输送单相或多相流体且不改变流体特性的装置的制作方法

文档序号:7283190阅读:191来源:国知局
专利名称:输送单相或多相流体且不改变流体特性的装置的制作方法
技术领域
本发明涉及一种根据权利要求1所述的现有技术部分的输送单相或多相流体并且不改变流体特性的装置。
非常灵敏的流体系统是血液。这种脊椎动物的不透明体液在封闭的血管系统内循环,其中心脏有节奏的收缩将血液压迫到有机组织的不同区域。在这种情况下,血液运送呼吸作用的气体,其中呼吸气体为氧气或二氧化碳,以及营养物,新陈代谢物或身体自身的物质。在这种情况下,包括心脏的血液循环系统同外界环境是封闭的,因此当血液经心脏泵送并通过身体时,其在健康的有机组织内没有变化。
众所周知,当血液同身体外部的材料接触或通过外部能量影响,其倾向于血球溶解和血栓症的形成。血栓症的形成对于有机组织是致命的,因为它们会在远的分支血管系统内导致阻塞。血球溶解说明了这样的一种情况,即红血球是溶解的,破坏的,并远超过生理程度。血球溶解的原因可以是机械的或新陈代谢的。血球溶解的增加将会引起多种器官损坏并导致人的死亡。
另一方面,众所周知,原则上可能是在特定的构造条件下支持心脏的泵送量或甚至是用人造心脏代替天然心脏,但是移植的心脏支持泵或人造心脏的持续运行可能具有局限性,因为这些人造产品与血液的相互作用仍然会引起血液的不良变化。
在已知的现有技术中,血液泵的不同发展方向是非常显著的。心脏支持泵和人造心脏可以从所需压差和容积流量出发,并根据位移原理设计成所谓的吸水泵或根据涡轮原理设计成径向或轴向流动装置。这里所述的三种名称的设计是并行发展的。因为这种型式流动装置具有大容量密度,因此其显现出比活塞装置小的尺寸。在该泵组内,根据涡轮原理其功能是,轴向泵变量通常比径向变量小。对于不同的给定压差和给定的容积流量,涡轮装置通常可以设计成例如具有明显不同旋转速度的轴向或径向泵。
从该领域现有技术情形来看,轴向血液泵通常包括外部圆筒管,其中运送元件旋转,其制成安装在外部的电机定子的转子,因此其轴向运输血液。运送元件的支承是一个问题。纯机械构成存在的缺点是,因为其会伤害血液并且具有相对高的摩擦值。同样,到目前为止记载的磁支承型构成也不形成满意的解决方案。
在川仁(Kawahito)等人的“Baylor/NASA轴向流动心室辅助装置的相1 EX Vivo的研究(Phase 1 Ex Vivo Studies of the Baylor/NASA Axialflow Ventricular Assist Device)”中,见“心脏置换人造心脏5”第245-252页,司普英格.维拉格,东京,1996(Springer Verlag Tokyo 1996),出版者,阿库兹索和考雅伽尼(T.Akutso和H.Koyagani),公开了一种根据患病心脏支持领域的轴向血液泵,其能够移植到病人的胸部。该轴向血液泵具有一个带叶片的叶轮,该泵被支承在血液运送管内并通过电机驱动。
为此,将叶轮制成电机的转子并通过固定在叶片上的磁铁与固定在壳体上的电机定子耦合。转子的轴向和径向支承通过止推轴承进行,其中转子点挨点地支承于置放在流内的支承元件上。在美国专利USA4,957,504中也公开了这样一种装置。
已知的血液泵存在这样的缺点,即运送的血液经受相当程度的创伤和损害。这种情况下通常会存在产生血栓症的危险。其根本的原因上在于形成了支承的尾流区域。
另一个缺点无疑是由于磨损造成的机械支承的寿命有限。
美国专利4779614中公开了一种可移植的轴向血液泵,其包括外部圆筒形管子和在该管子内旋转用于血液运送的转子中心体。转子被磁力地支撑并同时带有驱动的转子磁铁和叶轮叶片。磁力支承的转子与固定在外部管子长度方向上的定子叶片形成了窄的间隙。泵的各个端部上的两个电机定子结合装置将稳定转子的位置。轴向定位通过另一对磁铁固定,其也将吸收转子的轴向力。尽管设置有用于流体流的相对宽的环形间隙,并且磁性支承是可移植血液泵转子紧凑设计的主要发展目标,目的在于解决密封和支撑问题,但是在有关泵的功能和结构设计方面,该血液泵还存在很大的缺点。转子中心体和定子上的定子叶片之间特别狭长的间隙可以增加间隙流的速度梯度,从而可能引起损害血液的危险。转子稳定所需的两个电机装置将造成设计上的麻烦。另外,转子在轴向方向上的形状不合适并由此存在其他危险。
美国专利5385581也公开了一种具有磁支承的轴向血液泵。安装在转子和定子区域内的支承磁铁具有相反的极性。
当支承出现故障时会导致泵的损坏。另外,其缺点在于没有设置所谓的柱式导向格子,例如全部压力由叶轮产生,并且在流中保留有剩余的旋转能量。
本发明的目的根据权利要求1的特征实现。
本发明的优选实施例在从属权利要求中给出。
根据本发明所述的技术方案的特征在于,安装在管状中空体内部的输送元件可以旋转并由磁支承支撑,且用作电机转子的永磁铁与输送元件成一整体。磁支承的使用有可能消除通常安装在输送流体流内的支承元件,并且将消除由于负路中流的这种影响,其将导致输送流体的尾流区域和涡流。
另外,磁支承不会出现磨损,因此可以确保高的寿命,其对于用作人心脏支持或置换用的血液泵来说非常重要,并能进一步降低成本。
在不使用机械支承元件的情况下,本发明的这个实施例提供一种简单的结构设计。除了电机转子的永磁铁外,磁性支撑所必需的永磁支承元件直接安装在输送元件上。所述的磁支承能很好地吸收轴向和径向力。
在该优选实施例中,轴向稳定提供了输送元件轴向位置的稳定。轴向稳定提供了输送元件轴向位置的积极控制,其中安装在输送元件端面上的环形绕组产生轴向磁通,其覆盖永磁支承元件的轴向磁通并用于轴向位置的控制。根据本发明,这样的稳定装置并不因轴向流体泵或血液泵而公知。
磁支承的永磁支承元件并入转子中心体,而电机转子的磁铁元件并入输送元件。本发明的输送元件使输送流体具有特别好的流动特性。所需的不可避免的转子间隙以这样的方式形成在输送元件的外侧和管状中空体的内侧之间,即电机损失和流动损失因间隙而最小。这里要说明的是,所引起的电机损失越大,电机转子离电机定子的越远。从电机来看,具有小的转子间隙可以看作是有利的。另一方面,小的转子间隙将会导致流动的摩擦损失大,由此对流动而言是不利的。对于血液泵来说合适的技术方案是例如转子间隙的宽度为0.5-2.5mm。
在本发明的另一个实施例中,可旋转输送元件的特征在于不可旋转地与转子中心体相连的叶片,电机转子磁铁元件的结合,转子中心体和/或叶片内磁支承永磁支承元件的结合。由此该实施例中流动损失发生的可能性最小。该实施例中,磁支承的永磁支承元件优选的是安装在转子中心体内。对于流动方向上和与流动方向相对方向上的输送元件的刚性轴向支承而言,永磁支承元件优选的是安装在转子中心体的两端,它们分别与轴向隔开的流体导向单元的永磁支承元件相互作用。这种情况下,电机转子的磁铁元件置放在安装于端部的两个磁支承元件之间。
本发明另一个优选实施例的特征在于用于确定瞬时血液容积流量和泵产生的瞬时压力差的传感器并入轴向血液泵的中心体和/或管状中空体的壁体内。两个测量值都提供给输送方向的控制器用于目标值一实际值的比较,并由此在最佳的生理脉动输送意义上打开用于输送过程控制的可能,其中生理上最佳的脉动输送通过转子与时间有关的转数变化同自然心脏的动作相适应,或者通过泵用于脉动输送,为了较低的能量消耗将该泵最优化,同时通过与时间有关的转数变化实现。
在本发明另一个优选的改进中,在转子中心体的端面上设置有装置,其径向向外传送流体,所述流体位于流体导向单元和输送元件之间的中心体间隙内,这些装置为近似放射状的叶片,凹槽,凹陷或凸起的构造。
本发明另一个优选的实施例在于在至少一个流体导向单元内设置有一个轴向延伸孔,输送流体流过该孔,而且该孔使位于流体导向单元和输送元件之间的中心体间隙内的流体被径向向外输送。
上述两个实施例都影响径向的压力分布并且产生平衡流用以避免流体导向单元的端面和输送元件之间的中心体间隙内的尾流区域。
在本发明的另一个实施例中,输送元件尤其是转子中心体具有两个轴向间隔开的叶片。由此形成所谓前后直排的格子。
因此,由每个叶片排产生的压力增高减小。另外,输送单元转子的这个特别的实施例还限制了烦人的翘起运动。
本发明另一个实施例的特征在于转子的支撑由磁性轴向支承和机械径向支承的结合完成。一个改进的特征在于中心体在端面上具有面对着转子的轴端,它们与在端面上插入转子并伸入轴端内的平轴瓦相互作用并接纳高刚性的转子径向支承,或在于存在一个连续的轴,该轴插入中心体的端面内并通过具有高刚性平轴瓦径向支撑转子。在本发明的这个实施例中,转子的轴向支撑是通过转子中心体内和固定元件中心体内相斥作用的永磁铁实现的。
本发明另一实施例的特征在于转子中心体两侧都具有轴端,所述轴端在平轴瓦内旋转,轴瓦布置在两个中心体的端面内并以此方式保证高刚性的径向支撑。在本发明的这个实施例中,转子的轴向支撑是通过转子中心体内和固定元件中心体内相斥作用的永磁铁实现的。


图1为轴向血液泵的剖视图;图2为具有磁支承,轴向稳定和定位传感机构的轴向输送装置的纵向剖视图;图2a为沿图2中线A-A剖开的轴向输送装置的剖视图;图2b为具有磁性安装的轴向输送装置的纵向剖视图;
图2c为沿图2b中线A-A剖开的轴向输送装置的剖视图;图2d为具有锥形输送元件的轴向输送装置的纵向剖视图;图3a为用于轴向输送装置的磁性安装;图3b为图3a中磁性安装的横截面图;图4为具有双叶片的输送元件;图5为具有定位传感器和永磁支承元件的流体导向单元;图5a为流体导向单元沿图5中线B-B剖开的截面图;图6为具有与径向轴承相结合的轴向同极(排斥)磁支承的轴向输送装置视图;图6a为具有径向轴承,稳定器和反向充电的支承磁性电荷(吸引)的轴向输送装置;图7a为转子中心体或中心体端面的主视示意图;图7b为另一个转子中心体或中心体端面的主视示意图;图7c为具有偏心凸起的转子中心体或中心体的端面主视示意图;图8为形成在输送元件与固定元件中心体之间的中心体间隙的剖面示意图;图8a为形成在输送元件与固定元件中心体之间的中心体间隙的剖面示意图;及图9为具有轴向孔的中心体的截面剖视图。
图1所示为本发明血液泵的实施例,其具有泵壳体3和稳定器壳体2。带有电机绕组33的电机定子31绕着管状中空体1安装在该中空体的外面,其中在轴向方向上输送流体。电机定子31驱动输送元件5,输送元件5包括电机转子32和转子中心体52并被支撑在管状中空体1的内部。
转子中心体52具有转子叶片53。在流动方向上,转子中心体的前面和后面具有流体导向叶片72和72’的流体导向单元7和7’固定在管状中空体1的内壁上。在流体导向单元7和7’与转子中心体52之间形成了所谓的中心体间隙9。与转子中心体52相结合的电机转子32可以通过电机定子31旋转。
血液泵运行期间,流出的血液通过弯头6被带到输送元件5并通过转子叶片53旋转,其中转子中心体52用于产生有利的流动动态条件。流体导向单元7’利用其叶片72’提供抵抗着转子叶片53的技术上有利的流动,叶片72’连接在中空体1的上游。压力传感器60使得能够在内流的流体中进行压力测量。输送元件5由电机转子32和电机定子31的磁性耦合以公知的方式驱动。由于采用了磁性支承,因此在作为输送介质的血液内血栓症的形成降低到最小,因为在流内没有安装支承元件,所以这些支承元件可以引起尾流区域。仅在很小的程度上会出现涡流和与其相连的流动损失。转子中心体52与中空体1内壁之间的转子间隙8具有这样的宽度,即其保持流动损失较小,且同时限制电机损耗,电机损耗随着电机转子32与电机定子31之间的距离增加而增加。间隙8的宽度在0.5-2.5mm之间特别有利。在通过转子中心体52的转子叶片使流体加速并且建立其与其相关压力后,流体被导入流体导向单元7内,在该单元内经历轴向上的偏移并且完成压力增高。由于流体导向单元7的流体导向叶片72的这种设计,因此能够保证柔和地完成流体在轴向上的偏移并且基本上没有涡流。
血液经弯头6’离开血液泵并流入大动脉套管62,大动脉套管62通过弯头上的可拆连接件63固定。特殊屏蔽的电缆11a通过电缆套筒11与血液泵相连,电缆11a包括用于电机定子31的供电和信号线,轴向稳定器12和传感机构60,61和43。
下面通过图2和图2a对磁性支承的功能进行描述。
图2和图2a分别为本发明另一具有磁性支撑的转子中心体52的实施例的纵向截面图和截面图。在转子中心体52内,电机转子32制成一体,并具有安装在其端部的永磁支承元件42,它们被支撑在装配件4内。在流体导向单元7和7’内,永磁支承元件41直接与永磁支承元件42相对放置。这种情况下,永磁支承元件41和42具有相反的极性。永磁支承元件41和42之间产生的轴向吸引力确保了将输送元件5同轴固定在管状的中空体1内并且校正径向的偏差。同样安装在流体导向单元7和7’内的定位传感器43确定中心体间隙9并通过轴向稳定器12测量和控制该间隙。轴向稳定器12安装在稳定器壳体2内。当供给电流时,制成绕组形式的轴向稳定器12产生磁场,所述磁场经稳定器壳体2和流动导向元件10以这样的方式传递,即输送元件5占据流体导向单元7和7’之间的一个稳定的轴向位置。在流体导向单元7和7’的端部以及管状的中空体1的外壁上固定有用于流动特征的压力传感器60和流量传感器61。包括电机转子32和永磁支承元件42以及转子叶片53的输送元件5通过电机定子31旋转。当轴向稳定经定位传感器43和轴向稳定器12完成时,旋转期间的径向变化通过相反极性的永磁支承元件变平。永磁支承元件42的主要质量在输送元件轴的区域的集中使得能够以脉动运行的方式驱动泵,例如转子转速的快速变化。
永磁支承元件41和42交替制成具有轴向磁化的永磁环而不是实心的圆柱体。本领域的技术人员已知的任何实施例都可以用于永磁铁支撑元件41和42的确切设计。
为了使输送元件5和转子中心体轴向定位的稳定,在作为实际的实施例中分别设置了轴向稳定器12,其与定位传感器43相互作用并分别通过输送元件5端面上的流体导向单元7和7’动作,同时用作电控电路,在该例中没有给出该电控电路。轴向稳定器12引起输送元件5轴向定位的积极控制,其中根据同时完成的控制和引起磁通,通过电流使稳定器的绕组动作,上述磁通覆盖在永磁铁元件的轴向磁通上并且用作轴向定位的控制。定位传感器43确定从输送元件5的理想轴向位置的变化并且将该信息传递给控制电路。
图2b和图2c分别为本发明装置另一个实施例的纵向截面图和截面图。从流动的方向看,在输送元件5的前面和后面设置有装配件75,该装配件75包括中心体73,该中心体73与管状中空体1内壁上的支撑件74相固定。这里支撑件74例如绕中心体73以90度的间隔布置。一般来讲,采用一个支撑件74就足够了。装配件75本质上用于容纳永磁支承元件41。在该例中,相对的永磁支承元件41和42也具有相反的极性。为了轴向的稳定,分别使用了轴向稳定器12,定位传感器43以及没有标出的控制电子设备。
在图2d所示的另一个实施例中,输送元件5和流体导向单元7都制成锥形。输送元件5的锥形转子80在流动方向上扩展并且结合进锥形导向单元81内同时使锥形扩展。永磁支承元件41和42具有相反的极性。轴向稳定也是通过定位传感器43与轴向稳定器12相结合实现的。
图3a和图3b分别为具有支撑件74的装配件75的实施例的纵向截面详细视图和截面详细视图。
图4所示为具有转子中心体52的输送元件5,绕着转子中心体设置有两个转子叶片53和53’。两个或多个转子叶片装置将能增加输送元件5的叶片的效果。
图5和图5a分别为流体导向单元7或7’的纵向截面图,其中永磁支承元件41被定位传感器43包围着。
图6是本发明装置的另一个实施例。在该实施例中,磁支承与机械径向支承结合。永磁支承元件41和42制成同极的。机械支承包括轴44,该轴刚性地安装在流体导向单元7和7’内,而轴44的另一端可转动地支撑在支承元件的轴瓦45上。由于相对永磁支承元件41和42的同极性,在该例中轴向稳定有利地废弃。而径向稳定由轴44完成。
在图6a中,其中机械径向轴承也与磁铁轴承相结合,永磁支承元件41和42充电为相反的极性,这与图6所示相反。这使得必须在稳定器壳体2内安装稳定器12,并必须设置定位传感器43和控制电子装置。
影响径向压力分别并提供平衡流动用于避免在转子中心体52的区域内例如在流体导向单元7和7’与输送元件5之间的中心体间隙9内产生尾流区域的措施如图7a,7b,7c,图8和图8a所示。在图7a中,从中心径向向外延伸的肋条723布置在流体导向单元7和7’的端面722上。
在图7b中,肋条724制成弯曲的。除了这样的肋条凸起和/或凹入突起,也可以设置任何形式的径向叶片,小刃片,肋条,凹槽和偏心凸起725或者仅是粗糙的表面。在该实施例中有决定性的一点仅在于具有输送元件5旋转期间能够通过它从中心体间隙9径向输送流体的装置(对比图9)。当然,这些装置也可以设置在转子中心体52的端面上。
图8所示在轴向稳定被破坏的情况下能另外有利地改善磨损的阻力。
在图9中,中心体73具有轴向孔726,输送的流体流过该孔并且该孔使得存留在中心体间隙9内的流体附加地径向被输送。
需要强调的是本发明磁支承并不限于圆筒形式的磁铁。永磁支承元件41和42的其他几何设计也是可以的。
本发明并不限于上述实施例。本发明的基本点在于轴向泵或血液泵的输送元件5是通过管状的中空体1内的磁支承支撑的。
标号列表1 管状中空体2 稳定器壳体3 泵壳体4 安装座5 输送元件6 弯头6’ 弯头7 流体导向单元7’ 流体导向单元8 转子间隙9 中心体间隙10流动导向元件11电缆套筒11a 电缆12轴向稳定器31电机定子32电机转子41永磁支承元件42永磁支承元件43定位传感器44轴45轴瓦5152转子中心体53转子叶片60压力传感器
61 流量传感器62 大动脉套管63 连接元件72 流体定子叶片72’流体定子叶片73 中心体74 支撑件75 安装座76 中心体盖722 端面723 肋条724 肋条725 凸起726 孔80 锥形转子81 锥形导向单元
权利要求
1.一种用于柔和地输送单相或多相流体的装置,该装置包括本质上轴向导引流体的管状中空体(1),其中输送元件(5)被轴向支撑定位,该输送元件通过电机定子(31)能够旋转,所述电机定子安装在中空体(1)的外侧,其特征在于可旋转的输送元件(5)被支撑在两个安装元件(7,7’,75)之间,所述安装元件分别固定在中空体(1)内,并且通过中心体间隙(9)隔开而不相接触,其中安装元件(7,7’,75)以及输送元件具有支承元件(41,42和/或44,45)的配合作用。
2.如权利要求1所述的装置,其特征在于用于输送元件(5)的定位记录和定位校正的传感器(43)和稳定器(12)都设置在安装元件(7,7’,75)内,并设置在中空体(1)的壁的上面或里面。
3.如权利要求1或2所述的装置,其特征在于用于流动特性的压力传感器(60)和流动传感器(61)都设置在安装元件(7,7’,75)内并设置在中空体(1)的壁的上面或里面。
4.如权利要求1至3中任一项所述的装置,其特征在于配合作用的支承元件(41,42,44,45)具有永磁支承元件(41,42),它们分别彼此相对地设置在安装元件(7,7’,75)和输送元件(5)内。
5.如权利要求1至4中任一项所述的装置,其特征在于配合作用的支承元件(41,42,44,45)具有流动导向元件(10),它们设置在安装元件(7,7’,75)内。
6.如权利要求1至5中任一项所述的装置,其特征在于输送元件(5)可旋转地支撑在两个轴(44)上。
7.如权利要求1至5中任一项所述的装置,其特征在于输送元件(5)可旋转地支撑在连续轴(44)上。
8.如权利要求1至7中任一项所述的装置,其特征在于轴(44)与输送元件(5)或与安装元件(7,7’,75)刚性连接。
9.如权利要求1至8中任一项所述的装置,其特征在于轴(44)径向可旋转地支撑在轴瓦(45)内。
10.如权利要求1至9中任一项所述的装置,其特征在于相对的永磁支承元件(41,42)被制成同极的。
11.如权利要求1至9中任一项所述的装置,其特征在于相对的永磁支承元件(41,42)被制成相反极性的。
12.如权利要求1至11中任一项所述的装置,其特征在于稳定器(12)的设置是为了输送元件(5)的轴向稳定,同时永磁支承元件(41,42)被制成相反极性的。
13.如权利要求1至12中任一项所述的装置,其特征在于安装元件(7,7’,75)制成具有流体叶片(72)的流体导向单元(7,7’)。
14.如权利要求1至13中任一项所述的装置,其特征在于在安装元件(7,7’,75)面对输送元件(5)的端面(722,723)上和/或在输送元件(5)的端面上,设置有肋条(723,724),叶片,凹槽,凸出和/或内凹的凸起或偏心布置的突起(725)。
15.如权利要求1至14中任一项所述的装置,其特征在于在至少一个安装元件(7,7’,75)内设置有轴向延伸孔(726)。
16.如权利要求1至15中任一项所述的装置,其特征在于输送元件(5)的转子中心体(52)具有两个转子叶片(53),所述叶片轴向间隔开布置。
17.如权利要求1至16中任一项所述的装置,其特征在于转子中心体(53)和中心体(73)制成圆筒形,并且中心体(73)背离输送元件(5)的端部由中心体盖(76)封闭。
18.如权利要求1至17中任一项所述的装置,其特征在于输送元件(5)和安装件(75)以及设计为流体导向单元(7,7’)时都制成非圆筒形并且在流动方向上扩大或减小。
全文摘要
本发明涉及一种用于柔和地输送单相或多相流体的装置。本发明的目的在于提供一种用于柔和地输送单相或多相流体的装置,其具有简单的结构并且不改变或不显著地改变输送流体的特性,特别是使输送流体的尾流区域和涡流最小。本发明用于柔和地输送单相或多相流体的装置包括运送流体的管状中空体(1),其中形成并支撑在管状中空体(1)内部的电机的转子(32)轴向定位在可旋转输送元件(5)内并至少具有一个流体导向单元(7,7’),其设置在输送元件(5)的前面和/或后面,其特征在于可旋转驱动的输送元件(5)通过磁性支承被非接触地支撑。
文档编号H02K5/128GK1348624SQ00806551
公开日2002年5月8日 申请日期2000年4月19日 优先权日1999年4月20日
发明者彼得·尼塞尔, 约翰内斯·米勒, 汉斯-埃哈德·彼得斯 申请人:柏林心脏公开股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1