容积式压缩机的制作方法

文档序号:7314926阅读:216来源:国知局
专利名称:容积式压缩机的制作方法
技术领域
本发明涉及一种使用制冷剂、空气、二氧化碳及其他压缩性气体的容积式压缩机,特别适用于通过自起动式同步电动机驱动的容积式压缩机,所述自起动式同步电动机作为感应电动机而起动,在同步转速附近进行同步引入从而进行同步运转。
背景技术
作为具有高能量转换效率的电动机的一种,有自起动式同步电动机。在以涡旋式压缩机、螺旋式压缩机、往复式压缩机及回转式压缩机等为代表的容积式压缩机中,为了提高能量转换效率,有必要提高驱动用电动机的能量转换效率,从而对使用自起动式同步电动机的、具有高能量转换效率的容积式压缩机的开发、研究盛行起来。
作为与使用了自起动式同步电动机的容积式压缩机相关的现有技术,有特开2003-35289号公报(专利文献1)所示的冷冻装置。该专利文献1的冷冻装置具有通过自起动式同步电动机驱动的压缩机、凝缩器、蒸发器。自起动式同步电动机设置有卷绕到其转子的铁心上作为感应电动机起作用的线圈、和在该转子铁心上被磁化作为同步电动机起作用的永久磁铁,在起动时作为感应电动机被驱动,在稳定运转时作为同步电动机被驱动。制冷剂气体在由静涡盘(scroll)与动涡盘构成的压缩室中被压缩,通过压缩容器内,之后被排出到压缩机外。另外,冷冻装置的构成为设置有使压缩机的排出侧与吸入侧旁通的旁通电路,在起动前使排出侧与吸入侧旁通。
另外,作为关于使用自起动式同步电动机的容积式压缩机的现有技术,有特开2001-3863号公报(专利文献2)所示的空调装置。该专利文献2的空调装置备有用制冷剂配管将压缩机、冷凝器、节流装置、蒸发器连接起来的冷冻循环。压缩机备有永久磁铁插入式感应电动机(自起动式同步电动机),所述永久磁铁插入式感应电动机在起动时作为感应电动机起动,在同步转速附近进行同步引入从而进行同步运转。冷冻循环备有起动负载减轻机构,所述起动负载减轻机构使制冷剂经由规定的流路阻力,旁通于压缩机的制冷剂配管的吸入侧与排出侧之间。
进而,作为关于使用自起动式同步电动机的容积式压缩机的现有技术,有特开2003-134865号公报(专利文献3)所示的流体输送装置。该专利文献3的流体输送装置备有压缩机、驱动该压缩机的同步电动机、使该同步电动机的起动顺利的起动负载减轻机构。该起动负载减轻机构设置在使压缩机1的流体配管的吸入侧与排出侧旁通的流路上。
专利文献1特开2003-35289号公报专利文献2特开2001-3863号公报专利文献3特开2003-134865号公报在专利文献1~3中所示的现有技术中,公开了备有以减小压缩机的吸入侧与排出侧之间的压力差的方式而使其平衡的起动负载减轻机构,使通过自起动式同步电动机进行的起动变得容易,但是理想的是起动进一步容易化。由此,为了提高同步引入能力,考虑到了增加配置于转子内的笼型导体,但是,由于转子的外径变大,产生压缩机的外径尺寸变大的问题。另外,由于专利文献1~3的起动负载减轻机构设置在压缩机的外部的排出侧配管与压缩机的外部的吸入侧配管之间,所以也产生了循环结构复杂化的问题。

发明内容
本发明的目的在于得到一种使用具有高能量转换效率的自起动式同步电动机,且使压缩机的外径尺寸不会变大,能可靠起动的容积式压缩机。
为了达到上述目的,本发明的容积式压缩机,备有自起动式同步电动机,作为感应电动机起动,在同步转速附近进行同步引入,从而进行同步运转;压缩部,具有压缩工作流体的压缩室;
密闭容器,收纳自起动式同步电动机及压缩部,其特征在于,起动时,减轻所述压缩部负载的起动负载减轻机构位于所述密闭容器内,并被配置在所述压缩部上。
本发明的更优选的具体实施方式
如下所述。
(1)所述起动负载减轻机构被构成为,备有将所述压缩室的中间部与所述压缩部的排出侧连通的连通机构;防止工作流体从所述压缩部的排出侧流入到所述压缩室的中间部的流入防止机构。
(2)所述流入防止机构是由阀构成,所述阀根据所述压缩室的中间部与所述压缩部的排出侧之间的压差,对所述连通机构进行开闭。
(3)所述连通机构被构成为将所述压缩室的多个位置的中间部与所述压缩部的排出侧连通。
(4)所述起动负载减轻机构被构成为,备有将所述压缩室的中间部与所述压缩部的吸入侧连通的连通机构;对所述连通机构进行开闭的控制机构。
(5)所述控制机构是由阀构成,所述阀根据所述压缩室的中间部与所述压缩部的排出侧之间的压差,对所述连通机构进行开闭。
(6)所述连通机构被构成为将所述压缩室的多个位置的中间部与所述压缩部的吸入侧连通。
(7)所述压缩部被构成为,备有动涡盘,具有端板和竖立设置于该端板上的涡旋状的涡旋式涡圈,在与竖立设置该涡旋式涡圈的方向,即,轴线方向垂直的面内不发生自转而进行回旋运动;静涡盘,具有端板和竖立设置于该端板上的涡旋状的涡旋式涡圈,至少大致限制与竖立设置该涡旋式涡圈的方向,即,轴线方向垂直的面内方向中的运动;使所述动涡盘与所述静涡盘啮合而在两个涡盘之间构成的压缩室,所述起动负载减轻机构被构成为,备有连通路,以连通所述压缩室的中间部与形成在所述密闭容器内的排出空间的方式形成在所述静涡盘上;止回阀,设置于所述涡盘上,以使防止工作流体从所述排出空间通过所述连通路流入到所述压缩室。
(8)所述压缩部被构成为,备有动涡盘,具有端板和竖立设置于该端板上的涡旋状的涡旋式涡圈,在与竖立设置该涡旋式涡圈的方向,即,轴线方向垂直的面内不发生自转而进行回旋运动;静涡盘,具有端板和竖立设置于该端板上的涡旋状的涡旋式涡圈,至少大致限制与竖立设置该涡旋式涡圈的方向,即,轴线方向垂直的面内方向中的运动;使所述动涡盘与所述静涡盘啮合而在两个涡盘之间构成的压缩室,所述起动负载减轻机构被构成为,备有连通路,以连通所述压缩室的中间部与形成在所述压缩部上的吸入空间的方式形成在所述静涡盘上;止回阀,设置于所述涡盘上,以使防止工作流体从所述压缩室通过所述连通路流入到所述吸入空间中。
(9)在上述(8)及(9)中,所述止回阀被构成为根据所述压缩室的中间部的压力与所述压缩部的排出侧的压力之间的压差而动作。
(10)所述压缩部被构成为,备有相互啮合的一对外、内螺旋辊;罩部件;由所述两螺旋辊的啮合部与所述罩部件构成的压缩室;所述起动负载减轻机构被构成为,在所述两螺旋辊的啮合部上设置可沿其轴方向滑动的滑阀。
(11)所述压缩部被构成为,备有活塞;具有使所述活塞进行往复运动的腔部的气缸;对所述腔部的开口部进行封闭的阀部;由所述活塞、所述腔部及所述阀部构成的压缩室,所述起动负载减轻机构被构成为,备有连通路,使连通所述压缩室的中间部与形成在所述密闭容器内的吸入空间的方式形成在所述气缸上;止回阀,设置于所述气缸上,以使防止工作流体从形成于所述密闭容器内的排出空间通过所述连通路流入。
(12)所述压缩部被构成为,备有气缸;对所述气缸的两端部进行封闭的端板;配置在被所述气缸与所述端板包围的空间上的辊部;起到使由所述气缸、所述端板及所述辊部构成的空间容积与所述辊部的运动一起发生变化这种作用的叶片部;由所述气缸、所述端板、所述辊部及所述叶片部构成的压缩室,所述起动负载减轻机构被构成为,备有使所述压缩室的中间部与所述压缩部的吸入侧连通的连通机构;对所述连通机构进行开闭的控制机构。
根据本发明的容积式压缩机,可使用具有高能量转换效率的自起动式同步电动机,并使压缩机的外径尺寸不会变大,能可靠地起动。


图1是本发明的第1实施方式的涡旋式压缩机的纵剖视图。
图2是图1的A-A剖视图。
图3是表示第1实施方式的涡旋式压缩机中的自起动式同步电动机的转矩与转速之间的概略关系的图。
图4是第2实施方式中的涡旋式压缩机的压缩室结构的横剖视图。
图5是图4的涡旋式压缩机的主要部分剖视图。
图6是本发明的第3实施方式的涡旋式压缩机的主要部分剖视图。
图7是本发明的第4实施方式的螺旋式压缩机的纵剖视图。
图8是本发明的第5实施方式的往复式压缩机的纵剖面概略图。
图9是本发明的第6实施方式的回转式压缩机的的压缩部分的纵剖视图。
图10是本发明的第7实施方式的回转式压缩机的的压缩部分的横剖视图。
图中1-静涡盘,2-动涡盘,3-机架,4-自起动式同步电动机,5a-定子,5b-转子,6-曲轴,7-欧式环(oldham ring),11-压缩室,12-供油泵,13-润滑油,14-排出空间,17-吸入空间,19-连通路(连通机构),20-止回阀(止回机构),21-起动负载减轻机构,30-永久磁铁,31-笼型导体,50-连通路(连通机构),50a、50b-连通路,51-控制机构,52-吸入空间,53-起动负载减轻机构,53a-连通路,53b-控制机构,53e-连通路,54-起动负载减轻机构,100-自起动式同步电动机,100a-定子,100b-转子,101-外螺旋辊,103-吸入空间,104-排出空间,105-滑阀,109-螺旋罩,120-活塞,121-气缸(cylinder),124-阀部,128-压缩室,129-吸入空间,140-气缸,141a、141b-端板,142-辊,143-叶片,144-压缩室,149a-连通路,149b-控制机构,149c-连通路,150a-连通路,150b-控制机构,150c-连通路。
具体实施例方式
以下,使用附图,对本发明的多个实施方式进行说明。各实施方式的图中的同一标记表示同一部件或类似部件。
实施例1使用图1~图3,对本发明的第1实施方式的涡旋式压缩机详细地进行说明。
首先,使用图1对涡旋式压缩机的整体结构进行说明。图1是本实施方式的涡旋式压缩机的纵剖视图。本实施方式的涡旋式压缩机的构成为备有自起动式同步电动机5,其作为感应电动机起动,在同步转速附近进行同步引入从而进行同步运转;压缩部,其具有压缩工作流体的压缩室11;密闭容器4,其收纳自起动式同步电动机5及压缩部;起动负载减轻机构21,其在起动时减轻压缩部的负载。
压缩部的基本元件为静涡盘1、动涡盘2、机架3。机架3固定在密闭容器4中。静涡盘1的基本构成部分为涡圈(lap)1a、端板1b、涡圈齿底1c、涡圈齿顶1d、及排出口1e。该静涡盘1被构成为具有端板1b和竖立设置于该端板1b上的涡旋状的涡旋式涡圈1a,至少大致限制与竖立设置该涡旋式涡圈1a的方向,即,轴线方向垂直的面内方向中的运动。在图示例中,静涡盘1固定在机架3上。动涡盘2的基本构成部分为涡圈2a、端板2b、涡圈齿底2c、及涡圈齿顶2d。该动涡盘2被构成为具有端板2b、和竖立设置于该端板2b上的涡旋状的涡旋式涡圈2a,在与竖立设置该涡旋式涡圈2a的方向,即,轴线方向垂直的面内不发生自转而进行回旋运动。
对动涡盘2进行回旋驱动的驱动部的基本元件为定子5a、转子5b、欧式环7、曲轴的轴支承部8、9及动涡盘2的轴支承部10。定子5a及转子5b为旋转驱动机构的自起动式同步电动机5的主要元件。欧式环7为曲轴6与动涡盘2的自转防止机构的主要元件。滚动轴承8、9作为旋转自如地卡合曲柄6的曲柄6的轴支承部,由滚动轴承构成。轴支承部8、9设置在自起动式同步电动机5的压缩室11侧与反压缩室侧这两侧。也可以仅在压缩室11侧配置一个曲轴6的轴支撑部。另外,曲轴6的轴支承部除滚动轴承外,也可为滑动轴承等轴支承部件。动涡盘2的轴支承部10可沿旋转轴方向,即,轴向方向移动且旋转自如地卡合动涡盘2与曲轴6的偏心销部6a。
通过由设置于曲轴6内的供油路径6b与设置于曲轴6的下端的供油泵12构成的供油机构,来进行向曲轴6的轴支承部8、9的供油和向动涡盘2的轴支承部10的供油。供油路径6b以将曲轴6的轴承支承部8、9及动涡盘2的轴支承部10与外部供油泵12连通的方式设置。供油泵12浸渍在贮存于密闭容器4的下部空间中的润滑油13内。通过供油泵12的旋转,将贮存于密闭容器4的下部空间中的润滑油13经由供油路径6b供给到各部8~10中。另外,代替供油泵12,可通过在曲轴6上构成的由偏心旋转动作产生的离心泵作用来实现,也可以通过利用了排出空间14与动涡盘的端板2b的背面空间15之间的压差的压差供油作用来实现。
压缩动作大致分为吸入行程、压缩行程、排出行程。在吸入行程中,伴随动涡盘2的旋转运动,工作流体经由吸入口16、吸入空间17被吸入到压缩室11中。吸入空间17是形成在压缩部中的空间,构成压缩部的吸入侧。具体地说,吸入空间17是形成于静涡盘1与动涡盘2之间的空间。在压缩行程中,伴随着动涡盘2的进一步回旋运动,减少压缩室11的容积,从而使工作流体在压缩室11内被压缩。在排出行程中,伴随着动涡盘2的进一步旋转运动,使压缩室11与静涡盘1的排出口1e连通,从而使在压缩行程中被压缩的工作流体经由排出空间14、排出口18,从静涡盘1的排出口1e排出。另外,排出到排出空间14中的工作流体经由排出口18,被排出到压缩机的外部。
起动负载减轻机构21位于密闭容器4内,被设置在压缩部中。根据该结构,不会将冷冻循环的配管结构设置得复杂,可只用压缩机构成起动负载减轻机构。起动负载减轻机构21被构成为,备有连通机构,其连通压缩室11的中间部与压缩部的排出侧;流入防止机构,其防止工作流体从压缩部的排出侧流入压缩室11的中间部。
连通机构由用于将压缩室11的中间部与排出空间14连通的连通路19构成。该连通路19由用于沿上下方向贯通静涡盘1的连通孔构成。根据该连通机构,由于为极其简单的结构,所以廉价,而且不会由于该设置而导致空间的增大的问题。另外,排出空间14为由密闭容器4形成的空间,其构成了压缩部的排出侧。
流入防止机构由止回阀20构成,该止回阀20防止工作流体从排出空间14通过连通路19流入到压缩室11中。该止回阀20由安装于静涡盘1的上面的阀板形成,以使对连通路19的排出空间侧开口进行开闭。根据该流入防止机构,由于为极其简单的结构,所以廉价,而且不会由于该设置而实质性地导致空间的增大。另外,止回阀20被构成为,基于压缩室11的中间部的压力与压缩部的排出侧的压力之间的压差而进行动作。具体地说,止回阀20当压缩室11的中间部的压力比止回阀20自身的弹簧力与排出空间14的压力之和大的情况下,将连通路19开路,排出空间14的压力上升,当止回阀20自身的弹簧力与排出空间14的压力之和比压缩室11的中间部的压力大的情况下,将连通路19闭路。根据该止回阀20,可在起动时自动地进行开闭,从这点也可通过简单的构成,得到廉价的装置。另外,连通路19可设置成多个,在这种情况下,可大幅度减轻起动时压缩部的压缩容量。另外,在重视压缩性能的情况下,理想的是将连通路19的通路径设置得比旋转蜗旋式涡圈2a的宽度更小。另外,可用一个止回阀20防止多个连通路19的逆流,也可设置多个止回阀20。进而,止回阀20为图示的板型的阀,但也可为圆锥状、即、提动型的阀。
使用图2,对本实施方式中的自起动式同步电动机5的基本结构进行说明。图2为图1的A-A剖视图。但是,在图2中,省略剖面部分的剖面线。
自起动式同步电动机5如上述那样备有定子5a、转子5b。定子5a基本上由定子铁心33、作用于定子磁铁33上的长孔(slot)32、作用于长孔32上的电枢线圈(未图示)构成。转子5b基本上由转子铁心34、设置于转子34上的笼型导体31、永久磁铁30、转子5b与曲轴6的卡合部分构成。多个笼型导体31是用于作为感应电动机起动的基本构成元件,永久磁铁30是用于作为同步电动机以同步速度进行运转的基本构成元件。另外,作为定子5a、转子5b的构成的一例,同步速度也可为商用电源时的同步速度以外的速度。
使用图3,对本实施方式的涡旋式压缩机的动作进行说明。图3是表示本实施方式的涡旋式压缩机中的自起动式同步电动机5的转矩与转速之间的概略关系。
自起动式同步电动机5中,作为表示感应电动机起动后,在同步转速附近进行同步引入而向同步运转移行时的同步引入的强度的指标之一,有同步引入转矩。可以说该同步引入转矩越大,同步引入越容易。例如,在不备有起动负载减轻机构21的涡旋式压缩机中,在自起动式同步电动机5具有图3(3)的起动转矩特性且具有足够的同步引入转矩的情况下,自起动式同步电动机5的起动转矩变化为图3中的从a→b→c。即,在a→b中作为感应机起动并使转速上升,在到可进行同步引入的b时向同步状态、即c进行引入,从而完成起动。若在不备有起动负载减轻机构21的涡旋式压缩机中,在自起动式同步电动机5不具有足够的同步引入转矩的情况下,在作为感应机起动后,转矩b1在涡旋式电动机的起动转矩(3)以下,所以导致不会到达同步引入,从而无法起动。作为使同步引入转矩变大的方法,存在使配置在转子5b中的笼型导体31的量增多的方法,但产生不得不使自起动式同步电动机5的外形尺寸变大的问题。即,为了确保同步运转时的高能量转换效率,有必要确保需要量的永久磁体30,而为了改善起动性使笼型导体31增量,这样会直接导致自起动式同步电动机5的大型化的问题。
在本实施方式的涡旋式压缩机中,备有自起动式同步电动机5作为驱动用电动机,且在静涡盘1上配置有起动负载减轻机构21,所述起动负载减轻机构21包括连通压缩室11与排出空间14的连通路19、防止从排出空间14到压缩室11的逆流的止回阀20,所以可将起动转矩特性从图3(3)减少到图3(4)。即,起动时的压缩室内压为大致相同的压力,若从该状态开始进行压缩,则由于存在刚压缩后没有到达排出口1e的压缩室11,所以压缩室内的压力比排出压力更高,起动负载非常大。但是,若使用本实施方式的起动负载减轻机构21,则由于可降低起动负载,压缩室内压不会比排出压力高。在这种情况下,起动转矩变化为从图3中的a→b’→c’,在作为感应起动后,由于不会使备有起动负载减轻机构的涡旋式压缩机的起动转矩下降到b2,所以与不备有起动负载减轻机构的情况相比,可以以较小的同步引入转矩进行同步引入。从以上得出,在将自起动式同步电动机5作为驱动用电动机的涡旋式压缩机中,若为备有起动负载减轻机构21的涡旋式压缩机,则与不备有起动负载减轻机构21的情况相比,可以以较小的同步引入转矩进行引入,所以可使起动性变好,且由于可不使自起动式同步电动机5的外形变大,所以可采用高能量转换效率的自起动式同步电动机5作为涡旋式压缩机的驱动用电动机。
根据本实施方式,通过以在压缩部上配置有起动负载减轻机构21为特征的自起动式同步电动机5驱动的涡旋式压缩机可降低起动负载,所以在不使压缩机的外径尺寸变大的情况下,能可靠地实行自起动式同步电动机5的同步引入,可实现备有起动性良好的自起动式同步电动机5的涡旋式压缩机。即使对涡旋式压缩机反复进行开闭控制的情况下,也可使起动负载降低,所以可确保良好的起动性,可与开闭控制随动。因此,由于采用具有高能量转换效率的自起动式同步电动机5作为涡旋式压缩机的驱动用电动机,所以可提供具有高能量转换效率的涡旋式压缩机。
实施例2接着,使用图4及图5,对本发明的第2实施方式进行说明。图4是本发明的涡旋式压缩机的横剖视图,图5是图4的涡旋式压缩机的主要部分剖视图。该第2实施方式在下述方面与第1实施方式不同,关于其他方面与第1实施方式基本相同。
在第2实施方式中,备有自起动式同步电动机5作为驱动用电动机,作为起动负载减轻机构54,在静涡盘1上配置有连通压缩室11与吸入空间52的连通路50和对该连通路50进行开闭的控制机构51。吸入空间52与吸入口16、吸入空间17连通,并是在涡旋式涡圈1a的大致外周部上形成的空间。设置有多个连通路50。各连通路50包括与压缩室11连通的连通路50a、与吸入空间52连通的连通路50b。各连通路50a与压缩室11不同工序容积的位置连通。在各连通路50的途中,配置有对各连通路50进行开闭的控制机构51。控制机构51对压缩室11与吸入空间52进行控制,使其在涡旋式压缩机起动后的几秒到几分钟间连通。若为备有该起动负载减轻机构54的构成,则可在控制中使涡旋式压缩机的行程容积减小,使所需的起动转矩变小。
根据第2实施方式,作为起动负载减轻机构54,在静涡盘1上配置有连通压缩室11与吸入空间52的连通路50、和对该连通路50进行开闭的控制机构51,所以可使涡旋式压缩机的行程容积减小,可使所需的起动转矩变小。由此,由于起动时所需的转矩变小,则与不备有起动负载减轻机构21的情况相比可以以较小的同步引入转矩进行引入,所以可使起动性变好,且由于可不使自起动式同步电动机5的外形变大,所以可采用高能量转换效率的自起动式同步电动机5作为涡旋式压缩机的驱动用电动机。另外,虽然也可将吸入口16或吸入空间17直接与压缩室11连通,但是比较起来,使其与在固定涡旋式涡圈1a的大致外周部上形成的吸入空间52连通,可使构成紧凑。
实施例3接着,使用图6,对本发明的第3实施方式进行说明。图6是本发明的第3实施方式的涡旋式压缩机的主要部分剖视图。该第3实施方式在下述方面与第2实施方式不同,关于其他方面与第2实施方式基本相同。
第3实施方式的起动负载减轻机构53将连通压缩室11的连通路53a、连通吸入空间52的连通路53e、对连通路53a、53e进行开闭控制的活塞53b作为基本元件。如图所示,为了防止活塞53b脱落,而设置有止动件53d。在活塞53b内部设置有连通孔53c。另外,在通路53a侧设置使压缩室11的压力作用于活塞53b上的结构53f。在活塞53b的连通路53a侧,作用有压缩室11的压力,在活塞53b的连通路53e侧作用有排出空间14的压力。即,活塞53b被构成为基于压缩室11的中间部的压力与压缩部的排出侧的压力之间的压差而动作的。具体地说,在压缩室11的中间部的压力比排出空间14的压力大的情况下,活塞53b向右侧移动,经由连通路19将连通路53a与连通路53e连通,排出空间14的压力上升,在排出空间14的压力变成比压缩室11的中间部的压力大的情况下,活塞53b向左侧移动,将连通路53a与连通路53e的连通解除。通过该作用,在压缩室11的压力比排出空间14的压力大的情况下,通路53a与53e始终连通,从而可减少涡旋式压缩机的行程容积,使所需的起动转矩变小。
实施例4接着,使用图7,对本发明的第4实施方式进行说明。图7是本发明的第4实施方式的螺旋式压缩机的纵剖视图。
第4实施方式的螺旋式压缩机备有自起动式同步电动机100作为起到动用电动机,作为起动载荷减轻机构,在螺旋式辊的啮合部上配置有可向该螺旋式辊的轴方向滑动的滑阀105。另外,自起动式同步电动机100由于与第1~第3实施方式相同,所以仅对压缩机的结构进行说明。
就第4实施方式的螺旋式压缩机的基本构成进行说明。驱动源为由定子100a、转子100b形成的自起动式同步电动机100。与外螺旋辊101卡合的轴108卡合到转子100b上,外螺旋辊101通过自起动式同步电动机100被旋转驱动,从而进行压缩动作。另外,也可以是内螺旋辊(未图示)与轴108卡合,内螺旋辊通过自起动式同步电动机100被旋转驱动,从而进行压缩动作。压缩部备有相互啮合的一对外螺旋辊101与内螺旋辊。压缩室包括外螺旋辊101与内螺旋辊的啮合部、罩(casing)部件109。通过驱动自起动式同步电动机100对压缩部进行驱动时,工作流体通过吸入口106被吸入,经过自起动式电动机100,由吸入口103吸入到压缩室中。吸入到压缩室中的工作流体随着外、内螺旋辊的旋转而被压缩后,经由排出口104、排出口107排出到外部。
起动负载减轻机构由使压缩室与吸入空间103连通的连通机构、对该连通机构进行开闭的控制机构构成,作为起动负载减轻机构,在外、内螺旋辊的啮合部上配置有可向螺旋式辊的轴方向滑动的滑阀105。图示的滑阀105表示处于吸入空间103侧的状态。在这种情况下,可将由外、内螺旋辊的啮合部、罩部件109构成的压缩室的行程容积设定为最大,但是有可能在起动时使所需的转矩变大,使自起动式同步电动机100的起动变差。另一方面,在滑阀105处于排出口104侧的情况下,可将压缩室的行程容积设定为最小,可使起动时的所需转矩变小,所以可改善自起动式同步电动机100的起动性。
如以上所述,通过使起动时所需转矩变小,与不备有起动负载减轻机构的情况相比可以以较小的同步引入转矩进行同步引入,所以可使起动性变好,并且不会使自起动式同步电动机5的外形变大,所以可采用高能量转化效率的自起动式同步电动机5作为螺旋式压缩机的驱动用电动机。
实施例5接着,使用图8,对本发明的第5实施方式进行说明。图8是本发明的第5实施方式的往复式压缩机的纵剖面概略图。在图8中,省略自起动式同步电动机,并且扩大往复式压缩机的压缩部。
第5实施方式的往复式压缩机备有自起动式同步电动机作为驱动用电动机,作为起动负载减轻机构127,将连通压缩室128与吸入空间129的连通路127a、对该连通路127a进行开闭的控制机构127b、127c配置在气缸121上。另外,由于自起动式同步电动机与第1~第4实施方式相同,所以仅说明压缩机的结构。
对第5实施方式的往复式压缩机的基本构成进行说明。驱动源为由定子及转子构成的自起动式同步电动机。构成往复式压缩机的压缩部的基本元件为活塞120、具有活塞120进行往复运动的腔部122的气缸121、对腔部122的开口部进行关闭的阀部124。压缩室128由活塞120、腔部122、阀部124构成。工作流体经由吸入口130、吸入口123、吸入阀124a吸入到压缩室128中。伴随活塞120的移动,工作流体被压缩,然后经由排出阀124b、排出口125排出。
起动负载减轻机构由使压缩室与吸入空间连通的连通机构、对该连通机构进行开闭的控制机构构成,作为起动负载减轻机构,图示了下述实例,即在气缸121上配置有将连通压缩室128与吸入空间129的连通路127a、对连通路127a进行开闭的控制机构127b、127c。连通路127a形成在气缸121的壁面上,使压缩室128与吸入空间129连通。对连通路127a进行开闭的控制机构由可动部位127b与固定部位127c构成。可动部位127b的压缩室侧承受压缩室128的压力,可动部件127b的压缩室相反一侧承受压缩部的排出侧的压力。为了使排出压力作用于可动部位127b的压缩室相反一侧,在可动部位127上,连接有通过排出口125分路的配管126。在压缩室压力比排出压力低的情况下,控制机构的可动部位127b向压缩室128侧移动,将连通路127a关闭,另一方面,在压缩室压力比排出压力高的情况下,可动部位127b向压缩室相反一侧移动,从而使连通路127a开放。因此,在起动时压缩室压力变成比排出压力大的情况下,可使连通路127a开放,可使起动所需的转矩变小,可改善自起动式同步电动机的起动性。根据以上,通过使起动时所需转矩变小,与不备有起动负载减轻机构的情况相比可以以较小的同步引入转矩进行同步引入,所以可使起动性变好,并且可使自起动式同步电动机的外形不会变大,所以可采用高能量转化效率的自起动式同步电动机作为往复式压缩机的驱动用电动机。
实施例6接着,使用图9,对本发明的第6实施方式进行说明。图9为本发明的第6实施方式的回转式压缩机的压缩部分的纵剖视图。
第6实施方式的回转式压缩机备有自起动式同步电动机作为驱动用电动机,作为起动负载减轻机构150,在气缸140或端板141a上配置有将压缩室144与压缩部的吸入侧连通的连通路150a、150c、对该连通路150a、150c进行关闭的控制机构150b。另外,由于自起动式同步电动机与第1~第5实施方式一样,所以仅对压缩机的结构进行说明。
对示出第6实施方式的回转式压缩机的基本构成进行说明。驱动源为由定子、转子构成的自起动式同步电动机。构成回转式电动机的压缩部的基本元件包括气缸140;对气缸140的两端部进行封闭的端板141a、141b;配置在被气缸140、与端板141a、141b包围的空间上的辊142;与辊142一起运动而使压缩室144发生变化的叶片143。压缩室144为由辊142、气缸140、端板141a、141b、辊142、叶片143构成的空间容积。工作流体经由吸入口146吸入到压缩室144中。伴随辊142的移动,工作流体被压缩,经由排出口147、排出阀(未图示)排出。
起动负载减轻机构150由使压缩室与吸入空间连通的连通机构、对该连通机构进行开闭的控制机构构成,作为起动负载减轻机构150,图示了下述实例,即在气缸140或端板141a上,配置有将压缩室144连通到吸入口146上的连通路150a、150c、对连通路150a、150c进行开闭的控制机构150b。连通路150a、150c经由气缸140及端板141a,使压缩室144与吸入口146连通。对连通路150a、150c进行开闭的控制机构150b对压缩室144与吸入口146进行控制,使其从回转压缩机起动后的几秒到几分钟连通。由此,可减小回转式压缩机的行程容积,可使起动所需的转矩变小。
根据以上,在第6实施方式中,可使起动时所需转矩变小,与不备有起动负载减轻机构150的情况相比可以以较小的同步引入转矩进行同步引入,所以可使起动性变好,并且可使自起动式同步电动机的外形不会变大,可采用高能量转化效率的自起动式同步电动机作为回转式压缩机的驱动用电动机。
实施例7接着,使用图10,对本发明的第7实施方式进行说明。图10为本发明的第7实施方式的回转式压缩机的压缩部分的纵剖视图。
第7实施方式的回转式压缩机备有自起动式同步电动机作为驱动用电动机,作为起动负载减轻机构149,在气缸140上配置有将压缩室144与压缩部的吸入侧(吸入口146)连通的连通路149a、149c、对该连通路149a、149c进行关闭的控制机构149b。另外,由于自起动式同步电动机与第1~第5实施方式一样,所以仅对压缩机的结构进行说明。
对示出第7实施方式的回转式压缩机的基本构成进行说明。驱动源为由定子、转子构成的自起动式同步电动机。构成回转式电动机的压缩部的基本元件包括气缸140;对气缸140的进行封闭的端板141a、141b;配置在被气缸140、端板141a、141b包围的空间上的辊142;与辊142一起运动使压缩室144发生变化的叶片143。压缩室144为由辊142、气缸140、端板141a、141b、辊142、叶片143构成的空间容积。工作流体经由吸入口146吸入到压缩室144中。伴随辊142的移动,工作流体被压缩,经由排出口147、排出阀(未图示)排出。
起动负载减轻机构149由使压缩室与吸入空间连通的连通机构、对该连通机构进行开闭的控制机构构成,作为起动负载减轻机构149,图示了下述实例,即在气缸140上,配置有将压缩室144连通到吸入口146上的连通路149a、149c、对连通路149a、149c进行开闭的控制机构149b。连通路149a、149c经由气缸140,使压缩室144与吸入口146连通。对连通路149a、149c进行开闭的控制机构149b对压缩室144与吸入口146进行控制,使其从回转压缩机起动后的几秒到几分钟间连通。由此,可减小回转式压缩机的行程容积,可使起动所需的转矩变小。
根据以上,在第7实施方式中,可使起动时所需转矩变小,与不备有起动负载减轻机构149的情况相比可以以较小的同步引入转矩进行同步引入,所以可使起动性变好,并且可使自起动式同步电动机的外形不会变大,可采用高能量转化效率的自起动式同步电动机作为回转式压缩机的驱动用电动机。
权利要求
1.一种容积式压缩机,备有自起动式同步电动机,作为感应电动机起动,在同步转速附近进行同步引入,从而进行同步运转;压缩部,具有压缩工作流体的压缩室;密闭容器,收纳自起动式同步电动机及压缩部,让起动时减轻所述压缩部负载的起动负载减轻机构位于所述密闭容器内,并被配置在所述压缩部上。
2.如权利要求1所述的容积式压缩机,其特征在于,所述起动负载减轻机构被构成为,备有将所述压缩室的中间部与所述压缩部的排出侧连通的连通机构;防止工作流体从所述压缩部的排出侧流入到所述压缩室的中间部的流入防止机构。
3.如权利要求2所述的容积式压缩机,其特征在于,所述流入防止机构是由阀构成,所述阀根据所述压缩室的中间部与所述压缩部的排出侧之间的压差,对所述连通机构进行开闭。
4.如权利要求2所述的容积式压缩机,其特征在于,所述连通机构被构成为将所述压缩室的多个位置的中间部与所述压缩部的排出侧连通。
5.如权利要求1所述的容积式压缩机,其特征在于,所述起动负载减轻机构被构成为,备有将所述压缩室的中间部与所述压缩部的吸入侧连通的连通机构;对所述连通机构进行开闭的控制机构。
6.如权利要求5所述的容积式压缩机,其特征在于,所述控制机构是由阀构成,所述阀根据所述压缩室的中间部与所述压缩部的排出侧之间的压差,对所述连通机构进行开闭。
7.如权利要求5所述的容积式压缩机,其特征在于,所述连通机构被构成为将所述压缩室的多个位置的中间部与所述压缩部的吸入侧连通。
8.一种涡旋式压缩机,在权利要求2所述的容积式压缩机中,所述压缩部被构成为,备有动涡盘,具有端板和竖立设置于该端板上的涡旋状的涡旋式涡圈,在与竖立设置该涡旋式涡圈的方向,即,轴线方向垂直的面内不发生自转而进行回旋运动;静涡盘,具有端板和竖立设置于该端板上的涡旋状的涡旋式涡圈,至少大致限制与竖立设置该涡旋式涡圈的方向,即,轴线方向垂直的面内方向中的运动;使所述动涡盘与所述静涡盘啮合而在两个涡盘之间构成的压缩室,所述起动负载减轻机构被构成为,备有连通路,以连通所述压缩室的中间部与形成在所述密闭容器内的排出空间的方式形成在所述静涡盘上;止回阀,设置于所述涡盘上,以使防止工作流体从所述排出空间通过所述连通路流入到所述压缩室。
9.一种涡旋式压缩机,在权利要求2所述的容积式压缩机中,所述压缩部被构成为,备有动涡盘,具有端板和竖立设置于该端板上的涡旋状的涡旋式涡圈,在与竖立设置该涡旋式涡圈的方向,即,轴线方向垂直的面内不发生自转而进行回旋运动;静涡盘,具有端板和竖立设置于该端板上的涡旋状的涡旋式涡圈,至少大致限制与竖立设置该涡旋式涡圈的方向,即,轴线方向垂直的面内方向中的运动;使所述动涡盘与所述静涡盘啮合而在两个涡盘之间构成的压缩室,所述起动负载减轻机构被构成为,备有连通路,以连通所述压缩室的中间部与形成在所述压缩部上的吸入空间的方式形成在所述静涡盘上;止回阀,设置于所述涡盘上,以使防止工作流体从所述压缩室通过所述连通路流入到所述吸入空间中。
10.如权利要求8或9中所述的涡旋式压缩机,其特征在于,所述止回阀被构成为根据所述压缩室的中间部的压力与所述压缩部的排出侧的压力之间的压差而动作。
11.一种螺旋式压缩机,在权利要求1所述的容积式压缩机中,所述压缩部被构成为,备有相互啮合的一对外、内螺旋辊;罩部件;由所述两螺旋辊的啮合部与所述罩部件构成的压缩室;所述起动负载减轻机构被构成为,在所述两螺旋辊的啮合部上设置可沿其轴方向滑动的滑阀。
12.一种往复式压缩机,在权利要求1所述的容积式压缩机中,所述压缩部被构成为,备有活塞;具有使所述活塞进行往复运动的腔部的气缸;对所述腔部的开口部进行封闭的阀部;由所述活塞、所述腔部及所述阀部构成的压缩室,所述起动负载减轻机构被构成为,备有连通路,使连通所述压缩室的中间部与形成在所述密闭容器内的吸入空间的方式形成在所述气缸上;止回阀,设置于所述气缸上,以使防止工作流体从形成于所述密闭容器内的吸入空间通过所述连通路流入。
13.一种回转式压缩机,在权利要求1所述的容积式压缩机中,所述压缩部被构成为,备有气缸;对所述气缸的两端部进行封闭的端板;配置在被所述气缸与所述端板包围的空间上的辊部;起到使由所述气缸、所述端板及所述辊部构成的空间容积与所述辊部的运动一起发生变化这种作用的叶片部;由所述气缸、所述端板、所述辊部及所述叶片部构成的压缩室,所述起动负载减轻机构被构成为,备有使所述压缩室的中间部与所述压缩部的吸入侧连通的连通机构;对所述连通机构进行开闭的控制机构。
全文摘要
一种容积式压缩机,备有自起动式同步电动机(5),作为感应电动机起动,在同步转速附近进行同步引入,从而进行同步运转;压缩部,具有压缩工作流体的压缩室(11);密闭容器(4),收纳自起动式同步电动机(5)及压缩部。容积式压缩机起动时的减轻压缩部负载的起动负载减轻机构(21)位于密闭容器(4)内,并被配置在压缩部上。这样,在容积式压缩机中,使用具有高能量转换效率的自起动式同步电动机,且使压缩机的外径尺寸不会变大,能可靠起动。
文档编号H02P1/16GK1796785SQ200510134150
公开日2006年7月5日 申请日期2005年12月27日 优先权日2004年12月27日
发明者土屋豪, 柳濑裕一, 藤村和幸, 松永睦宪, 野泽重和, 东条健司, 小原木春雄, 菊地聪, 香宗我部弘胜 申请人:株式会社日立空调系统
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1