场效应晶体管的制作方法

文档序号:10727699阅读:331来源:国知局
场效应晶体管的制作方法
【专利摘要】得到一种场效应晶体管,该场效应晶体管能够有效地抑制由与高温RF动作时的本征载流子密度增大相伴的损耗增大所引起的RF特性变差。多个源极电极(6)及多个漏极电极(7)彼此交替地配置,与半导体衬底(1)的主面欧姆接合。多个栅极电极(8)分别配置在多个源极电极(6)和多个漏极电极(7)之间,与半导体衬底(1)的主面肖特基接合。多个漏极电极(7)分别具有彼此被分割开的第1及第2部分(7a、7b)。漏极电极(7)的第1及第2部分(7a、7b)的合计电极宽度比一根源极电极(6)的宽度窄。肖特基电极(13)配置在漏极电极(7)的第1部分(7a)和第2部分(7b)之间,与半导体衬底(1)的主面肖特基接合。
【专利说明】
场效应晶体管
技术领域
[0001]本发明涉及一种场效应晶体管。
【背景技术】
[0002]采用在Si衬底之上生长有GaN类外延层的衬底而形成GaN HEMT(High ElectronMobility Transistor)设备。对于该GaN HEMT设备,由于高饱和电子速度和高绝缘破坏耐压等优异的材料物理性质,与S1、GaAs类设备相比能够实现高效率、高功率密度及高电压动作。由此,为了实现发信机的小型及轻量化、省电化,GaN HEMT设备作为下一代有前景的通信用高频高输出电子设备而受到期待。例如,在作为代表性应用领域的移动电话基站放大器的市场,当前广泛使用S1-LDMOS设备,但随着通信频率的高频化、通信技术的发展,要求更高输出及高效率动作的设备,对GaN HEMT设备的期待上升。
[0003]在性能方面对GaNHEMT设备有所期待,但另一方面,为了在市场普及GaN HEMT设备,产品价格成为课题。虽然GaN HEMT设备已经在各种市场领域开始普及,但在移动电话基站放大器的市场,与已经在市场广泛普及的S1-LDMOS设备相比较,GaN HEMT设备的高价格被认为是扩大普及的障碍之一。
[0004]关于当前的通信用途的GaNHEMT设备,大多采用在SiC衬底之上生长有GaN类外延层的衬底,SiC衬底远比Si衬底价格高,且衬底直径小,因此产品时的价格必然会上升。
[0005]另一方面,与SiC衬底相比易于大口径化且廉价的Si衬底也被用作GaNHEMT设备用衬底材料。对于采用Si衬底的GaN HEMT设备,期待能够以接近S1-LDMOS设备的制造成本进行生产,期待能够克服上述产品价格的课题。
[0006]但是,对于衬底采用Si衬底的GaNHEMT设备,在设备的特性方面存在以下所述的问题。通常,在高频高输出电子设备中,为了在高频获得高的性能,作为衬底材料,优选以降低寄生电容为目的而采用比电阻高的衬底材料,因此在采用Si衬底作为衬底的情况下,对于Si晶体的生长方法,相比于成为主流的CZ(丘克拉斯基,czochralski)法,采用通过FZ (悬浮区,Floating Zone)法制作的大于或等于1000 Ω.cm的高电阻衬底的情况较多,该FZ法易于实现高电阻化。实际上,采用大于或等于1000 Ω.cm的高电阻Si衬底而制作的GaNHEMT设备至少在作为移动电话基站放大器而使用的目前的频带,能够获得不逊色于衬底采用SiC衬底而制作的GaN HEMT设备的电气特性。
[0007]在这里,半导体表现出本征载流子密度随着温度上升而变高的材料特性,Si是与SiC相比带隙狭窄的材料,因此Si的本征载流子密度比SiC高。并且,Si在室温时的比电阻越高,则本征载流子密度的温度依赖性越大。由于这样的高电阻Si衬底的材料特性,对于衬底采用高电阻Si衬底的GaN HEMT设备来说,RF动作时的温度越高,由Si衬底的比电阻降低所引起的损耗越大,增益降低越显著,因此存在输出及效率降低的问题。
[0008]专利文献I:日本特表2008-518462号公报
[0009]作为解决衬底采用Si衬底的GaN HEMT设备的高温RF动作时RF特性变差这一问题的方法,下述方法是有效的,即:扩大作为自发热源的栅极区域的间隔,即,所谓的扩大栅极间距间隔;以及缩短漏极电极宽度而降低在漏极电极和衬底之间产生的寄生电容。具体地说,通过扩大栅极间距间隔,由此,设备的热阻降低,因此能够抑制RF动作时的温度上升,能够抑制本征载流子密度上升。通过缩短漏极电极宽度,从而能够削减漏极电极面积,能够减少在与衬底之间产生的寄生电容。综上所述,如果能够同时采取这两者的对策,则能够有效地对采用Si衬底的GaN HEMT设备的高温RF动作时的RF特性变差进行抑制。
[0010]与此相对,提出了一种半导体装置,该半导体装置构成为,将漏极电极分割成大于或等于2个,分割后的漏极电极的合计宽度比源极电极的宽度细(例如参照专利文献I的图4)。由此,由于能够不依赖于漏极电极宽度地设计栅极间距间隔,因此能够抑制热阻的上升。并且,即使扩大栅极间距,也能够通过将漏极电极分割成大于或等于2个而削减漏极电极面积,能够避免寄生电容的增大,因此能够对采用Si衬底的GaN HEMT设备的高温RF动作时的RF特性变差进行抑制。
[0011]但是,GaN HEMT设备在AlGaN/GaN异质界面具有高浓度的2维电子气层(2DEG),被分割为大于或等于2个的漏极电极间的漏极区域的沟道层与衬底之间的寄生电容的影响变大。因而,仅通过单纯地缩小漏极电极面积,降低寄生电容的效果有限。其结果,采用Si衬底的GaN HEMT设备的高温RF动作时的RF特性变差的抑制效果也是有限的。

【发明内容】

[0012]本发明就是为了解决上述这样的课题而提出的,其目的在于得到一种场效应晶体管,该场效应晶体管能够有效地抑制由与高温RF动作时的本征载流子密度增大相伴的损耗增大所引起的RF特性变差。
[0013]本发明涉及的场效应晶体管的特征在于,具有:半导体衬底,其具有主面;多个源极电极及多个漏极电极,它们与所述半导体衬底的所述主面欧姆接合,所述多个源极电极及多个漏极电极彼此交替地配置;多个栅极电极,它们与所述半导体衬底的所述主面肖特基接合,所述多个栅极电极分别配置在所述多个源极电极和所述多个漏极电极之间;以及肖特基电极,其与所述半导体衬底的所述主面肖特基接合,所述多个漏极电极分别具有彼此被分割开的第I及第2部分,所述漏极电极的所述第I及第2部分的合计电极宽度比一根所述源极电极的宽度窄,所述肖特基电极配置在所述漏极电极的所述第I部分和所述第2部分之间。
[0014]发明的效果
[0015]在本发明中,肖特基电极配置在漏极电极的第I部分和第2部分之间,因此通过供给使肖特基电极正下方的2DEG沟道层完全地夹断(耗尽)的负电压,从而能够有效地降低在漏极区域和半导体衬底之间产生的寄生电容。因而,能够有效地抑制由与场效应晶体管的高温RF动作时的本征载流子密度增大相伴的损耗增大所引起的RF特性变差。
【附图说明】
[0016]图1是表示本发明的实施方式I涉及的场效应晶体管的俯视图。
[0017]图2是表示本发明的实施方式I涉及的场效应晶体管的剖视图。
[0018]图3是表不对比例涉及的场效应晶体管的俯视图。
[0019]图4是表示本发明的实施方式I涉及的漏极区域的变形例I的剖视图。
[0020]图5是表示本发明的实施方式I涉及的漏极区域的变形例2的剖视图。
[0021]图6是表示本发明的实施方式2涉及的场效应晶体管的俯视图。
[0022]图7是表示本发明的实施方式3涉及的场效应晶体管的俯视图。
[0023]标号的说明
[0024]I半导体衬底,2高电阻Si衬底,3GaN类缓冲层(GaN类外延层),4GaN层(GaN类外延层),5AlGaN层(GaN类外延层),6源极电极,7漏极电极,7a第I部分,7b第2部分,8栅极电极,13肖特基电极,16、16a、16b电极层,18共用焊盘,19a第I电阻,19b第2电阻
【具体实施方式】
[0025]参照附图,对本发明的实施方式涉及的场效应晶体管进行说明。对相同或对应的结构要素标注相同的标号,有时省略重复的说明。
[0026]实施方式1.
[0027]图1是表示本发明的实施方式I涉及的场效应晶体管的俯视图。
[0028]图2是表示本发明的实施方式I涉及的场效应晶体管的剖视图。半导体衬底I具有高电阻Si衬底2和在该高电阻Si衬底2之上依次生长的GaN类缓冲层3、GaN层4以及AlGaN层5。
[0029]多个源极电极6及多个漏极电极7与半导体衬底I的主面欧姆接合,上述多个源极电极6及多个漏极电极7彼此交替地配置。多个栅极电极8与半导体衬底I的主面肖特基接合,上述多个栅极电极8分别配置在多个源极电极6和多个漏极电极7之间。由此,呈梳子状地形成有多个晶体管。在多个源极电极6、多个漏极电极7、多个栅极电极8分别电连接有源极焊盘9、漏极焊盘10、栅极焊盘11。
[0030]多个漏极电极7分别在漏极区域12具有彼此被分割开的第I及第2部分7a、7b。在相邻的第I部分7a和第2部分7b之间不存在源极电极6、栅极电极8。虽然漏极电极7的宽度优选细至极限以使在漏极电极7和半导体衬底I之间产生的寄生电容最小化,但漏极电极7的宽度是根据受下述条件约束的设计事项而决定的,即,由根据每个产品而不同的所希望的输出电量而决定的漏极电极7的根数、长度、厚度、形成工艺等。其中,漏极电极7的第I及第2部分7a、7b的合计电极宽度比一根源极电极6的宽度窄。此外,如果漏极电极7的宽度的合计值在所希望的合计宽度的范围内,则漏极电极7的分割数也可以大于或等于3。
[0031]肖特基电极13与半导体衬底I的主面肖特基接合,该肖特基电极13配置在漏极区域12处的漏极电极7的第I部分7a和第2部分7b之间。肖特基电极13未与栅极电极8等电连接,而与用于能够从外部进行电压控制的焊盘14电连接。并且,源极电极6、漏极电极7、栅极电极8、肖特基电极13、半导体衬底I的表面由绝缘膜15绝缘保护。
[0032]如上所述,在本实施方式中将漏极电极7分割而使漏极电极7的宽度比源极电极6的宽度窄。由此,由于能够使漏极电极7的面积在设计约束事项的范围内进行最小化,因此能够降低在漏极电极7和半导体衬底I之间产生的寄生电容。另外,即便使漏极电极7的宽度变窄,但由于将漏极电极7进行了分割,因此跨越漏极电极7(漏极区域)的栅极间距不变窄。因而,能够灵活地设计用于得到所希望的热阻的栅极间距而不依赖于漏极电极7的宽度。
[0033]下面,与对比例进行比较而说明本实施方式的效果。图3是表示对比例涉及的场效应晶体管的俯视图。在对比例中不存在肖特基电极13。因此,被分割为大于或等于2个的漏极电极7间的漏极区域12的沟道层与衬底之间的寄生电容的影响变大。因而,仅通过单纯地缩小漏极电极面积,降低寄生电容的效果有限。其结果,采用Si衬底的GaN HEMT设备的高温RF动作时的RF特性变差的抑制效果也是有限的。
[0034]另一方面,由于在本实施方式中将肖特基电极13配置在漏极电极7的第I部分7a和第2部分7b之间,因此通过供给使肖特基电极13正下方的2DEG沟道层完全地夹断(耗尽)的负电压,从而能够有效地降低在漏极区域12和半导体衬底I之间产生的寄生电容。因而,能够有效地抑制由与场效应晶体管的高温RF动作时的本征载流子密度增大相伴的损耗增大所引起的RF特性变差。尤其,针对采用下述衬底的GaN HEMT设备能够得到更高的改善效果,该衬底是高温时的本征载流子浓度比SiC衬底高的Si衬底,并且构成为,在温度依赖性变大的高电阻Si衬底之上生长有GaN类外延层。
[0035]图4是表示本发明的实施方式I涉及的漏极区域的变形例I的剖视图。在漏极电极7之上设置的电极层16a、16b成为檐状,即,伸出至漏极区域12内侧(中心方向)的肖特基电极13的上方。图5是表示本发明的实施方式I涉及的漏极区域的变形例2的剖视图。在漏极电极7之上设置的电极层16成为不与半导体衬底I及肖特基电极13接触而是中空地与第I及第2部分7a、7b连接的空气桥构造。另外,也可以在漏极电极7的长边方向混合形成变形例1、2的结构。
[0036]根据该结构,能够提高容易成为支配性设计约束的漏极区域12处的容许电流密度。在取决于容许电流密度的设计约束大的情况下,能够使第I及第2部分7a、7b的电极宽度变得更小,能够使在漏极区域12和半导体衬底I之间产生的寄生电容变得更小。
[0037]实施方式2.
[0038]图6是表示本发明的实施方式2涉及的场效应晶体管的俯视图。肖特基电极13和多个栅极电极8经由导体17电连接。由此,虽然与实施方式I相比,在漏极区域12和半导体衬底I之间产生的寄生电容的降低效果变小,但却无需像实施方式I那样利用其他电源电压进行肖特基电极13的电压控制。由于在RF动作时施加的针对栅极电极8的栅极电压也施加于肖特基电极13,因此2DEG沟道层的电子浓度受到由耗尽层引起的调制,与未形成肖特基电极13的情况相比,能够降低寄生电容。
[0039]实施方式3.
[0040]图7是表示本发明的实施方式3涉及的场效应晶体管的俯视图。共用焊盘18与肖特基电极13及多个栅极电极8电连接。第I电阻19a连接在共用焊盘18和多个栅极电极8之间。第2电阻19b连接在肖特基电极13和共用焊盘18之间。
[0041]利用该电阻19a、19b的电阻值,能够相对于施加在共用焊盘18的电压,任意地对施加在栅极电极8的栅极电压和施加在肖特基电极13的电压进行控制。由此,虽然增加用于形成电阻19a、19b的工艺,但与实施方式2相比,能够降低在漏极区域12和半导体衬底I之间产生的寄生电容。
【主权项】
1.一种场效应晶体管,其特征在于,具有: 半导体衬底,其具有主面; 多个源极电极及多个漏极电极,它们与所述半导体衬底的所述主面欧姆接合,所述多个源极电极及多个漏极电极彼此交替地配置; 多个栅极电极,它们与所述半导体衬底的所述主面肖特基接合,所述多个栅极电极分别配置在所述多个源极电极和所述多个漏极电极之间;以及肖特基电极,其与所述半导体衬底的所述主面肖特基接合, 所述多个漏极电极分别具有彼此被分割开的第I及第2部分, 所述漏极电极的所述第I及第2部分的合计电极宽度比一根所述源极电极的宽度窄, 所述肖特基电极配置在所述漏极电极的所述第I部分和所述第2部分之间。2.根据权利要求1所述的场效应晶体管,其特征在于, 还具有焊盘,该焊盘与所述肖特基电极电连接, 所述肖特基电极未与所述多个栅极电极电连接。3.根据权利要求1所述的场效应晶体管,其特征在于, 所述肖特基电极与所述多个栅极电极电连接。4.根据权利要求3所述的场效应晶体管,其特征在于,还具有: 共用焊盘,其与所述多个栅极电极及所述肖特基电极电连接; 第I电阻,其连接在所述多个栅极电极和所述共用焊盘之间;以及 第2电阻,其连接在所述肖特基电极和所述共用焊盘之间。5.根据权利要求1至4中任一项所述的场效应晶体管,其特征在于, 还具有电极层,该电极层设置在所述漏极电极之上,成为伸出至所述肖特基电极的上方的檐状。6.根据权利要求1至4中任一项所述的场效应晶体管,其特征在于, 还具有电极层,该电极层设置在所述漏极电极之上,成为不与所述半导体衬底及所述肖特基电极接触而是中空地与所述第I及第2部分连接的空气桥构造。7.根据权利要求1至4中任一项所述的场效应晶体管,其特征在于, 所述半导体衬底具有Si衬底和在所述Si衬底之上生长的GaN类外延层。8.根据权利要求7所述的场效应晶体管,其特征在于, 所述GaN类外延层具有AlGaN/GaN HEMT构造。
【文档编号】H01L29/40GK106098757SQ201610281369
【公开日】2016年11月9日
【申请日】2016年4月29日 公开号201610281369.3, CN 106098757 A, CN 106098757A, CN 201610281369, CN-A-106098757, CN106098757 A, CN106098757A, CN201610281369, CN201610281369.3
【发明人】野上洋一, 堀口健一, 东坂范雄, 渡边伸介, 北野俊明
【申请人】三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1