旋转式电力发电机的制作方法

文档序号:7409934阅读:295来源:国知局
专利名称:旋转式电力发电机的制作方法
技术领域
本发明涉及一种诸如电力发电机的旋转式电力发电机。特别地,本发明涉及大功率旋转式电力发电机气体直接冷却形式的冷却结构。
电力发电机,特别是透平电力发电机具有多个轴向布置的转子绕组或沿轴向形成的线槽,其中布置有绕组。这些线槽具有一定的间隔地排列在转子主体磁极部件两侧的转子主体圆周面上,而且构成相同磁极的多个绕组同轴布置在磁极周围。这些绕组由多匝绕组导线沿径向层叠构成,并且匝间具有绝缘层。当电源从外部加在这些绕组上时,在各个磁极上就产生了电磁场。绕组借助转子内的槽楔被坚固地固定在线槽内,使其不至于由于转子旋转产生的高离心加速度而沿绕组外径方向飞离。另外,绕组借助设置的圆筒形护环固定,使其与绕组周边部分接触。
供电到绕组使绕组导线产生焦耳热。绕组的绝缘层采用具备高耐热性的材料,例如云母。但是,绝缘的允许温度极限是130℃(B型绝缘材料),或155℃(F型绝缘材料)。另外,由于温升引起的绕组导线热膨胀使绕组和转子产生显著变形,并且引起旋转振动。因此,如JP-A-9-285052说明书中所述,采用了一种被称为径向流动冷却系统的冷却结构,以便用冷却流体冷却绕组,使其温度不升高。在这种结构中,在线槽的底部设置了一个作为从绕组的一端的通风流道的副槽,还在径向设置了一些流道,同时保持了匝间绝缘。在槽楔处设置了一个孔,以便此流道与转子外径侧连通。需要的时候,在导线的纵向设置的具有冷却流道的轴向流动冷却流道可以和径向流道组合在一起。采用这种方式,冷却流体可以从副槽提供到在转子绕组处形成的冷却流道中,从而绕组的温度可以借助强制冷却转子绕组被限制在预定温度或更低。空气和氢气通常作为冷却流体使用。原则上,除此之外的其它流体也可以使用,但是考虑到安全和方便因素,这两种气体使用得更频繁。
但是,在上述现有技术中还存在一个问题,就是当冷却流体从每个径向流道的副槽扩散时产生的扩散通风阻力在每个副槽的轴向位置是不均匀的,这样就产生了空气分布的不均匀和转子轴向位置的不均匀性。因此,近年来由于电力发电机紧凑性引起的热负荷增加,整个转子绕组的温度就增加,而且温度极限裕度降低。为此,需要在这个部分提供一种在这部分预防温升的方法,同时还要保持槽端绕组的强度。然而,传统上没有考虑到解决这个问题的方法,而且仅有一种通过依据电力发电机体积,减少每电力发电机体积的输出来获得大容量,即增加电力发电机的尺寸并降低热负荷,以保证输出。
如果将冷却流体由空气变换为氢气,即使采用传统结构也可以满意地降低转子绕组的温度。但是,整个电力发电机的结构必须整体密封,这样就需要密封结构上的特殊技术。另外,采用空气冷却,还需要有控制氢气纯度的外围装置。这样就存在一个缺点,即电力发电机设备的总体成本增加。还有一个问题是氢气是极易爆炸的气体,因此在包括透平机的易燃环境中必须极度小心。
如上所述,尽管上述现有技术能够解决电力发电机的大容量问题,但是存在一个难题,即不能降低每电力输出的单位价格。
本发明的一个目的是提供一种旋转式电力发电机。由于采用不增加制造成本而改善这种旋转式电力发电机的冷却特性的空气冷却机械结构,这种发电机具有低成本和高可靠性。
为了实现上述目的,根据本发明,提供的旋转式发电机的结构包括转子;在转子磁极部件两侧圆周方向间隔地排列在转子圆周面上的轴向线槽;在线槽底部的副槽开口;相对于磁极同轴布置、在线槽外侧扩展、并且在其上有交替层叠的导线绝缘材料的转子绕组;在其中将转子绕组固定到转子线槽的槽楔;一个在转子两端线槽外部扩展的旋转绕组旋转轴周边侧的护环;以及插入槽楔间或护环间的绝缘块,其中转子绕组具有一些从副槽通到绝缘块和槽楔的径向通风流道,而且在径向流道的内表面有一个凸部或肋。
本发明提供另一结构,其中,径向流道的流道面积随预定的间距变化,最大面积与最小面积的比值是2或更小。
本发明还提供另一种结构,其中,在构成上述径向流道孔的内表面设置有凸部。
本发明又提供一种结构,其中,相对于冷却流体的流动方向设置有带凸部的纵向流道。
本发明进一步提供一种结构,其中,相对于导线纵向流道的冷却流体的逆流方向具备带V形尖端的凸部。


图1是说明透平电力发电机结构的示意图。
图2是说明透平电力发电机转子绕组端部结构的示意图。
图3是说明转子绕组槽横截面的透视图。
图4是说明转子绕组导线和绝缘片结构的透视图。
图5是依据本发明一个实施例说明转子绕组部分横截面的图。
图6是依据本发明一个实施例说明通风阻力和散热特性趋势的图。
图7是依据本发明一个实施例说明径向流道凸部高度和绕组温度趋势的图。
图8是使用本发明采用的径向冷却系统的转子剖面结构图。
图9是说明本发明应用于以及本发明没有应用于图8所示转子中的空气分布趋势图。
图10是本发明应用于以及本发明没有应用于图8所示转子中的温度分布趋势图。
图11是说明依据图4所示的本发明的制造方法的图,其中图11A表示冲压穿孔状态,图11B表示孔周边塑性变形状态,以及图11C表示凸部形成状态。
图12是依据本发明的另一个实施例说明转子绕组的部分横截面图。
图13是依据本发明的另一个实施例说明转子绕组的部分横截面图。
图14是依据本发明的另一个实施例说明转子绕组的部分横截面图。
图15是包括使用图14的本发明的轴向流动通风冷却系统的转子剖面结构图。
图16是说明图15所示转子的一个槽横截面图。
图17是说明制造图14所示的绕组导线凸部的方法示例图。
图18是说明图14所示的本发明的另一个实施例的图。
图19是说明制造图18所示的绕组导线凸部的方法示例图。
在说明本发明的实施例以前,说明透平电力发电机的简要结构。图1是使用本发明的空气冷却电力发电机例子的示意结构图。但是,在这里所示的基本结构不依赖于冷却流体类型。
在图1中,转子1由定子2内的轴承3可旋转地支撑。在转子1内,构成相同磁极的多个转子绕组4同轴地布置在磁极周围,并且被固定。施加在转子绕组4上的离心力相对于轴向部件在转子圆周表面上间隔形成的绕组槽处支持,并且由转子端部周边部分在护环5处稳固地支持。
在图中,为了说明方便,尽管仅示出了提供电流到转子的汇流环6的一侧,但是还有相似的一侧设置在透平侧。线槽和转子端的绕组形状结构将在以后叙述。风扇7布置在护环5和一个轴承之间,以便于由空气冷却器8冷却的空气在电力发电机内部循环。布置有一个风道,使得风扇7提供的空气可以提供到定子2和转子1之间的空隙,称之为气隙9或定子绕组端。定子2由定子机座11支撑,而定子机座(未示出)牢固地固定在基底上。
图2是说明转子端绕组形状的透视图。在图中,为说明方便,未示出护环。另外,在图中提供了两个磁极。在许多情况下,尽管一台透平电力发电机采用两个或四个磁极,但是根据使用和输出情况磁极数不限于此。
从圆周面外侧看,护环5压住从转子1的槽到转子端处凸出的转子绕组4。从转子1的转子绕组4的圆周面处看,孔12是槽楔19的穿通孔,槽楔19支撑转子绕组4抵抗离心力,孔12也是通过副槽和以后叙述的转子圆周面径向流道的排气孔。箭头101是一个轴向部分,在此处可以设置这种径向流道。箭头102是暴露在绕组槽外部的转子绕组4的端部。加在两者之间的箭头103是一个绕组槽端。绕组槽端是将护环5固定到转子1的部分,结构上还是一个在槽楔19处不能设置排气孔的部分。
图3是绕组槽剖面结构的透视图,图中示出了两个槽。副槽15设置在容纳转子绕组4的线槽14的底部。这个副槽15起着转子1的轴向通风流道的作用,用于从图1所示的风扇7供气。此副槽的宽度设置得比线槽14的宽度窄,以防止绕组导线16滑入副槽。转子绕组4由绕组导线16径向层叠而成,导线16具有多个在其上借助多次冲制的通风孔17。将在与绕组导线同样位置冲制了孔的薄安装片(未示出)加在这些绕组匝间。
图4是说明绕组导线16和绝缘片34的部分透视图。
作用在每个由绕组导线16和绝缘片34构成的转子绕组4上的离心力借助绝缘块18由槽楔19支持。转子绕组4由绝缘块18、槽绝缘体20、和由具有良好绝缘电阻特性的材料制造的垫片21支撑,并且与转子1电气绝缘。其中沿轴向导向副槽的冷却流体供应到包括绕组导线16的通风孔、绝缘片34的孔、绝缘块18和槽楔19的孔的径向流道17中,以便冷却转子绕组4。
图5示出依据本发明径向流道的一个实施例。
在这个说明性的实施例中,在每根绕组导线16的内表面上设置有一个肋形的凸部22。凸部22在通风流道内的壁面中使气流产生扭曲。壁面附近的气流在肋形凸部22处被释放,由此释放的气流粘附在肋后侧的壁面上。这样,在壁面附近的气流扭曲强度增加,通风阻力和散热增加。通风阻力和散热是凸部高度“E=(WC-WR)/2”相对于凸部间距“P”的比值“E/P”的函数。此处,凸部的孔宽度相对于通风孔WC的孔宽度被定义为WR。
图6是说明通风阻力和散热相对于E/P的变化趋势示意图。
通风阻力23和散热24随着E/P的增加而增加。如果E/P过度增加,通风阻力23快速增加,而热阻没有增加这样快。这是因为肋处的气流释放点和通风道壁面的气流粘附点之间的距离大于凸部间距P,释放的气流几乎粘附不到壁面上。
图7是示出使用层叠导线时E/P和绕组温度Tcoil之间的关系。
Tcoil可以用下列公式表示,式中绕组的热比率定义为WTcoil=W/(p·Q·Cp)+W/(Aα)式中p代表冷却流体密度;Q代表冷却流体的流速;α代表通风流道内表面处的传热系数。第一项(W/(p·Q·Cp))是一个代表冷却流体温升的项;第二项(W/(Aα))是一个代表由于在通风流道内表面传热引起的冷却流体温升的项。在图7中,前者用实线25表示,后者以实线26表示。E/P增加时,冷却流体的流速随着通风阻力的增加而降低,而且冷却流体的温度升高。另一方面,由于散热引起的温升随着E/P的增加而降低。如果E/P过度增加,实质上它变得与E/P值没有关系。绕组温度Tcoil等于这些值的总和。由此,如实线27代示,Tcoil以预先确定的E/P设置到相对最小。因此,最好确定E/P,使Tcoil值变得相对最小。
图8是表示采用本发明的旋转式电力发电机转子的轴向横截面图。
在图中,左端代表转子中心。冷却空气26经过槽15从一个进口部件轴向供给,并且扩散到多个径向流道17中。在图9和图10中,示出在水平轴上从中心到端部的位置以及在纵向轴每个径向流道17的空气分布Q和导线温度分布T。在从副槽15到径向流道17扩散的过程中,出现扩散通风阻力,这个阻力是副槽15的流速与每个径向流道17的流速之间比率的函数。其数量随副槽15与每个径向流道17的面积比变化。通常,中心部分数值小,而端部数值大。因此,径向流道17的通风阻力与该径向流道的轴向位置恒定无关的地方,就出现了中心部分温度较低,而端部温度较高的趋势,如图9中的实线28所示。
由此,如图10中的实线30所示,中心部分的温度较低,而端部温度较高,这样就引起了绕组温度分布不均匀。为防止这种不均匀现象,可取的方法是改变E/P,由此抵消由于扩散引起的通风阻力。特别是使中心部分的E/P比端部的E/P大一些。通过这样做,如图9中的实线29所示,随着通风阻力的增大,中心部分径向流道的流速降低。另一方面,在端部的流速增大。E/P增加时,散热增加到一定程度。因此,即使中心部分的流速降低,温度也不升高。这样,如图10中的实线31所示,从中心部分到端部的温度就能够均匀化。
图11给出图4所示本发明绕组导线的制造方法。图4所示的肋结构可以通过机械加工一个径向流道17的孔来设置。但是,存在一个问题,即这样的加工使制造成本过高。为解决这个问题,提供一种方法,其中可以采用图4所示的本发明,其与传统加工方法比较使制造成本变化。即,如图11A所示,用小块30冲出通风孔。然后,如图11B所示,用带有比一次冲出的孔大的凸部31的块32压制通风孔的边缘。用这种方式,使导线孔周围的通风孔在通风孔减小的方向塑性变形。在这样的通风孔内部塑性变形的凸部构成图4(图11C)所示的肋。凸部的形状不一定总是矩形的。如果E/P设置一个预定值就足够了。在通风流道内的凸部不一定要在导线本身设置。
图12示出每个构成一个凸部的导线之间绝缘体的另一个实施例。
在示意性实施例中,在导线之间起着绝缘体作用的绝缘片34的孔宽度WR制造得比每个导线的通风流道的孔宽度要小一些。采用这样的结构,可以获得类似图4所示的有利效果。另外,还有一种有利的效果,即与其中在导线部分冲一个比在导线之间的绝缘体处的导线的孔要小一些的孔的方法设置凸部相同的效果。还有一种有利的效果,即可以不增加加工步骤制造绝缘体。
图13给出了本发明的另一个实施例。在图12中,导线之间的绝缘体的孔径制造得比导线的孔径要小一些。可是,在说明性的实施例中,临近导线孔径交替改变。用这种方式,实际上可以获得与图4等同的有利效果。当然,类似的效果可以通过改变临近孔形状的办法获得。
图14示出本发明的另一个实施例。此图是示出用于旋转式电力发电机转子中一根导线的流道截面图,包括如图15和图16所示的导线轴向流动冷却流道35。即在图3所示的结构中,副槽设置在槽的底部,借助这个副槽部分在轴向形成流道。还有,在槽部分层叠导线部分处设置径向流道。可是,在说明性实施例中,在导线的轴向设置轴向流动冷却流道35,径向流道17在导线中间设置。波形凸部36设置在流道内表面。图17所示的凸部36可用凸块压入通风流道内表面形成。孔可以这样压制,这样的孔的边缘在相反的方向隆起,其相对气流起着凸部的作用。这样的凸部不一定总是垂直于气流,也可以倾斜。
图18给出相对气流设置V形槽和凸部36的例子。这样的槽和凸部可以用字组37的尖角切削通风流道内表面方便的形成。
图19是切削剖面图,示出纵向凸部倾斜于气流的情形,借此方式可产生所谓的相对于气流的纵向涡流。这样,在通风阻力增加不显著的条件下,可以获得显著的换热效果。
依据本发明,提供一种透平电力发电机,在不增加任何制造成本而由于转子和定子发热有温升的情况下,可以以低成本给予透平电力发电机提供高可靠性和大功率。
权利要求
1.一种旋转式电力发电机,包括转子;在转子磁极部件两侧圆周方向间隔排列在转子圆周面上的轴向线槽;在线槽底部的副槽开口;相对于磁极同轴布置、凸出在线槽外部、并有在导线上交替层叠导线绝缘材料的转子绕组;转子绕组固定于转子线槽内的槽楔;旋转绕组的旋转轴外围侧上的护环,护环延伸出转子两端线槽的外部;以及插在槽楔或护环之间的转子绕组绝缘块,转子绕组具有从副槽通到绝缘块和槽楔的多个径向通风流道,其中相对于径向流道中冷却流体的流动方向在径向流道的内表面处设置凸部或肋。
2.一种旋转式电力发电机,包括转子;在转子磁极部件两侧圆周方向间隔排列在转子圆周上的轴向线槽;在线槽底部的副槽开口;相对于磁极同轴布置、凸出在线槽外部、并有在导线上交替层叠绝缘材料的转子绕组;转子绕组固定于转子线槽内的槽楔;旋转绕组的旋转轴外围侧上的护环,护环延伸出转子两端线槽的外部;插在槽楔或护环之间的转子绕组绝缘块,转子绕组具有从副槽通到绝缘块和槽楔的多个径向通风流道,其中径向流道的流道面积随着预定的间距而变化,而且径向流道的最大面积和最小面积的比值是2或更小。
3.如权利要求1所述的旋转式电力发电机,其中在构成的径向流道的孔内表面上设置有凸部。
4.如权利要求1所述的旋转式电力发电机,其中导线绝缘材料的孔宽度比导线的孔宽度小。
5.如权利要求2所述的旋转式电力发电机,其中临近导线孔宽度交替改变。
6.如权利要求1所述的旋转式电力发电机,其中离凸部或肋的径向流道内表面的凸部高度在转子中心较高,在转子端部较低。
7.如权利要求1所述的旋转式电力发电机,其中凸部或肋仅在转子中心的径向流道组处设置。
8.如权利要求1所述的旋转式电力发电机,其中凸部或肋仅在径向流道外径侧匝组处设置。
9.如权利要求3所述的旋转式电力发电机,其中径向流道冲制而成,然后,加压使冲制的孔边缘塑性变形。
10.一种旋转式电力发电机的转子,包括转子;在转子磁极部件两侧圆周方向间隔排列在转子圆周上的轴向线槽;在线槽底部的副槽开口;相对于磁极同轴布置、凸出在线槽外部、并有在导线上交替层叠绝缘材料的转子绕组;转子绕组固定于转子线槽内的槽楔;旋转绕组的旋转轴外围侧上的护环,护环延伸出转子两端线槽的外部;以及插在槽楔或护环之间的转子绕组绝缘块,转子绕组具有通风流道,通风流道内多个纵向流道和径向流道从转子内径侧与绝缘块和槽楔连通,而且纵向和径向流道相互组合而成。其中,相对于冷却流体的流动方向设置每个都具有凸部的纵向流道。
11.如权利要求10所述的旋转式电力发电机,其中相对于冷却流体的逆流方向设置具有V形尖端切削凸部的纵向流道。
全文摘要
提供一种透平电力发电机,具有转子线槽和副槽;具有导线和在其上交替层叠绝缘材料的转子绕组;槽楔;以及将副槽与槽楔的通孔连通的径向通风流道。在该透平电力发电机中,在径向通风流道的内表面设置有凸部,而且在旋转轴向位置凸部的高度是变化的。据此,可以以低成本提供具有高冷却性能和高可靠性的气体冷却型旋转式透平电力发电机。
文档编号H02K15/04GK1289167SQ0012641
公开日2001年3月28日 申请日期2000年8月30日 优先权日1999年9月17日
发明者森英明, 木枝茂和, 海保真行, 塩原亮一, 服部憲一 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1