPCVD室。块103。这也可以如以上参照图1所述地执行。
[0037]基于碳的膜然后被沉积以部分地填充间隙。块505。在关闭间隙之前停止沉积。在一些实施方式中,所沉积的膜可表现出新生的尖端形成、内凹轮廓、或以其他方式呈现具有挑战性的填充结构。虽然任意尖端形成将比不存在富含氢的工艺气体的情况下少,但它对于停止沉积并采用专用蚀刻操作以适当地调整部分地填充间隙的膜的轮廓会是有用的。
[0038]在507,反应物流被关闭并且蚀刻基于碳的膜。因为反应物流被关闭,因此沉积停止。在一些实施方式中,氢自由基或其它氢物质是主要蚀刻剂。在一些这样的实施方式中,从块505转移到块507可涉及关闭一个或多个反应物流,同时允许H2继续流动。在一些实施方式中,尽管块507可以在HDP CVD反应器发生,但衬底也可以被转移到蚀刻室以进行蚀刻。可以使用任何合适的蚀刻剂,包括基于氟的蚀刻等。在基于氢的蚀刻中一种或多种附加的蚀刻剂气体可被添加到氢气中。可替代地,氢物质可以是唯一的蚀刻剂,而无卤素蚀刻剂。
[0039]块507可涉及优先蚀刻在间隙顶部的材料以适当地成形间隙中的材料轮廓。这可以被称为非保形蚀刻或低台阶覆盖率蚀刻。基于碳的膜的台阶覆盖率可以是正比于(蚀刻剂浓度)/蚀刻速率。例如,对于氢自由基蚀刻,在较高的温度下,氢自由基很容易反应并在特征入口蚀刻,从而产生更不共形的蚀刻;在较低的温度下,氢自由基能够扩散并进一步蚀刻到特征内,产生更共形的蚀刻。较高的蚀刻剂流率将会导致产生更多的蚀刻剂物质,从而导致更多的物质扩散并进一步蚀刻到特征内,产生更共形的蚀刻。较低的蚀刻剂流率将会导致产生较少的蚀刻物质,这将趋向于在特征入口处进行反应和蚀刻,从而产生更不共形的蚀刻。
[0040]在块509,基于碳的膜沉积在所述间隙中,这时是在部分填充间隙的经蚀刻的基于碳的膜上。如上所述,块509通常涉及使用富含氢的工艺气体的HDP CVD沉积。在一些实施方式中,间隙可在一个沉积-蚀刻-沉积序列之后进行填充。可替代地,块507和509可以重复一次或多次,以填充间隙。模块511。
[0041]在替代的实施方式中,基于碳的间隙填充可通过使用富含氮的工艺气体执行。例如,如上所述的富含氢的或富含碳的烃前体可以与氮(N2)混合。
装置
[0042]本发明可以在HDP CVD反应器中实施。这样的反应器可采取许多不同的形式。通常,装置包括容纳一个或多个晶片并适于晶片处理的一个或多个室或“反应器”(有时包括多个站)。每个室可以容纳用于处理的一个或多个晶片。一个或多个室将晶片保持在限定的一个位置或多个位置(在该位置内有或没有运动,例如旋转、振动或其他搅动)。而在处理中,每个晶片通过基座、晶片卡盘和/或其他晶片保持装置被保持在适当位置。对于在其中晶片将被加热的某些操作,装置可包括如热板之类的加热器。合适的反应器的一个实施例是SPEED?反应器,可从加利福尼亚州弗里蒙特的朗姆研究公司(Lam Research ofFremont ,California)获得。
[0043]图6提供了一个简单框图,描绘了布置为可被布置在反应器中的各种反应器组件。如图所示,反应器601包括处理室603,该处理室603包围该反应器的其它部件并且用来容纳等离子体。在一个实例中,处理室壁由铝、氧化铝和/或其他合适的材料制成。在图6所示的实施方式中具有两个等离子体源:顶部射频(RF)线圈605和侧部射频线圈607。顶部射频线圈605是中频(MFRF)线圈,侧部射频线圈607是低频(LFRF)线圈。在图6中所示的实施方式中,MFRF频率可以从430到470kHz,而LFRF频率可以从340到370kHz。然而,这些方法和装置并不限于具有双源、这些频率或RF等离子体源的反应室内的操作。可以使用任何合适的等离子体源或多个等离子体源。
[0044]在反应器中,晶片基座609支撑衬底611。基座通常包括卡盘(有时被称为夹具)以在沉积反应过程中将衬底保持在适当位置。卡盘可以是静电卡盘、机械卡盘或各种其他类型的可供使用的卡盘。包括用于提供传热流体的线613的热传输子系统控制衬底611的温度。晶片卡盘和传热流体系统能方便维持适当的晶片温度。
[0045]HFRF源615的高频射频用于使衬底611电偏置和引导带电反应物质到衬底上以用于沉积反应。例如,来自源615的电能经由电极或电容親合被親合到衬底611。注意,施加到衬底的偏置不必是RF偏置。也可以使用其它频率和直流偏置。
[0046]富含氢的工艺气体经由一个或多个入口617被引入。工艺气体的组成气体可以进行或不进行预先混合。在一些实施方式中,工艺气体通过包括孔的气体供应入口机构引入。在一些实施方式中,所述孔中的至少一些将工艺气体沿着以锐角与衬底的暴露表面相交的喷射轴定向。此外,气体或气体混合物可从主气体环621引入,该气体环621可以或可以不直接朝向基座引导气体。在一些实施方式中,气体可以从除了主气体环621外的一个或多个气体环(未示出)被引入。喷射器可以连接到主气体环621以引导至少一些气体或气体混合物进入室中并朝向底座引导。需要注意的是,在某些实施方式中,可以不使用用于朝向晶片引导工艺气体的喷射器、气体环或其它机制;也可以采用任何适当的工艺气体输送系统。由进入室的工艺气体所导致的前声波本身将导致气体迅速地在所有方向分散一包括朝向衬底。工艺气体经由出口622排出室603。真空栗(例如,涡轮分子栗)通常将工艺气体抽出并在反应器内保持合适的低压。反应器601可以使用控制器690来控制。控制器690可以包括用于执行本文公开的各种操作的机器可读指令。下面提供了有关控制器690的进一步描述。
[0047]在一些实施方式中,HDP CVD反应器(例如,在图6中所示的反应器601)是用于处理一个或多个晶片的工具的部分。在图7中提供了包括一个或多个反应器的工具的一个实施例。图7是适于执行根据所公开的实施方式的沉积工艺的系统的一个框图。系统700包括传送模块703,如从加利福尼亚州弗里蒙特的朗姆研究公司(Lam Research Corporat1n ofFremont,California)提供的SPEED?平台上使用的晶片传送系统(WTS)。传送模块703提供了清洁、加压的环境,以尽量减少正在处理的工件(如晶片)在各处理阶段间移动时的污染风险。一个或多个HDP CVD模块或处理室705安装在传送模块703上,如Lam SPEED?反应器,可从加利福尼亚州弗里蒙特的朗姆研究公司(Lam Research Corporat1n of Fremont,California)获得。一个或多个蚀刻室707也安装在传送模块703上。蚀刻室中的实例包括Lam的原子层去除(ALR)反应器或Kiyo?反应器。这些蚀刻室可被安装在同一个或不同的平台上作为一个或多个沉积反应器。
[0048]系统700还包括一个或多个(在这种情况下为两个)晶片源模块701,在处理之前和之后晶片被存储其中。传送模块703中的设备(通常为机械臂单元)在安装于传送模块703上的模块之间移动晶片。
[0049]晶片分别由机械臂在用于沉积和深蚀刻处理的HDPCVD反应器705和/或蚀刻室707之间传输。在一个实施方式中,单一的蚀刻反应器可以支持具有每小时约15-16晶片(wph)的高吞吐量的两个SPEED沉积模块705。在其他实施方式中,两个蚀刻反应器707可以支持一个或多个SPEED沉积模块705。
[0050]公开的实施方式也可以在没有等离子体蚀刻室的情况下实施。例如,单个室可构造成用于HDP CVD沉积和蚀刻两者。例如,Lam SPEED HDP-CVD反应器能够以与使用分离的反应器相似的吞吐量来进行沉积和蚀刻。考虑到在此提供的细节和参数,单个室可构造成例如等离子体反应器,其具有用于沉积(HDP CVD)和反应性等离子体蚀刻(例如,原位或下游的等离子体源)的设备,例如本文中所描述的各种等离子体源。
[0051]图7还描绘了用于控制工艺条件和处理工具700的硬件状态的系统控制器750的一个实施方式。该系统控制器750可以提供用于实现上述处理的程序指令。该程序指令可以控制各种处理参数,诸如DC电源电平、RF偏置功率电平、压强、温度等。该指令可以控制参数以根据本文描述的不同实施方式来执行沉积操作。
[0052]在一些实现方式中,控制器750是系统的一部分,该系统可以是上述实施例的一部分。这种系统可以包括半导体处理设备,该半导体处理设备包括一个或多个处理工具、一个或多个处理室、用于处理的一个或多个平台和/或具体的处理组件(晶片基座、气流系统等)。这些系统可以与用于控制它们在处理半导体晶片或衬底之前、期间和之后的操作的电子器件一体化。电子器件可以称为“控制器”,该控制器可以控制一个或多个系统的各种元件或子部件。根据处理要求和/或系统的类型,控制器750可以被编程以控制本文公开的任何工艺,包括控制工艺气体输送、温度设置(例如,加热和/或冷却)、压强设置、真空设置、功率设置、射频(RF)产生器设置、RF匹配电路设置、频率设置、流率设置、流体输送设置、位置及操作设置、晶片转移进出工具和其它转移工具和/或与具体系统连接或通过接口连接的装载锁。
[0053]广义而言,控制器750可以定义为接收指令、发布指令、控制操作、启用清洁操作、启用端点测量等等的具有各种集成电路、逻辑、存储器和/或软件的电子器件。集成电路可以包括存储程序指令的固件形式的芯片、数字信号处理器(DSP)、定义为专用集成电路(ASIC)的芯片和/或一个或多个微处理器或执行程序指令(例如,软件)的微控制器。程序指令可以是以各种单独设置的形式(或程序文件)传送到控制器的指令,该设置定义用于在半导体晶片或系统上或针对半导体晶片或系统执行特定过程的操作参数。在一些实施方式中,操作参数可以是由工艺工程师定义的用于在制备晶片的一或多个(种)层、材料、金属、氧化物、硅、二氧化硅、表面、电路和/或管芯期间完成一个或多个处理步骤的配方(recipe)的一部分。
[0054]在一些实施方式中,系统控制器750控制处理工具700的所有活动。系统控制器750可以包括一个或多个存储器设备756、一个或多个大容量存储设备754以及一个或多个处理器752。处理器752可以包括CPU或计算机、模拟和/或数字输入/输出连接、步进式电机控制器板等。系统控制器750执行存储在大容量存储装置754内、加载到存储器装置756并在处理器752上执行的系统控制软件758。替代地,控制逻辑可在控制器750中被硬编码。专用集成电路、可编程逻辑器件(例如,现场可编程门阵列,或FPGA)等可以用于这些目的。在下面的讨论中,无论何处使用“软件”或“编码”,可以适当地使用功能上具有可比性的硬编码逻辑。系统控制软件758可包括用于控制晶片进出处理室的传送、气体定时、气体混合、气体流量、室和/或站压强、室和/或反应器的温度、晶片温度、偏置功率、目标功率电平、RF功率电平、基座、卡盘和/或基座的位置、以及其它由处理工具700执行的特定处理的参数的指令。系统控制软件758可以以任何合适的方式来配置。例如,各种处理工具组件子程序或控制对象可以被写入以控制进行各种处理工具工艺需要的处理工具组件的操作。系统控制软件758可以任何合适的计算机可读编程语言来编码。
[0055]在一些实现方式中,控制器750可以是与系统集成、耦合或者说是通过网络连接系统或它们的组合的计算机的一部分或者与该计算机耦合。例如,控制器750可以在“云端”或者是fab主机系统的全部或一部分,从而可以允许远程访问晶片处理。计算机可以启用对系统的远程访问以监控制造操作的当前进程,检查过去的制造操作的历史,检查多个制造操作的趋势或性能标准,改变当前处理的参数,设置处理步骤以跟随当前的处理或者开始新的工艺。在一些实施例中,远程计算机(例如,服务器)可以通过网络给系统提供工艺配方,网络可以包括本地网络或互联网。远程计算机可以包括允许输入或编程参数和/或设置的用户界面,该参数和/或设置然后从远程计算机传送到系统。在一些实施例中,控制器750接收数据形式的指令,该指令指明在一个或多个操作期间将要执行的每个处理步骤的参数。应当理解,参数可以针对将要执行的工艺类型以及工具类型,控制器750被配置成连接或控制该类型工具。因此,如上所述,控制器750可以例如通过包括一个或多个分立的控制器而为分布式,这些分立的控制器通过网络连接在一起并且朝着共同的目标(例如,本文所述的工艺和控制)工作。用于这些目的的分布式控制器的实施例可以是与结合以控制室上的工艺的一个或多个远程集成电路(例如,在平台水平或作为远程计算机的一部分)通信的室上的一个或多个集成电路。
[0056]在一些实施方式中,系统控制软件758可包括用于控制上述的各种参数的输入/输出控制(1C)排序指令。存储在与系统控制器750关联的大容量存储设备754和/或存储器设备756上的其他计算机软件和/或程序可以在一些实施例中采用。程序或用于此目的的程序部分的例子包括晶片定位程序、工艺气体的控制程序、压强控制程序、加热器控制程序和等离子体控制程序。
[0057]晶片定位程序可以包括用于被用来装载晶片到基座718上的处理工具组件的程序编码。工艺气体控制程序可包括用于控制气体组成(例如,工艺气体、氦气或载气等等,如本文所述)和流率以及任选的用于在沉积之前使气体流入一个或多个处理室或站以稳定其中的压强的编码。压强控制程序可包括用于通过调节例如在处理室的排气系统中的节流阀、流入该处理室气体流等来控制处理室中压强的编码。
[0058]加热器控制程序可包括用于控制用于加热晶片或其它工件的流向加热单元的电流的编码。可替代地,加热器控制程序可控制传热气体(例如氦)到晶片的输送。等离子体控制程序可包括用于根据本文的实施方式设置应用到一个或多个处理室或站中的处理电极和偏置的射频功率电平的编码。压强控制程序可包括用于根据本文的实施方式保持反应室中的压强的编码。
[0059]在一些实施方式中,可存在与系统控制器750相关联的用户接口。用户接口可以包括显示屏、装置和/或工艺条件的图形软件显示、和用户输入设备,诸如定点设备、键盘、触摸屏、麦克风等。
[0060]在一些实施方式中,由系统控制器750调整的参数可以涉及处理条件。非限制性实例包括工艺气体的组成和流率、温度、压强、等离子体条件(例如RF偏置功率电平)、压强、温度等。这些参数可以以配方的形式提供给用户,其可以利用用户接口进行输入。
[0061]用于监控处理的信号可以由系统控制器750的模拟和/或数字输入连接从各种处理工具传感器来提供。用于控制处理的信号可以是在处理工具700的模拟和数字输出连接上的输出。可被监控的处理工具传感器的非限制性实例包括质量流量控制器、压力传感器(例如压力计)、热电偶等。适当编程的反馈和控制算法可以与来自这些传感器的数据一起使用来维持处理条件。
[0062]在非限制性的条件下,示例性的系统可以包括等离子体蚀刻室或模块、沉积室或模块、旋转清洗室或模块、金属电镀室或模块、清洁室或模块、倒角边缘蚀刻室或模块、物理气相沉积(PVD)室或模块、化学气相沉积(CVD)室或模块、原子层沉积(ALD)室或模块、原子层蚀刻(ALE)室或模块、离子注入室或模块、轨道室或模块、以及在半导体晶片的制备和/或制造中可以关联上或使用的任何其它的半导体处理系统。
[0063]如上所述,根据工具将要执行的一个或多个工艺步骤,控制器可以与一个或多个其它的工具电路或模块、其它工具组件、组合工具、其它工具界面、相邻的工具、邻接工具、位于整个工厂中的工具、主机、另一个控制器、或者在将晶片的容器往来于半导体制造工厂中的工具位置和/或装载口搬运的材料搬运中使用的工具通信。
工艺参数
[0064]如上所述,间隙填充是通过HDPCVD进行。本文所采用的HDP CVD区别于等离子体增强化学气相沉积技术(也被称为PECVDhHDP CVD反应器通常采用感应耦合等离子体,而PECVD反应器通常采用电容耦合等离子体。HDP CVD工艺条件和所得膜不同于PECVD工艺。例如,如本文所描述的各种HDP反应器在压强小于约100毫托、等离子体密度大于10171ns/m3(离子数/每立方米)(例如,10171ns/m3至10191ns/m3)的条件下操作。相比之下,PECVD工艺在高得多的压强、低得多的等离子体密度(例如,10141ns/m3至10161ns/m3)的条件下操作。
[0065]HDP反应器可以在用于线圈的400kHz等离子体频率和在用于其中晶片被放置的基座的13.56MHz频率点燃等离子体。相比之下,在电容耦合等离子体反应器中,13.56MHz的等离子体频率被用于在施加到喷头或基座,以及400千赫的等离子体频率被施加于喷头或基座时产生等离子体。在HDP反应器中的离子能量可以比在PECVD反应器中更大。其结果是,在HDP CVD反应器中所沉积的膜的膜组成和特性与那些在PECVD反应器中沉积的膜不同。对于基于碳的间隙填充,即使使用富含氢的工艺气体,PECVD中较低的等离子体密度通常不能生成有效地抑制尖端形成的氢自由基量。
[0066]等离子体源功率足够高以维持等离子体并且是足够低以使得H+离子的影响不会淹没氢自由基的影响。注意,RF功率将取决于衬底尺寸(例如200毫米、300毫米或450毫米直径的晶片)和所使用的特定工艺要求。对于300毫米晶片,一个范围实施例是介于约3000W和6000W之间,等离子体功率与衬底表面面积成比例。
[0067]衬底温度和室压强通常可以具有在HDP CVD处理期间的常用范围。温度值可以在约200 °C和1000 0C之间的范围,通常介于约300 °C和550 °C之间的范围,例如400 °C。压强通常保持在低于500毫托的值,并且可能明显较低,例如低于100毫托或10毫托。在一个实例中,压强为6晕托。
[0068]尽管这些方法可以在任意的期望用基于碳的材料填充间隙的衬底上实施,但它们特别适用于填充具有高深宽比和窄宽度中的一者或多者的间隙。宽高比的实例可以为3:1至30: 1、或3:1至10:1。沟槽宽度的实例范围可以为10纳米至100纳米,例如50纳米或更小、或25纳米或更小。
[0069]HFRF电源或其它源可用于偏置衬底。衬底通常在沉积操作期间被偏置以向下引导带电物质到间隙底部。如上所讨论的,认为,富含氢的工艺气体通过在间隙顶部的化学蚀刻改善间隙填充。在专用蚀刻处理期间(如块507)中,衬底可以或可以不被偏置。针对大约为300mm的系统,在HDP CVD期间的HF偏置功率实例介于O到9500W之间,具有与衬底表面区域成比例的偏置功率。
[0070]虽然为了清晰理解的目的,已经在一定程度上详细描述了上述实施方式,但显而易见,可以在所附权利要求的范围内实行某些变化和修改。应当注意的是,存在实施本发明的实施方式的工艺、系统和装置的许多替代方式。因此,本发明的实施方式应被视为说明性的,而不是限制性的,并且这些实施方式并不限于本文给出的细节。
【主权项】
1.一种方法,其包括: 引入工艺气体到容纳具有间隙的衬底的高密度等离子体化学气相沉积(HDP CVD)室,其中所述工艺气体包括烃类反应物并且具有至少4:1的H: C比;以及通过所述工艺气体的HDP CVD反应来用基于碳的膜填充所述间隙。2.根据权利要求1所述的方法,其中所述间隙在没有中间蚀刻操作的单个沉积操作中被填充。3.根据权利要求1所述的方法,其中所述基于碳的膜是无定形碳(a-C)膜。4.根据权利要求1所述的方法,其中所述基于碳的膜是无定形碳化物膜。5.根据权利要求1所述的方法,其中所述基于碳的膜是掺杂的或非掺杂的无定形碳化娃膜。6.根据权利要求5所述的方法,其中所述工艺气体包括具有至少4的H:Si比的含硅反应物。7.根据权利要求1所述的方法,其中所述烃类反应物具有至少3:1的H:C比。8.根据权利要求1所述的方法,其中所述烃类反应物具有至少4:1的H:C比。9.根据权利要求1所述的方法,其中所述工艺气体包括氢分子(Hs)。10.根据权利要求1所述的方法,其进一步包括生成包括氢自由基的等离子体。
【文档编号】H01L21/762GK106067440SQ201610251266
【公开日】2016年11月2日
【申请日】2016年4月21日 公开号201610251266.2, CN 106067440 A, CN 106067440A, CN 201610251266, CN-A-106067440, CN106067440 A, CN106067440A, CN201610251266, CN201610251266.2
【发明人】唐伟, 杰森·达恩金·帕克, 巴特·J·范施兰芬迪杰克, 王舒济, 卡伊翰·艾比迪·艾施提阿妮
【申请人】朗姆研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1