备用电池的充电电路的制作方法

文档序号:7436860阅读:236来源:国知局
专利名称:备用电池的充电电路的制作方法
技术领域
本发明通常涉及可再充电的备用电池的充电电路,具体涉及一种能够快速充电并且避免频带中噪声产生的备用电池的充电电路,其中频带中的噪声对使用充电电路的装置,例如移动电话会产生负面影响。
背景技术
作为一种锂离子电池的充电方法,当笼统划分的话,使用恒流/恒压充电方法和脉冲充电方法。在恒流/恒压充电方法中,可以通过对锂离子电池增加充电电流以及使施加到锂离子电池的充电恒压略高于所述电池的满电压来缩短充电时间。但是,当锂离子电池被过量充电时,有可能降低电池的性能。另一方面,由于在对锂离子电池充电期间采用了无功周期,所以,脉冲充电方法对电池有很小的损害,。
作为上述脉冲充电方法,有如下三种方法。
如日本未决专利申请号6-113474所描述的第一种方法是,当无功周期中的电压达到预定电压时完成充电。
第二方法是,为启动充电和中止充电制造条件,并且在该条件下重复充电的开始和终止。当充电中止周期持续时间等于或大于一个预定时间时,或当充电周期与充电中止周期的比值超过一个预定值时,结束充电。例如,在充电期间,当电池的电压达到第一电压时,中止充电;而当电压降到第二电压时,重新开始充电。
如日本公开专利申请号7-336908所描述的第三种方法是,以高电平电压和低电平电压交替地重复充电,并且当低电平电压的充电电流等于或小于一个预定电流值时,结束充电。
然而,在上述的第一种方法中,有一个问题是充电时间变得比恒流/恒压方法的充电时间长。另外,在上述的第二种方法中,与恒流/恒压方法比较,其充电时间被缩短到某种程度。然而,由于充电期间和充电中止期间的每一个在充电开始和刚刚在充电结束之前之间激烈地变化,所以充电期间和充电中止期间的切换频率在一个较宽的范围内变化。因此,存在一个在一个宽频带上产生噪声的问题。
另外,在上述的第三种方法中,由于需要用于检测低电平电压的充电电流的电流检测装置,因此,要在充电电路中串联插入电流检测元件。从而,存在电能损失的问题。而且,必须使电流检测电阻值足够大,才能检测什么时候所述充电电流为零。因此,存在的另一个问题是,电能的损失变大,同时需要更复杂的电路。
而且,在诸如移动电话的移动无线通信装置中,通常将备用电池用作电源。特别是,锂离子电池的每个单位面积和每个单位质量都具有很高的能量密度。因此,有可能使包括锂离子电池的装置又小又轻。当对锂离子电池充电时,利用了维持电池电压恒定的恒压充电方法以及在恒流充电之后执行恒压充电的恒流/恒压充电方法。在充电电路中,不论使用什么方法,都是通过检测恒压充电期间充电电流等于或小于预定满充电电流来结束充电。
下面,将描述一种备用电池的传统充电电路。图4示出了备用电池的传统充电电路。在图4中,充电电路包括AC适配器110;适配器检测电路112,用于检测AC适配器110是否已经被连接;电池电压检测电路116,用于检测将被充电的备用电池114的电压;恒压电路118,用于执行备用电池113的恒压充电;充电电流检测电路122,用于检测流入备用电池114的充电电流;电阻R1,用于使通过的充电电流产生电压降;二极管D1,用于阻止电流从备用电池114流入AC适配器110;以及充电控制电路124,用于执行恒压电路118的驱动控制。AC适配器110连接到端130。恒压电路118包括产生基准电压BE1的恒压产生电路140、控制晶体管M1、以及运算放大器A1。此外,充电电流检测电路122包括产生基准电压BE2的恒压产生电路142以及运算放大器A2。此外,适配器检测电路112包括产生基准电压BE3的恒压产生电路144和运算放大器A3。电阻R1连接于AC适配器110与控制晶体管M1之间。二极管D1连接于控制晶体管M1与备用电池114之间。
下面,将描述该充电电路的操作。当AC适配器110经由端130连接到充电电路时,并且当AC适配器110的电压等于或大于一个预定值时,适配器检测电路112将一个预定信号Sg1输出给充电控制电路124。另外,电池电压检测电路116备用电池114的电池电压,并且输出一个电池电压信号Sg2。当从适配器检测电路112输入信号Sg1时,充电控制电路124开始工作,并且将一个预定充电控制信号Sg5输出给恒压电路118。当输入充电控制信号Sg5时,恒压电路118开始备用电池114的恒压充电。充电时,二极管D1阻止电流从备用电池114途经控制晶体管M1和电阻R1流回AC适配器110。充电电流流经电阻R1产生电压降,并且所产生的电压被施加到充电电流检测电路122。当充电电流检测电路122根据输入电压检测到充电电流小于一个预定值时,充电电流检测电路122将预定充电结束信号Sg6传送到充电控制电路124。当充电结束信号Sg6被输入到充电控制电路124时,充电控制电路124输出充电控制信号Sg5,并且停止恒压电路118的工作。
如上所述,为了检测充电电流,传统的充电电路使用电阻R1。然而,在充电开始时,充电电流比较高,并且产生一个明显的电压降。因此,电阻R1的发热变得很高。此外,由于发热引起的能量损失也很大。为了减少这种发热和能量的浪费,可以设法使电阻R1的电阻值很小。然而,通过执行恒压充电,检测到的充电结束时的电流很小,并且由于电阻R1两端的电压降很低,所以,用于检测所产生电压的运算放大器A1的输入偏置电压不能被忽略。换句话说,存在这样一个问题,即检测充电电流的精度变低。而且,还存在这样一个问题,即由于具有小配置电压的运算放大器比较贵,所以当使用它们时制造成本增加。
而且,在备用电池处于过放电状态情况下,当在充电开始处对备用电池提供大电流时,会出现一个问题。因此,对于这种充电电路,不可能对处于过放电状态下的备用电池充电。

发明内容
本发明的一般目的是提供一种用于备用电池的经过改进的、有用的并且能够解决上述问题的充电电路。
本发明的更具体的目的是提供一种用于备用电池的简单充电电路,它能够缩短充电时间,同时能够避免产生频带中的噪声,所述噪声会对使用该充电电路的装置产生负面影响。
本发明的另一方面是提供一种充电电路,能够精确地检测备用电池的满充电状态,同时发热少和损耗小。
本发明的另一个和更具体的目的是提供一种能够减小制造成本的充电电路。
本发明的再一目的是提供一种也能够对处于过放电状态的备用电池进行充电的充电电路。
为了达到上述目的,根据本发明的一方面,提供一种备用电池的充电电路,包括恒压电路部分,用于响应一个输入控制信号,选择和输出多个预定恒压中的一个恒压,并且通过向其提供所选择的恒压来给备用电池充电;检测电路部分,用于检测备用电池的电池电压;以及控制电路部分,用于响应来自所述检测电路部分的所检测的电池电压,控制由所述恒压电路部分施加的恒压的选择,当备用电池的电池电压等于或小于第一恒压时,所述控制电路部分通过向其提供预定第一恒压来使所述恒压电路部分对备用电池充电,并且当备用电池的电池电压超过第一恒压时,通过交替地向其提供预定第二恒压和预定第三恒压来对备用电池充电,在恒定周期中所述第三恒压低于第二恒压。
根据本发明的上述方面,由于在脉冲充电之前执行恒压充电,所以能够以大电流向备用电池充电。另外,即使在脉冲充电开始之后,也可以通过在恒定周期(切换周期)从/到高电平恒压切换到/从低电平恒压来执行充电。因此,由于充电电流持续,所以可以缩短充电时间。同时,也能够将切换周期设定为一个不对使用充电电路的装置产生负面影响的频率。
此外,根据本发明的另一方面,当备用电池的电池电压超过预定充电结束电压时,控制电路部分检测备用电池充电的结束,并且执行一个预定的充电结束操作,同时使恒压电路部分向备用电池提供第三常压。
根据本发明的上述方面,可以有效地避免过充电。
另外,根据本发明的另一方面,第二恒压可以等于第一恒压。
根据本发明的上述方面,可以简化电路并对备用电池充电,而不损坏备用电池。
另外,根据本发明的另一方面,第二恒压可以大于第一恒压。
根据本发明的上述方面,可以通过使脉冲充电期间的高电平电压稍微大于满充电电压来缩短充电时间,而不损坏备用电池。
另外,根据本发明的另一方面,充电电路可以进一步包括负载电路部分,用于根据从恒压电路部分输出的第三恒压,将一个负载与备用电池并联。
根据本发明的上述方面,能够稳定在脉冲充电期间以第三恒压充电的备用电池的电池电压。因此,可以减少充电结束的检测错误。另外,可以增加脉冲充电周期的灵活性。而且,可以设置该周期为一个对使用充电电路的装置不产生负面影响的频率。
根据本发明的另一方面,恒压电路部分可以包括恒压产生电路,用于产生和输出第一恒压、第二恒压和第三恒压;电压切换电路,用于根据来自控制电路部分的控制信号,选择和输出从所述恒压产生电路输出的第一恒压、第二恒压和第三恒压中的一个;电压比较器,用于比较从数据电压切换电路输出的恒压与备用电池的电池电压,并且根据比较结果输出比较信号;控制晶体管,用于根据所述比较信号,将一个电流从一个预定直流电源传输给所述备用电池;以及一个二极管,用于阻止电流经由所述控制晶体管从备用电池流入预定直流电源。
根据本发明的上述方面,可以通过从恒压充电切换到脉冲充电以及一个简单的电路结构来对备用电池充电。
另外,根据本发明的另一方面,提供一种对备用电池充电的充电电路;该充电电路包括恒流电路部分,串联于外部直流电源和备用电池之间,并且响应一个输入控制信号,向备用电池输出第一和第二恒流中的一个;恒压电路部分,与所述恒流电路部分并联连接,并且通过向其提供预定恒压对备用电池充电;电池电压检测电路部分,用于检测和输出备用电池的电池电压;充电电流检测电路部分,当所述恒压电路部分停止输出电流时,输出一个预定充电结束信号;以及充电控制电路部分,当充电结束信号输入时,停止所述恒流电路部分和所述恒压电路部分的操作,其中,当备用电池的电池电压小于预定电压时,所述充电控制电路部分向所述恒流电路部分输出一个控制信号,以便使所述恒流电路部分输出第一恒流,并且当备用电池的电池电压等于或大于预定电压时,所述充电控制电路部分向所述恒流电路部分输出一个控制信号,以便使恒流电路部分输出第二恒流,该第二恒流大于第一恒流。
此外,根据本发明的另一方面,提供一种对备用电池充电的充电电路,该充电电路包括恒压电路部分,连接于外部直流电源与备用电池之间,并且通过向其提供一个预定恒压来对备用电池充电;电池电压检测电路部分,用于检测和输出备用电池的电池电压;充电电流检测电路部分,用于当从所述恒压电路部分输出的电流变成预定值时,输出一个预定充电结束信号;以及充电控制电路部分,用于当预定充电结束信号输入时,停止所述恒压电路部分的操作,所述恒压电路部分包括恒压产生电路,用于产生和输出预定恒压;电压比较器,用于比较备用电池的电池电压与预定恒压,并且输出一个指示比较结果的比较信号;以及控制晶体管,用于根据指示比较结果的比较信号,将电流从外部直流电源传输到备用电池,以及所述充电电流检测电路部分,用于检测从所述电压比较器输出的比较信号,并且通过根据所检测的比较信号来确定所述控制晶体管通过的电流是一个预定值来输出预定充电结束信号。
根据本发明的上述方面,通过不用电阻检测从恒压电路输出的充电电流来结束充电。因此,由于没有电阻而没有发热以及能量损失。相应地,能够高精度地检测备用电池的满充电状态。
另外,根据本发明的上述方面,在备用电池的电池电压低于预定电压的情况下,可以用适于这种情况的电流量来对备用电池充电。因此,能够对过放电状态下的备用电池充电。另外,可以在限制电路尺寸增加的同时实现上述充电电路。因此,能够降低制造成本。
当结合附图来阅读下列详细描述时,本发明的其它方面、特征及优点将变得更加明显。


图1示出了根据本发明第一实施例的备用电池的充电电路的结构图;图2示出了图1中的充电电路1的操作的时序图;图3示出了解释图1中的充电控制电路6的操作的流程图;图4示出了常规充电电路的图;图5示出了根据本发明第二实施例的充电电路;图6A示出了用图5所示电路的充电时间的备用电池的电压的变化图;图6B示出了用图5所示电路的充电时间的备用电池的充电电流的变化图;图6C示出了用图5所示电路的充电时间的pMOS晶体管的栅极电压的变化图;图7示出了可选的双向晶体管图;图8示出了根据本发明第三实施例的充电电路;图9A示出了用图8所示电路的充电时间的备用电池的电池电压的变化图;
图9B示出了用图8所示电路的充电时间的充电电流的变化图;图9C示出了用图8所示电路的充电时间的pMOS晶体管的栅极电压的变化图;以及图10示出了根据本发明的第三实施例的另一放电电路。
具体实施例方式
接下来,将参考附图给出本发明第一实施例的详细描述。
(第一实施例)图1示出了根据本发明第一实施例的备用电池的充电电路的结构图。需要注意的是,图1示出了用于移动电话的锂离子电池的充电电路的示例。
在图1中,备用电池的充电电路1包括适配器检测电路2,用于当来自作为直流电源的AC适配器10的电源电压等于或大于预定值时输出一个预定信号;电池电压检测电路3,用于检测和输出一个用做备用电池的锂离子电池11的正电压Vb(下文称作“电池电压”)Vb;以及恒压电路4,用于以一个恒压对锂离子电池11充电。
此外,充电电路1包括恒流电路5,用于以一个预定恒流对锂离子电池11预先充电;充电控制电路6,用于响应来自适配器检测电路2的信号和来自电池电压检测电路3的所检测的电压,使恒压电路4执行对锂离子电池11的脉冲充电方法的充电,并且使恒流电路5执行预先充电;以及负载电路7,并联于锂离子电池11。
另外,恒压电路4包括恒压产生电路21、电压切换电路22、运算放大器23、控制晶体管24、二极管25以及栅极控制电路26。恒压产生电路21产生并输出三个预定恒压E1到E3。电压切换电路22根据来自充电控制电路6的控制信号,从恒压产生电路21选择一个恒压E1到E3,并且输出所选择的电压作为基准电压Vr。运算放大器23作为一个电压比较器来工作,和,是PMOS晶体管的控制晶体管24对施加到所述锂离子电池11上的来自AC适配器10的充电电流进行控制。栅极控制电路26根据来自运算放大器23的输出信号对控制晶体管24的操作进行控制。此外,充电控制电路6作为一个控制电路来工作。恒压E1对应于第一恒压,恒压E2对应于第二恒压,恒压E3对应于第三恒压。
控制晶体管24、二极管25以及锂离子电池11串联于电源端31与地之间,因此,充电电流被提供到锂离子电池11。使用AC适配器10来给电源端31供电。在电源端31的电压低于锂离子电池11的电池电压Vb的情况下,二极管25阻止电流从锂离子电池11流回AC适配器10。
电压切换电路22根据来自充电控制电路6的电压切换信号Ss,选择恒压E1到E3中的一个恒压,并且将所选择的恒压输出到运算放大器23的反相输入端。锂离子电池11的电池电压Vb被提供到运算放大器23的非反相输入端。运算放大器23的输入端经栅极控制电路26连接到控制晶体管24的栅极。另外,运算放大器23的驱动由来自充电控制电路6的控制信号控制。
另一方面,负载电路7是一个串联电路,包括电阻35和NMOS晶体管36。电阻35和NMOS晶体管36串联于正电极和地之间。NMOS晶体管根据由电压切换电路22选择的恒压工作。当NMOS晶体管36导通时,电阻35充当恒压电路4的控制晶体管24的负载。恒压E1到E3之间的关系满足条件E2=E1>E3。当电压切换电路22响应电压切换信号Ss选择恒压E3作为基准电压Vr时,NMOS晶体管36导通。当恒压E1或E2被选择为基准电压Vr,则NMOS晶体管36截止并且假定处于切断状态。
图2示出了图1所示的充电电路1的操作的时序图;将参考图2来给出图1中各个部分的操作示例的描述。
首先,当AC适配器10提供电源并且一个预定信号从适配器检测电路2输入时,充电控制电路6被激活。电池电压检测电路3检测锂离子电池11的电池电压Vb,并且将所检测的电压值输出到充电控制电路6。
在锂离子电池11的电池电压Vb等于或小于预定值V1的情况下,充电控制电路6激活恒流电路5,从而开始以一个预充的充电电流对锂离子电池11预充电。另外,此时,充电控制电路6停止运算放大器23的操作,从而避免电流经由控制晶体管24流入锂离子电池11。
例如,当锂离子电池11是4.2V的锂离子电池时,上述的预定值V1可被设置为约2.5V。这是因为当锂离子电池11处于过放电状态情况下被大电流突然充电时可能发生一个问题。执行锂离子电池11的预充电,从而当开始充电时充电电流减小。预充电电流Ip是用于预充电的电流,并且通常被设置为大约几毫安到几十毫安。
当锂离子电池11的电池电压Vb增加到预定值V1时,充电控制电路6确定锂离子电池11是一个正常的电池,结束由恒流电路5进行的预充电,并且输出电压切换信号Ss,从而将充电从预充电切换到由恒压电路4的恒压充电。而且,当预充电时,恒压电路4的操作被停止,并且二极管25阻止电流从锂离子电池11流入AC适配器10。
当预充电结束时,充电控制电路6使电压切换电路22通过电压切换信号Ss来选择恒压E1。所选择的恒压E1被输出到运算放大器23的反相输入端作为基准电压Vr。恒压电路4的输出电压变成恒压E1,并且用恒压E1对锂离子电池11充电。图2示出了当用恒压E1对锂离子电池11充电时的充电电流。被AC适配器10或控制晶体管24的电流容量限制的恒流从恒压电路4输出作为充电电流Ic。
当锂离子电池11的电池电压Vb逐渐增加并且达到与恒压电路4的输出电压相同的电压E1时,充电控制电路6执行对恒压电路4的操作控制,从而通过脉冲充电方法对锂离子电池11充电。另外,恒压E1可被设置为4.2V,该电压是锂离子电池的满充电电压。
脉冲充电方法是一种将恒压电路4的输出电压从/到恒压E2以预定周期重复切换到/从恒压E3来对锂离子电池11充电的方法。当锂离子电池11的电压达到电压E1时,充电控制电路6将电压切换信号Ss输出到电压切换电路22,从而电压切换电路22选择恒压E3,并且设置恒压电路4的输出电压为恒压E3。恒压E3低于恒压E1。然而,恒压E3的电压设置应使得在充电方法被切换成脉冲充电方法之后,有足够的充电电流Ic可被输出到锂离子电池11。例如,在所述锂离子电池的情况下,恒压E3可被设置为4.0V到4.1V。
接下来,在预定时间T1过后,由于充电控制电路6将电压控制信号Ss输出到电压切换电路22,从而电压切换电路22选择恒压E3,充电控制电路6将电压切换信号Ss输出到电压切换电路22,从而电压切换电路22选择恒压E2。电压切换电路22选择并输出恒压E2,从而恒压电路4的输出电压变成恒压E2。恒压E2可以被设置成与恒压E1具有相同的电压,或者被设置成稍略大于恒压E1例如大约0.1V的电压。另外,应当说明的是图2示出了例如恒压E2大于恒压E1的情况。
在恒压E2被设置为与恒压E1的电压相同的情况下,不可能将过电压提供给锂离子电池11。因此,不存在对离子电池11产生损害的危险。而且,由于恒压E2被设置为与恒压E1相同的电压,因此电路被简化。然而,有个缺陷是充电时间变得长了一点。在恒压E2被设置为略大于恒压E1的情况下,就可以缩短充电时间。同时,由于采用了脉冲充电方法,也可以减小损坏锂离子电池的可能性。
接着,在预定时间T1过后,由于充电控制电路6将电压切换信号Ss输出到电压切换电路22,从而电压切换电路22选择恒压E2。充电控制电路6将电压切换信号Ss输出到电压切换电路22,从而电压切换电路22再次选择恒压E3。电压切换电路22再次选择和输出恒压E3,从而恒压电路4的输出电压变成恒压E3。利用这种方式,充电控制电路6使恒压电路4以一恒定周期交替地输出恒压E2和E3,直到锂离子电池11的充电完成。
从图2可以看出,在充电方法刚刚切换成脉冲充电方法后,由于充电电流Ic是由AC适配器10或控制晶体管24的电流容量限制的电流,所以,不管恒压电路4的输出电压是恒压E3还是恒压E2,充电电流Ic都近似恒定。然而,当锂离子电池11被充电时,在用恒压E3充电期间内的充电电流Ic逐渐降低。另外,当锂离子电池11充电时锂离子电池11的电池电压Vb变成等于或大于恒压E3时,当用恒压E3充电时充电电流Ic不流动。这种方法类似于重复充电和中止充电的常规脉冲充电方法。在这种充电方法中,可以避免对锂离子电池的损害,并且能够延长锂离子电池11的使用寿命。
当锂离子电池进一步充电时,并且当用恒压E3充电的锂离子电池11的电池电压Vb超过预定充电结束电压Ve时,充电控制电路6确定锂离子电池11被完全充电,停止运算放大器23的操作,从而停止恒压电路4的操作,并且停止向锂离子电池11的充电操作。
当电压切换电路22选择恒压E3时,负载电路7的NMOS晶体管36导通。当NMOS晶体管36导通时,电阻35充当恒压电路4的负载。然而,当恒压电路4的输出电压从恒压E2切换到恒压E3时,可以缩短锂离子电池的电池电压Vb达到稳定电压所需的时间。另外,也可以缩短与由充电控制电路6执行的充电结束电压Ve进行比较所需要的时间。因此,能够将用恒压E3对锂离子电池11充电的时间设置更短。从而,能够增加将脉冲充电的充电周期设置为一个不会对使用充电电路的装置产生影响的频率的灵活性。
图3示出了解释图1中的充电控制电路6的操作的流程图。参考图3,将给出充电控制电路6的操作流程的描述。应当注意到,每个步骤的处理由充电控制电路6来执行,除非另外描述。
在图3中,首先,步骤S1根据从适配器检测电路2输入的信号来检测电源端31的电压是否等于或大于预定电压。如果不能检测出电源端31的电压等于或大于预定电压(步骤S1中的否),则重复步骤S1。如果检测出电源端31的电压等于或大于预定电压(步骤S1中的是),则步骤S2确定由电池电压检测电路3所检测的锂离子电池11的电池电压Vb是否超过预定值V1。
在步骤S2中,如果锂离子电池11的电池电压Vb等于或小于预定值V1(步骤S2中的否),则步骤S3激活恒流电路5,从而对锂离子电池预充电,并且处理返回到步骤S2。相反,在步骤S2,如果锂离子电池11的电池电压Vb超过预定值V1(步骤S2中的是),则步骤S4激活运算放大器23,并且同时使电压切换电路22选择恒压E1,以及以恒压E1执行锂离子电池11的恒压充电。
之后,步骤S5确定锂离子电池11的电池电压Vb是否超过恒压E1。如果锂离子电池11的电池电压Vb等于或小于恒压E1(步骤S5中的否),则重复步骤S5。相反,在步骤S5中,如果锂离子电池11的电池电压Vb超过恒压E1(步骤S5中的是),则步骤S6使电压切换电路22选择恒压E3,并且使恒压电路4用恒压E3对锂离子电池11充电。
接下来,由于已经开始了利用恒压E3充电,步骤S7确定预定时间T1是否已过。如果预定时间T1未过(步骤S7中的否),继续用恒压E3充电,直到预定时间T1已过。另外,在步骤S7,如果预定时间T1已过(步骤S7中的是),则处理继续到步骤S8。步骤S8确定电池电压Vb是否等于或大于预定充电结束电压Ve。如果电池电压Vb等于或大于充电结束电压Ve(步骤S8中的是),则锂离子电池11的充电结束,并且处理也结束。
此外,在步骤S8中,如果电池电压Vb小于充电结束电压Ve(步骤S8中的否),则处理继续到步骤S9。步骤S9使电压切换电路22选择恒压E2,并且使恒压4用恒压E2对锂离子电池11充电。接下来,由于已经开始了用恒压E2的充电,步骤S10确定时间T1是否已过。如果预定时间T1未过(步骤S10中的否),继续用恒压E2充电,直到预定时间T1已过。另外,在步骤S10,如果预定时间T1已过(步骤S10中的是),则处理继续到步骤S6。
如上所述,当电池电压Vb等于或小于预定值V1时,根据本发明第一实施例的充电电路用来自恒流电路5的预充电电流Ip对锂离子电池11预充电。当电池电压Vb超过预定值V1时,充电电路执行用来自恒压电路4的恒压E1的恒压充电。当电池电压Vb等于恒压E1时,充电电路对电压切换电路22执行恒压切换控制以便执行脉冲充电,从而使恒压E2和E3被以一恒定的周期交替地从恒压电路4中输出。因此,通过增加一个简单的电路,当对锂离子电池充电时,可以缩短充电时间,并且也可以避免在一个使用充电电路的装置产生影响的频带中产生噪声。
下面,将参考附图给出本发明的第二实施例的描述。
(第二实施例)图5示出了根据本发明第二实施例的充电电路。在图5中,充电电路包括AC适配器B10,用于提供充电电流;适配器检测电路12,用于检测AC适配器B10的连接;电池电压检测电路16,用于检测备用电池14的电压;恒压电路18,用于执行备用电池14上的恒压充电;恒流电路20,用于向备用电池14提供恒流;栅极电压检测电路B22,用于检测控制晶体管M1的控制端的电压;二极管D1,用于阻止电流从备用电池B24流入AC适配器B10;以及充电控制电路B24,用于执行恒压电路18和恒流电路20的驱动控制。AC适配器B10连接到端30。恒压电路18包括用于产生基准电压BE1的恒压产生电流40、控制晶体管M1、以及运算放大器A1。栅极电压检测电路B22包括用于产生基准电压BE2的恒压产生电路42和运算放大器A2。适配器检测电路12包括用于产生基准电压BE3的恒压产生电路44以及运算放大器A3。另外,二极管D1连接于控制晶体管M1和备用电池14之间。二极管D1阻止电流从备用电池14经由控制晶体管M1流入AC适配器B10。而且,在图5中,控制晶体管M1被表示为一个P-沟道金属氧化物半导体场效应晶体管(下文称作“pMOS晶体管”)。
下面,将给出根据第二实施例的充电电路的操作。当作为充电电路的电源的AC适配器B10经端30连接到充电电路、并且连接到端30的运算放大器A3的输入端的电压等于或大于预定基准电压BE3时,适配器检测电路12将预定信号Sg1发送到充电控制电路B24。另外,电池电压检测电路16检测备用电池14的电池电压,产生电池电压信号Sg1,并且将该信号输出到充电控制电路B24。当输入信号Sg1时,充电控制电路B24被激活。当电池电压信号Sg2被输入时,充电控制电路B24将恒流控制信号Sg3输出到恒流电路20。当恒流控制信号Sg3被输入时,恒流电路20被激活。恒流电路20包括两个内部电源,并且能够输出图5中用IB所示方向的两个电流中的一个。当充电控制电路B24根据输入的电池电压信号Sg2检测到备用电池14的电池电压低于预定电压BV1时,充电控制电路B24将恒流值切换信号Sg4和恒流控制信号Sg3输出给恒流电路20。由于在备用电池14的电池电压低于BV1、即备用电池14处于过放电状态的情况下,用大电流突然对备用电池14充电时会出现问题,所以,这样做是为了降低充电电流,。然而,当恒流值切换信号Sg4被输入到恒流电路20时,恒流电路20输出一个电流值为BI1的电流。在锂离子电池的情况下,电压BV1被设置为大约2.5V,并且通常,电流值BI1的范围是几毫安到几十毫安。如上所述,当恒流控制信号Sg2被输出到恒流电路20时,开始备用电池14的充电。
充电控制电路B24确定备用电池是正常的电池,并且当用电流值为BI1的电流对备用电池14充电时,将恒流值切换信号Sg4输出到恒流电路20,而且充电控制电路B24根据从电池电压检测电路16提供的电池电压信号Sg2检测到备用电池14的电池电压达到预定电压BV1。因此,恒流电路20向备用电池14输出一个大于电流值BI1的电流值BI2。电流值BI2等于当恒压充电结束时流入备用电池14的满充电电流。而且,充电控制电路B24向恒压电路18输出充电控制信号Sg5,从而激活恒压电路18。恒压电路18以图5所示方向BIC向备用电池14输出充电电流。随后,备用电池14被由恒压电路18和恒流电路20输出的电流充电。
之后,当备用电池14的电池电压进一步增加并且达到近似等于恒压电路18的基准电压BE1的电压BV2时,备用电池14的电池电压不再增加,保持恒定,并且仅充电电流逐渐减小。这时,运算放大器A1将备用电池14的电池电压与基准电压BE1进行比较,并且运算放大器A1根据差值向pMOS晶体管M1的栅极(控制端)提供正栅极电压(控制电压)。备用电池14的电池电压越高,则所提供的栅极电压变得越高。因此,漏极电流被逐渐限制。即,施加到备用电池14的充电电流逐渐减小。在锂离子电池的情况下,电压BV2被设置为近似4.2V。当电压进一步增加时,由于金属锂在备用电池14内是分离的所以会出现问题。即使在传统的恒流恒压充电电路中,当备用电池14的充电电压达到电压BV2时,恒流充电也被切换成恒压充电。而且,理想地,当备用电池14的电池电压达到电压BV2时,总的充电电流开始同时降低。但是,根据电池内的化学反映进度存在一些时间差。
图6A、6B、6C示出了上述操作的图。图6A示出了伴随充电时间的备用电池的电池电压的变化。图6B示出了伴随充电时间的充电电流的变化。另外,图6C示出了伴随充电时间的pMOS晶体管M1的栅极电压的变化。图6B示出了由恒流电路20输出的电流A(用粗线表示)的变化、从恒压电路18输出的充电电流B的变化、以及通过将从恒流电路20输出的电流加到从恒压电路18输出的电流所得到的总充电电流C。参考图6A和6B,备用电池14被具有从恒流电路20输出的电流值BI1的电流充电,直到电压达到BV1(直到充电时间t1)。当备用电池14的电池电压达到BV1时,恒流电路20输出电流值为BI2的充电电流,并且恒压电路18也开始输出一个充电电流。从恒压电路18输出的充电电流是这样一种的电流,即,在开始都受到AC适配器B10的电流容量或pMOS晶体管M1的电流容量的限制,所以,它们的电流容量都比较小。图6B示出了例如在AC适配器B10的电流容量比较小情况下的充电电流。备用电池14被由恒压电路18和恒流电路20输出的电流充电,因此,备用电池14的电池电压增加,并且达到预定电压BV2。
当在备用电池14的电池电压达到预定值BV2之后过去某段时间时,pMOS晶体管M1的栅极电压开始逐渐增加,并且响应这种增加,从恒压电路18输出的电流开始逐渐减小。然而,如图6C所示,在充电时间t2,pMOS晶体管M1的栅极电压增加到接近于AC适配器电压。这时,恒压电路18的pMOS晶体管截止,并且从恒压电路18输出的充电电流停止。换句话说,总充电电流仅是具有从恒流电路20输出的电流值BI2的电流。
在根据该实施例的充电电路中,由于电流值BI2被设置为等于满充电电流值,所以能够认为当恒压电路18的pMOS晶体管M1截止时充电结束,并且仅具有从恒流电路20输出的电流值BI2的电流流入备用电池14。
因此,如果设置栅极电压检测电路B22的基准电压BE2以使得从AC适配器B10的电压下降了基准电压BE2所获得的一个较低电压等于pMOS晶体管M1截止时的栅极电压,那么,当控制晶体管M1截止时,即当输入给运算放大器A2的一个输入端的PMOS晶体管M1的栅极电压等于AC适配器B10的电压下降了基准电压BE2的一个电压时,栅极电压检测电路B22向充电控制电路B24输出充电结束信号Sg6。如上所述,栅极电压检测电路B22通过检测pMOS晶体管M1的栅极电压检测到预定电流流入备用电池14。因此,栅极电压检测电路B22可被称作充电电流检测电路。当充电结束信号Sg6被输入到充电控制电路B24时,充电控制电路B24分别向恒压电路18和恒流电路20输出充电控制信号Sg5和恒流控制信号Sg3,并且停止这两种电路的操作。
在根据这个实施例的充电电路中,不需要用于检测充电电流的电阻。由此,没有电阻引起的发热或能量损耗。因此,可以精确地检测满充电状态。此外,能够从不同的电流值当中选择从恒流电路20输出的电流的电流值。因此,能够对即使是过放电的电池等进行充电,而不需要增加一个新的电路。
另外,在根据该实施例的充电电路中,栅极电压检测电路B22使用产生基准电压BE2的恒压产生电路42将从AC适配器B10的电压下降了基准电压BE2的电压设置成等于pMOS晶体管M1截止时的栅极电压。然而,这与通过使用产生充电结束电压的恒压产生电路42来设置充电结束电压等于pMOS晶体管M1截止时的栅极电压是相同的事情。
此外,应当注意,pMOS晶体管M1在图5中被用作控制晶体管M1,然而,即使使用如图7所示的双基极PNP晶体管时,也可以获得类似的效果。在这种情况下,可以将栅极电压检测电路B22的基准电压BE2设置为使从AC适配器B10的电压下降了基准电压BE2的电压等于双基极PNP晶体管截止时的基极电压。
(第三实施例)图8示出了根据本发明第三实施例的备用电池14的充电电路图。在图8中,与图5中那些对应部分相同的部件用相同的参考标记表示,并且忽略对其的描述。根据第三实施例的充电电路除了图5所示的充电电路以外还包括电流控制电路50,用于控制从pMOS晶体管M1输出的充电电流;以及负载电阻R2。另外,二极管D3连接在恒压电路18的运算放大器A1与pMOS晶体管M1之间。电流控制电路50包括恒压产生电路46、运算放大器A4以及二极管D2。负载电阻R2的一端接地,另一端连接到pMOS晶体管M1的栅极端。
图9A、9B和9B分别示出了伴随充电时间的备用电池14的电池电压的变化、充电电流的变化以及pMOS晶体管M1的栅极电压的变化。图9B示出了从恒流电路20输出的电流A(用粗线表示)、从恒压电路18输出的充电电流B以及通过将恒流电路20输出的电流加到从恒压电路18输出的电流上获得的总充电电流。在备用电池14的电池电压达到预定电压BV1之前(在充电时间变成t1之前),根据第三实施例的充电电路与根据第二实施例的充电电路操作相似。当根据从电池电压检测电路16输出的电池电压信号Sg2检测到备用电池14的电池电压达到预定值BV1时,充电控制电路B24将恒流值切换信号Sg4输出到恒流电路20。由此,恒流电路20将大于电流值BI1的电流值BI2输出到备用电池14。此外,充电控制电路B24将充电控制信号Sg5输出到恒压电路18和电流控制电路50,以便分别激活恒压电路18和电流控制电路50。
首先,由于备用电池的电池电压仍然很低,所以恒压电路18的运算放大器A1的输出近似为0V。另一方面,电流控制电路50的运算放大器A4将pMOS晶体管M1的栅极电压与从AC适配器B10的电压(端30的电压)下降了基准电压BE4的电压进行比较,并且输出该电压,因此pMOS晶体管M1的栅极电压被维持恒定并且等于从AC适配器B10的电压下降了基准电压BE4的电压。这时,恒压电路18的二极管D3阻止电流从pMOS晶体管M1的栅极端流入运算放大器A1。归根到底,pMOS晶体管M1的栅极电压维持恒定,并且pMOS晶体管M1的漏极电流,即从恒压电路18输出的充电电流恒定为电流值BI3。
然而,由于pMOS晶体管M1的性能,存在这样一种情况,即,即使施加了预定栅极电压,也不会产生预定漏极电流。因此,如图8所示,通过配置负载电阻R2,执行栅极电压的精确调整,从而产生预定的漏极电流。如上所述,备用电池14被电流值为BI2的恒流及电流值为BI3的漏极电流充电。
当备用电池14的电池电压增加并且达到预定电压BV2时,恒压电路18的运算放大器A1的输出电压增加,并且电流开始从运算放大器A1经由二极管D3流到pMOS晶体管M1的栅极端。因此,pMOS晶体管M1的栅极电压增加。但是,恒流控制电路50的运算放大器A4的输出降至近似为0V。因此,电流停止从运算放大器A4经由二极管D2流到pMOS晶体管M1的栅极。当pMOS晶体管M1的栅极电压增加时,从pMOS晶体管M1输出的漏极电流降低。当备用电池14进一步充电时,pMOS晶体管M1的栅极电压进一步增加,并且pMOS晶体管M1截止。这时,流入备用电池14的电流具有等于满充电电流的电流值BI2,该满充电电流在恒压充电结束时流入备用电池14。
当设置栅极电压检测电路B22的基准电压BE2以使得从AC适配器B10的电压下降了基准电压BE2的电压等于pMOS晶体管M1截止时的栅极电压时,当控制晶体管M1截止时,栅极电压检测电路B22将充电结束信号Sg6输出到充电控制电路B24。当充电控制信号Sg6输入到充电控制电路B24时,充电控制电路B24将充电控制信号Sg5和恒流控制信号Sg3分别输出到恒压电路18和恒流电路20,并且停止这两种电路的操作。
在根据该实施例的充电电路中,即使在刚刚驱动恒压电路18后,也能够将预定栅极电压施加到pMOS晶体管M1。因此,能够给备用电池14提供预定恒流,该预定恒流不取决于AC适配器B10的电流容量或pMOS晶体管M1的电流容量。因此,即使在恒压电路18刚刚被驱动之后,也能够给备用电池14提供具有合适电流值的充电电流,该合适电流值不损害备用电池14。
另外,在根据该实施例的充电电路中,不需要用于检测充电电流的电阻。因此,就没有由电阻引起的发热或能量损耗。由此,能够精确地检测备用电池的满充电状态。另外,可以从不同的电流值中选择从恒流电路20输出的电流的电流值。因此,能够对即使是过放电的电池等充电,而不用增加一个新的电路。
此外,在根据第三实施例的充电电路中,通过使用产生基准电压BE2的恒压产生电路42,栅极电压检测电路B22将从AC适配器B10的电压下降了基准电压BE2的电压设置成等于pMOS晶体管M1截止时的基极电压。这与通过使用产生充电结束电压的恒压产生电路来设置充电结束电压等于pMOS晶体管M1截止时的栅极电压是相同的事情。另外,通过使用产生基准电压BE4的恒压产生电路46,电流控制电路设置从AC适配器B10的电压下降了基准电压BE4的电压等于输出预定恒流时的pMOS晶体管M1的栅极电压。然而,这与通过使用产生某一控制电压的恒压产生电路将所述控制电压设置成等于输出预定恒流的pMOS晶体管M1的栅极电压是相同的事情。
另外,在图8中,控制晶体管M1是一个pMOS晶体管。然而,使用如图7所示的双基极PNP晶体管也可以获得相似的效果。在这种情况下,可以设置栅极电压检测电路B22的基准电压BE2以使得从AC适配器B10的电压下降了基准电压BE2的电压等于双基极PNP晶体管截止时的基极电压。另外,可以设置恒压产生电路的基准电压46的基准电压BE4以使得从AC适配器B10的电压下降了基准电压BE4的电压等于输出预定恒流的双基极PNP晶体管基极电压。
另外,在根据该实施例的充电电路中,电流控制电路50将pMOS晶体管M1的栅极电压维持为恒定,并且经由pMOS晶体管M1使预定恒流流到备用电池14。然而,只要能够经由pMOS晶体管M1使预定恒流流到备用电池14也可以使用另一种结构。即使是在这样的情况下也可以获得类似的效果。然而,当如图8和10所示配置负载电阻R2时,就能够很容易调整施加到pMOS晶体管M1的栅极电压值。例如,即使在pMOS晶体管M1被不同制造商的另一个pMOS晶体管M1代替的情况下,也能够根据pMOS晶体管M1的性能简单调整栅极电压。因此,可以不管pMOS晶体管M1的性能如何来使预定恒流流到备用电池14。
另外,在图8的充电电路中,恒流电路20可以是一种仅输出电流值BI1的恒流电路。图10示出了上述情况下的充电电路图。恒流电路20具有单一电流源,用于输出电流值为BI1的电流,并且,恒流电路20受从充电控制电路B24输出的恒流控制信号Sg3的控制。
在备用电池14的电池电压低于预定电压BV1的情况下,由于充电控制电路B24输入恒流控制信号Sg3,所以恒流电路20被激活,并且仅用电流值为BI1的电流对备用电池14充电。当充电控制电路根据由电池电压检测电路16输出的电池电压信号Sg2检测备用电池14的电池电压达到预定电压BV1时,充电控制电路B24向恒流电路20发送恒流控制信号Sg3,从而停止恒流电路20的操作。而且,充电控制电路B24输出充电控制信号Sg5来激活恒压电路18和电流控制电路50。电流控制电路50和恒压电路18的操作与图8中的那些相应部分的操作系统。
在图10的充电电路中,栅极第一检测电路B22的基准电压BE5与图4和8中的充电电路的基准电压BE2不同。设定该基准电压BE5以使从AC适配器110的电压下降了基准电压BE5的电压与施加到pMOS晶体管M1的栅极端的电压相同,从而,pMOS晶体管M1的漏极电流等于电流值I2。由此,充电是从恒流充电向恒压充电的充电。当pMOS晶体管M1的栅极电压增加并且达到比AC适配器B10的电压减小了基准电压BE5的电压时,栅极电压检测电路B22向充电控制电路B24输出充电结束信号Sg6。当输入充电结束信号Sg6时,充电控制电路B24向恒压电路18和恒流控制电路50输出充电控制信号Sg5,从而停止它们的操作。
在图10所示的充电电路中,恒流电路20可以包括单个电流源。从而减小了电路大小。结果降低了制造成本。
本发明不限于具体公开的实施例,并且在不背离本发明的范围的情况下,可以做出变化和修改。
本申请基于2001年9月14日申请的日本优先权申请号2001-279823以及2001年9月20日申请的申请号2001-287039,在此全文引用作为参考。
权利要求
1.一种备用电池的充电电路,包括恒压电路部分,用于响应一个输入控制信号而从多个预定恒压中选择和输出一个恒压,并且通过向其提供所选择的恒压来给备用电池充电;检测电路部分,用于检测备用电池的电池电压;以及控制电路部分,用于响应来自所述检测电路部分的所检测的电池电压,控制从所述恒压电路部分提供的恒压的选择,当备用电池的电池电压等于或小于第一恒压时,所述控制电路部分通过向其提供预定第一恒压来使所述恒压电路部分对备用电池充电,并且当备用电池的电池电压超过第一恒压时,通过以一预定周期交替地向其提供预定第二恒压和预定第三恒压来对备用电池充电,所述第三恒压小于第二恒压。
2.如权利要求1所述的充电电路,其中,所述控制电路部分检测备用电池的充电结束,并且当备用电池的电池电压超过预定充电结束电压时,执行预定充电结束操作,同时使所述恒压电路部分向备用电池提供第三恒压。
3.如权利要求1所述的充电电路,其中,第二恒压等于第一恒压。
4.如权利要求1所述的充电电路,其中,第二恒压大于第一恒压。
5.如权利要求1所述的充电电路,进一步包括负载电路部分,用于根据从恒压电路部分输出的第三恒压,将负载与备用电池并联。
6.如权利要求1所述的充电电路,其中,所述恒压电路部分包括恒压产生电路,用于产生和输出第一恒压、第二恒压和第三恒压;电压切换电路,用于根据来自控制电路部分的控制信号,选择和输出从所述恒压产生电路输出的第一恒压、第二恒压和第三恒压中的一个;电压比较器,用于将从所述电压切换电路输出的恒压与备用电池的电池电压进行比较,并且根据比较结果来输出比较信号;控制晶体管;用于根据比较信号,使来自预定直流电源的电流流到备用电池;以及二极管,用于阻止电流从备用电池经由所述控制晶体管流入预定直流电源。
7.一种对备用电池充电的充电电路,包括恒流电路部分,串联于外部直流电源和备用电池之间,并且响应一个输入控制信号,向备用电池输出第一和第二恒流中的一个;恒压电路部分,与所述恒流电路部分并联连接,并且通过向其提供预定恒压对备用电池充电;电池电压检测电路部分,用于检测和输出备用电池的电池电压;充电电流检测电路部分,当所述恒压电路部分停止输出电流时,输出一个预定充电结束信号;以及充电控制电路部分,当充电结束信号输入时,停止所述恒流电路部分和所述恒压电路部分的操作,其中,当备用电池的电池电压小于预定电压时,所述充电控制电路部分向所述恒流电路部分输出控制信号,以便使所述恒流电路部分输出第一恒流,并且当备用电池的电池电压等于或大于预定电压时,所述充电控制电路部分向所述恒流电路部分输出控制信号,以便使恒流电路部分输出第二恒流,该第二恒流大于第一恒流。
8.如权利要求7所述的充电电路,进一步包括直流电源,用于向备用电池提供充电电流。
9.如权利要求7所述的充电电路,进一步包括电流控制电路部分,用于控制从恒压电路部分输出的电流,其中,所述电流控制电路部分执行恒压电路部分的操作控制,以便使从恒压电路部分输出的电流最大值变成预定值;并且当输入预定充电结束信号时,充电控制电路部分进一步停止所述电流控制电路部分的操作。
10.如权利要求7所述的充电电路,其中,恒压电路部分包括恒压产生电路,用于产生和输出预定恒压;电压比较器,用于将备用电池的电池电压与预定恒压进行比较,并且输出一个指示比较结果的比较信号;以及控制晶体管,根据指示比较结果的比较信号,使电流从外部直流电源流入备用电池。
11.如权利要求10所述的充电电路,其中,恒压电路部分进一步包括一个二极管,用于阻止电流流入电压比较器。
12.如权利要求11所述的充电电路,其中,电流控制电路部分包括第二恒压产生电路,用于产生和输出预定第二恒压;第二电压比较器,将施加到控制晶体管的控制端的电压与第二恒压进行比较,并且输出一个指示比较结果的比较信号;以及第二二极管,用于阻止电流从控制端流入第二电压比较器。
13.如权利要求10所述的充电电路,其中,充电电流检测电路部分检测从电压比较器输出的比较信号,并且根据所检测的比较信号来确定恒压电路部分停止输出电流。
14.如权利要求13所述的充电电路,其中,充电电流检测电路部分包括第三恒压产生电路,用于产生和输出预定第三恒压;以及第三电压比较器,用于将施加到控制晶体管的控制端的电压与预定第三恒压进行比较,并且当施加到控制端的电压等于预定第三恒压时,输出预定充电结束信号,其中预定第三恒压是施加到控制端的电压,以便使控制晶体管截止。
15.一种对备用电池充电的充电电路,包括恒压电路部分,连接于外部直流电源与备用电池之间,并且通过向其提供预定恒压来对备用电池充电;电池电压检测电路部分,用于检测和输出备用电池的电池电压;充电电流检测电路部分,用于当从所述恒压电路部分输出的电流变成预定值时,输出一个预定充电结束信号;以及充电控制电路部分,当预定充电结束信号输入时,停止所述恒压电路部分的操作,所述恒压电路部分包括恒压产生电路,用于产生和输出预定恒压;电压比较器,用于将备用电池的电池电压与预定恒压进行比较,并且输出指示比较结果的一个比较信号;以及控制晶体管,根据指示比较结果的比较信号,使电流从外部直流电源流入备用电池,以及所述充电电流检测电路部分检测从所述电压比较器输出的比较信号,并且通过根据所检测的比较信号来确定所述控制晶体管通过的电流是预定值,输出预定充电结束信号。
16.如权利要求15所述的充电电路,进一步包括直流电源,用于向备用电池提供充电电流。
17.如权利要求15所述的充电电路,其中,充电电流检测电路部分包括第二恒压产生电路,用于产生和输出预定第二恒压;以及第二电压比较器,将施加到控制晶体管的控制端的电压与预定第二恒压进行比较,并且在施加到控制端的电压等于预定第二恒压的情况下,输出预定充电结束信号,以及预定第二恒压是施加到控制端的电压,用于使由控制晶体管通过的电流变成预定值。
18.如权利要求15所述的充电电路,其中,恒压电路部分进一步包括二极管,用于阻止电流流入电压比较器。
19.如权利要求18所述的充电电路,进一步包括电流控制电路部分,用于控制从恒压电路部分输出的电流,其中,所述电流控制电路部分执行对恒压电路部分的操作控制,以便使从恒压电路部分输出的电流最大值变成预定值,以及当预定充电结束信号输入时,充电控制电路部分进一步停止所述电流控制电路部分的操作。
20.如权利要求19所述的充电电路,其中,电流控制电路部分包括第三恒压产生电路,用于产生和传输预定第三恒压;第三电压比较器,用于将施加到控制晶体管的控制端的电压与预定第三恒压进行比较,并且输出一个指示比较结果的比较信号;以及第二二极管,用于阻止电流从控制端流入所述第三电压比较器。
21.如权利要求15所述的电压电路,进一步包括恒流电路部分,与恒压电路部分并联,并且向备用电池输出预定恒流,其中,当备用电池的电池电压低于预定电压时,充电控制电路部分驱动所述恒流电路部分,并且当备用电池的电池电压等于或大于预定电压时,充电控制电路部分停止所述恒流电路部分。
22.如权利要求7所述的充电电路,其中,恒压电路部分进一步包括第三二极管,用于阻止电流从备用电池经由控制晶体管流入外部直流电源。
23.如权利要求15所述的充电电路,其中,恒压电路部分进一步包括第三二极管,用于阻止电流从备用电池经由控制晶体管流入外部直流电源。
24.如权利要求10所述的充电电路,其中,控制晶体管是一个p沟道金属氧化物半导体场效应晶体管。
25.如权利要求10所述的充电电路,其中,控制晶体管是一个PNP双极晶体管。
全文摘要
一种备用电池的充电电路,包括恒压电路部分,用于输出多个预定恒压中的一个,并且通过向其提供恒压来给备用电池充电;检测电路部分,用于检测备用电池的电池电压;以及控制电路部分,用于响应所检测的电池电压控制恒压的选择。另一种充电电路包括恒流电路部分,用于向备用电池输出两个预定恒流中的一个;恒压电路部分,通过向其提供预定恒压来向备用电池充电;电池第一检测电路部分,用于检测备用电池的电池电压;充电电流检测电路部分,用于输出预定充电结束信号;以及充电控制电路部分,用于当接收充电结束信号时,停止恒流电路部分和恒压电路部分的操作。
文档编号H02J7/06GK1507686SQ0280944
公开日2004年6月23日 申请日期2002年9月12日 优先权日2001年9月14日
发明者西田淳二, 真锅晋也, 也 申请人:株式会社理光
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1