一种耐高温高倍率放电的锂离子电池及其制备方法

文档序号:10728088阅读:490来源:国知局
一种耐高温高倍率放电的锂离子电池及其制备方法
【专利摘要】本发明公开了一种耐高温高倍率放电的锂离子电池及其制备方法,包括正极片、负极片、隔离膜、电解液;所述正极片组成为:钴酸锂、PVDF、导电剂;所述负极片组成为:石墨、导电剂、SBR、CMC;所述隔离膜为干法隔膜表面加涂形成厚度3?4微米的陶瓷层结构,所述电解液组由LIPF6、溶剂和添加剂组成。本发明的电芯在高温环境下电芯满电态存储后电芯不胀气、不起火、不爆炸,电池容量保持率高,电池容量恢复率和3C倍率放电容量恢复率高;电芯1C充电3C倍率100%DOD放电,多次循环后电池容量保持率高,适合车载设备处于高温环境中长期循环工作;安全性高、符合国家标准。
【专利说明】
一种耐高温高倍率放电的锂离子电池及其制备方法
技术领域
[0001]本发明涉及车载液体锂离子电池领域,具体涉及一种耐高温高倍率放电的锂离子电池及其制备方法。
【背景技术】
[0002]传统的液体锂离子电池分类有高温电芯和倍率电芯等等,但高温性能与倍率性能二者兼容性极差,主要体现在高温电芯电解液电导率较低极难兼容倍率性能。车载类小型设备受空间及环境影响要求电池需同时具备高温性能和倍率性能。
[0003]初期车载设备使用单一性能电池主要存在以下难题:炎热的夏季汽车露天暴晒,车内环境温度最高可达到80°C以上;行车记录仪等特殊车载设备部分启动电流可达5C以上,工作电流达到3C倍率。而常规的高温电芯倍率性能无法达到要求,如果长期循环工作极易使电芯内部受损失效。
[0004]行车记录仪等车载设备使用常规的倍率电芯长期处于高温的环境内,电芯短期内出现严重胀气现象,使电池出现严重失效。

【发明内容】

[0005]针对上述问题,本发明旨在提供一种兼备高温性能和倍率性能、减少在车载类小型设备高温环境下出现胀气等失效现象、且具备一定倍率的工作性能的一种耐高温高倍率放电的锂离子电池及其制备方法。
[0006]为实现该技术目的,本发明的方案是:一种耐高温高倍率放电的锂离子电池,包括正极片、负极片、隔离膜、电解液;
[0007]所述正极片组成的质量百分比为:97.3-98%钴酸锂、1.0-1.2%PVDF、1.0-1.5%导电剂;
[0008]所述负极片组成的质量百分比为:94.3-95.1 %石墨、1.5-1.8%导电剂、2.0-2.3%SBR^1.4-1.6%CMC;
[0009]所述隔离膜为干法隔膜表面加涂形成厚度3-4微米的陶瓷层结构;
[0010]所述电解液组成的质量百分比为:12-13%LiPF6、75-86%溶剂、2-5%添加剂。
[0011 ] 作为优选,所述正极片中钴酸锂的D50为8-14um;比表面积为0.2-0.5m2/g;振实密度大于等于2.5g/cm3 ;克容量大于等于145mAh/g ;
[0012]所述负极片中石墨的D50为12-22um;比表面积为1.0-1.6m2/g;振实密度大于等于l.0-l.3g/cm3 ;克容量大于等于 340mAh/g ;
[0013]所述隔离膜的孔隙率为40-50%;
[0014]所述电解液的电导率为7.0-9.0mS/cm;密度为1.15-1.3g/cm3;水分含量小于等于20PPM。
[0015]作为优选,正极极片的面密度为33-36mg/cm2;压实密度为3.7-3.95g/m3;负极极片的面密度为14.3-18.5mg/cm2;压实密度为1.4-1.6g/m3;
[0016]面密度设计公式:先确定正极的面密度,然后负极的面密度按公式计量:负极面密度=(正极面密度*钴酸锂克容量*正极钴酸锂含量)/(石墨克容量*负极石墨含量)*(1.10-1.13)0
[0017]作为优选,所述溶剂包括有EC、EMC、DEC,所述电解液中含有的溶剂的质量百分比为30-40 % EC、5-15 % EMC、40-50 % DEC;
[0018]所述添加剂包括有VC、PS、DTD,所述电解液中含有的添加剂的质量百分比为1-1.5%VC、2-3%PS、0.5%DTD。
[0019]—种耐高温高倍率放电的锂离子电池的制作工艺,具体步骤如下,
[0020]第一步,按照质量百分比加入97.3-98 %钴酸锂、I.0-1.2 %PVDF, I.0-1.5 %导电剂,通过搅拌机混料得到正极浆料;
[0021]第二步,按照质量百分比加入94.3-95.1%石墨、1.5-1.8%导电剂、2.0-2.3%SBR、1.4-1.6 % CMC,通过搅拌机混料得到负极浆料;
[0022]第三步,使用涂布机按设计的工艺标准涂布,要求低温涂布,正极涂布温度低于140 °C,负极涂布温度低于115 °C。
[0023]第四步,涂布后正、负极卷料分别进行真空烘烤,正极烘烤条件为100_115°C下6-10小时,真空度小于-0.085MPa,负极烘烤条件为80-100 °C下6-10小时,真空度小于-0.085MPao
[0024]第五步,配置电解液,按照质量百分比加入12-13%LiPF6、75-86%溶剂、2-5%添加剂;
[0025]第六步,按辊压-制片-卷绕-装配-烘烤-注液等工序制成化成前电池;
[0026]第七步,采用小电流加压化成,加压采用强力夹具;通过第一次恒流充电:电流
0.05±0.01(:,时间60-12011^11,充电电量5-10% ;第二次恒流充电:电流0.1 ±0.01C,时间190-300min,充电电量31.7-50%。化成环境温度确保大于25°C ;
[0027]第八步,将电芯卸下化成柜高温搁置24-48H真空封口成型,真空封口程序通过控制真空封口机电芯主体压板压力,通过测量计算控制电芯电解液保液量;
[0028]第九步,成型后的电池,采用分容柜进入分容测试;
[0029]第十步,分容合格电池,45± 5°C老化3-4天,筛选合格品电池。
[0030]作为优选,所述第四步中,正极烘烤条件为110°C下8小时,负极烘烤条件为90°C下8小时。
[0031]作为优选,所述第九步中的分容方法为0.5C恒流恒压流电,截止电池0.02C,3C恒流放电至3.0V。
[0032]本发明的有益效果,本发明采用孔隙率为40-50%的陶瓷结构的隔离膜,其可以确保电芯内电解液有足够的保液量、倍率性能及高安全性能;正极片采用钴酸锂、负极片采用人造石墨,可满足倍率性能;电解液组分满足高温性能。
[0033]电芯在高温环境下电芯满电态存储后电芯不胀气、不起火、不爆炸,电池容量保持率高,电池容量恢复率和3C倍率放电容量恢复率高;电芯IC充电3C倍率100%D0D放电,多次循环后电池容量保持率高,适合车载设备处于高温环境中长期循环工作;安全性高、符合国家标准。
【具体实施方式】
[0034]下面具体实施例对本发明做进一步详细说明。
[0035]本发明所述的具体实施例为一种耐高温高倍率放电的锂离子电池,包括正极片、负极片、隔离膜、电解液;
[0036]所述正极片组成的质量百分比为:97.3-98%钴酸锂、1.0-1.2%PVDF,1.0-1.5%导电剂;
[0037]所述负极片组成的质量百分比为:94.3-95.1 %石墨、1.5-1.8%导电剂、2.0-2.3%SBR^1.4-1.6%CMC;
[0038]所述隔离膜为干法隔膜表面加涂形成厚度3-4微米的陶瓷层结构;
[0039]所述电解液组成的质量百分比为:12-13 % LIPF6、75-86 %溶剂、2-5 %添加剂。
[0040]为了满足高倍率性能,所,所述正极片中钴酸锂的D50为8-14um;比表面积为0.2-0.5m2/g ;振实密度大于等于2.5g/cm3 ;克容量大于等于145mAh/g ;所述负极片中石墨的D50为12-22um;比表面积为1.0-1.6m2/g;振实密度大于等于1.0-1.3g/cm3;克容量大于等于340mAh/g;
[0041]为了保证倍率性能和安全性能,所述隔离膜的孔隙率为40-50%;采用40-50%孔隙率陶瓷结构的隔离膜可以确保电芯内是电解液有足够的保液量、倍率性能及高安全性會K。
[0042]为了满足高温性能,所述电解液的电导率为7.0-9.0mS/cm;密度为1.15-1.3g/cm3;水分含量小于等于20PPM,本性能的电解液适合在高温环境中使用。
[0043]正极极片的面密度为33-38mg/cm2;压实密度为3.7-3.95g/m3;负极极片的面密度为:14.3-18.5mg/cm2;压实密度为1.4-1.6g/m3。
[0044]面密度设计公式:先确定正极的面密度,然后负极的面密度按公式计量,负极面密度=(正极面密度*钴酸锂克容量*正极钴酸锂含量)/(石墨克容量*负极石墨含量)*(1.10_1.13)0
[0045]为使得电解液满足倍率性能和安全性能,所述溶剂包括有EC、EMC、DEC,所述电解液中含有的溶剂的质量百分比为30-40%EC、5-15%EMC、40-50%DEC;
[0046]所述添加剂包括有VC、PS、DTD,所述电解液中含有的添加剂的质量百分比为1-1.5%¥(:、2-3%?3、0.5%0了0。所有材料代码,都是行业标准,具体代指如下?¥0?:聚偏氟乙烯、CMC:羧甲基纤维素钠、SBR:丁苯橡胶、EC:碳酸乙烯酯、EMC:碳酸甲乙酯、DEC:碳酸二乙酯、VC:碳酸亚乙烯酯、PS:亚硫酸丙烯酯、DTD:硫酸亚乙酯、LiPF6:六氟磷酸锂。
[0047]—种耐高温高倍率放电的锂离子电池的制作工艺,具体步骤如下,
[0048]第一步,按照质量百分比加入97.3-98 %钴酸锂、I.0-1.2 %PVDF、I.0-1.5 %导电剂,通过搅拌机混料得到正极浆料;
[0049]第二步,按照质量百分比加入94.3-95.1%石墨、1.5-1.8%导电剂、2.0-2.3%SBR、1.4-1.6 % CMC,通过搅拌机混料得到负极浆料;
[0050]第三步,使用涂布机按设计的工艺标准涂布,要求低温涂布,正极涂布温度低于140 °C,负极涂布温度低于115 °C。
[0051]第四步,涂布后正、负极卷料分别进行真空烘烤,正极烘烤条件为100-115°C下6-10小时,真空度小于-0.085MPa,负极烘烤条件为80-100 °C下6-10小时,真空度小于-0.085MPao
[0052]第五步,配置电解液,第五步,配置电解液,按照质量百分比加入12-13 % LiPF6、75-86%溶剂、2-5%添加剂;
[0053]第六步,按辊压-制片-卷绕-装配-烘烤-注液等工序制成化成前电池;
[0054]第七步,采用小电流加压化成,加压采用强力夹具;通过第一次恒流充电:电流
0.05±0.01(:,时间60-12011^11,充电电量5-10% ;第二次恒流充电:电流0.1 ±0.01C,时间190-300min,充电电量31.7-50%。化成环境温度确保大于25°C ;
[0055]第八步,将电芯卸下化成柜高温搁置24-48H真空封口成型,真空封口程序通过控制真空封口机电芯主体压板压力,通过测量计算控制电芯电解液保液量;
[0056]第九步,成型后的电池,采用分容柜进入分容测试;
[0057]第十步,分容合格电池,45± 5 °C老化3-4天,筛选合格品电池。
[0058]为了获得最佳活化效果的正极和负极,所述第四步中,正极烘烤条件为110°C下8小时,负极烘烤条件为90°C下8小时。
[0059]为了更好的使用分容测试检测出合格电池,所述第九步中的分容方法为0.5C恒流恒压流电,截止电池0.02C,3C恒流放电至3.0V。
[0060]本发明采用陶瓷隔膜,其孔隙率为40-50%,陶瓷可以确保电芯内电解液有足够的保液量、倍率性能及高安全性能;正极片采用钴酸锂、负极片采用人造石墨,可满足倍率性能;电解液组分满足高温性能。
[0061]电芯在高温环境下电芯满电态存储后电芯不胀气、不起火、不爆炸,电池容量保持率高,电池容量恢复率和3C倍率放电容量恢复率高;电芯IC充电3C倍率100%D0D放电,多次循环后电池容量保持率高,适合车载设备处于高温环境中长期循环工作;安全性高、符合国家标准。
[0062]本发明设计的电芯高温测试,数据如下:
[0063]A.高温105°C电芯在80%的满电态存储4H后电芯不胀气、不起火、不爆炸;
[0064]B.高温85°C电芯满电态存储12H后电芯不胀气、不起火、不爆炸;电池容量保持率85 %以上;电池容量恢复率90 %以上;3C倍率放电容量恢复率92 %以上;
[0065]C.高温65°C电芯满电态存储7天后电芯不胀气、不起火、不爆炸;电池容量保持率85 %以上;电池容量恢复率90 %以上;3C倍率放电容量恢复率92 %以上。
[0066]本发明设计的电芯循环性能,数据如下:
[0067]60°C高温模拟IC充电3C倍率100%D0D放电,500次循环后容量保持率75%以上,适合车载设备处于高温环境中长期循环工作。
[0068]本发明设计的电芯的其它优良性能,数据如下:
[0069]能满足OV充电放5次以上,电池不胀气、不起火、不爆炸;OV充电测试方法,充电:恒流恒压4.2V,IC电流充电,截止电流0.02C;放电:IC恒流放电到0.2V;循环5次。
[0070]以上所述,仅为本发明的较佳实施例,并不用以限制本发明,凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同替换和改进,均应包含在本发明技术方案的保护范围之内。
【主权项】
1.一种耐高温高倍率放电的锂离子电池,其特征在于:包括正极片、负极片、隔离膜、电解液; 所述正极片组成的质量百分比为:97.3-98%钴酸锂、l.0-l.2%PVDF、1.0-1.5%导电剂; 所述负极片组成的质量百分比为:94.3-95.1%石墨、1.5-1.8%导电剂、2.0-2.3%SBR^l.4-1.6%CMC; 所述隔离膜为干法隔膜表面加涂形成厚度3-4微米的陶瓷层结构; 所述电解液组成的质量百分比为:12-13 %LiPF6、75-86%溶剂、2_5%添加剂。2.根据权利要求1所述的耐高温高倍率放电的锂离子电池,其特征在于:所述正极片中钴酸锂的D50为8-14um;比表面积为0.2-0.5m2/g;振实密度大于等于2.5g/cm3;克容量大于等于 145mAh/g; 所述负极片中石墨的050为12-22蘭;比表面积为1.0-1.6!112/^;振实密度大于等于1.0-1.3g/cm3 ;克容量大于等于340mAh/g ; 所述隔离膜的孔隙率为40-50 % ; 所述电解液的电导率为7.0-9.0mS/cm;密度为1.15-1.3g/cm3;水分含量小于等于20PPM。3.根据权利要求1所述的耐高温高倍率放电的锂离子电池,其特征在于:正极极片的面密度为33-36mg/cm2;压实密度为3.7-3.95g/m3;负极极片的面密度为14.3-18.5mg/cm2;压实密度为1.4-1.6g/m3; 面密度设计公式:先确定正极的面密度,然后负极的面密度按公式计量:负极面密度=(正极面密度*钴酸锂克容量*正极钴酸锂含量)/(石墨克容量*负极石墨含量)*( 1.10-1.13)04.根据权利要求1所述的耐高温高倍率放电的锂离子电池,其特征在于:所述溶剂包括有EC、EMC、DEC,所述电解液中含有的溶剂的质量百分比为30-40%EC、5-15%EMC、40-50%DEC; 所述添加剂包括有VC、PS、DTD,所述电解液中含有的添加剂的质量百分比为1-1.5 %VC、2-3%PS、0.5%DTD。5.一种耐高温高倍率放电的锂离子电池的制作工艺,其特征在于:具体步骤如下, 第一步,按照质量百分比加入97.3-98%钴酸锂、1.0-1.2%PVDF、1.0-1.5%导电剂,通过搅拌机混料得到正极浆料; 第二步,按照质量百分比加入94.3-95.1 %石墨、1.5-1.8%导电剂、2.0-2.3% SBR、1.4-1.6 % CMC,通过搅拌机混料得到负极浆料; 第三步,使用涂布机按设计的工艺标准涂布,要求低温涂布,正极涂布温度低于140°C,负极涂布温度低于115°C。 第四步,涂布后正、负极卷料分别进行真空烘烤,正极烘烤条件为100-115°C下6-10小时,真空度小于-0.085MPa,负极烘烤条件为80-100°C下6-10小时,真空度小于-0.085MPa。第五步,配置电解液,按照质量百分比加入12-13%LiPF6、75-86%溶剂、2-5%添加剂;第六步,按辊压-制片-卷绕-装配-烘烤-注液等工序制成化成前电池; 第七步,采用小电流加压化成,加压采用强力夹具;通过第一次恒流充电:电流0.05±0.01(:,时间60-120111丨11,充电电量5-10%;第二次恒流充电:电流0.1±0.01(:,时间190-300min,充电电量31.7-50%。化成环境温度确保大于25°C ; 第八步,将电芯卸下化成柜高温搁置24-48H真空封口成型,真空封口程序通过控制真空封口机电芯主体压板压力,通过测量计算控制电芯电解液保液量; 第九步,成型后的电池,采用分容柜进入分容测试; 第十步,分容合格电池,45 ± 5 °C老化3-4天,筛选合格品电池。6.根据权利要求5所述的耐高温高倍率放电的锂离子电池的制作工艺,其特征在于:所述第四步中,正极烘烤条件为IlOtC下8小时,负极烘烤条件为90°C下8小时。7.根据权利要求5所述的耐高温高倍率放电的锂离子电池的制作工艺,其特征在于:所述第九步中的分容方法为0.5C恒流恒压流电,截止电池0.02C,3C恒流放电至3.0V。
【文档编号】H01M2/16GK106099175SQ201610761383
【公开日】2016年11月9日
【申请日】2016年8月30日
【发明人】卢灿生, 李骏, 罗亮, 孙玉平
【申请人】深圳市美尼电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1