感应型同步电机的制作方法

文档序号:7286491阅读:240来源:国知局
专利名称:感应型同步电机的制作方法
技术领域
本发明涉及一种感应型同步电机。更具体地,本发明涉及一种电动机或发电机,其包括磁性材料(电感器),其在磁场侧上将磁通感生到预定位置,旋转轴的旋转与电枢的极性变化相同步。
背景技术
如图20所示,在JP-A-54-116610或JP-A-6-86517中公开的发电机中,旋转轴1通过轴承穿透支架2,该支架2用作外壳。励磁绕组5配置在磁轭4的外围,该磁轭被装配并固定到旋转轴1,且配置了爪形磁极6和7,以使其交替地从励磁绕组5的左右侧突出,由此转子被形成为一个整体。同时,定子绕组8被配置在支架2上,从而面对爪形磁极6和7。通过滑环9可滑动地将电功率提供到励磁绕组5。
根据上述结构,如图所示,当通过滑环9向励磁绕组5提供直流电流由此使得在励磁绕组5的右侧产生N极而在励磁绕组5的左侧产生S极时,在从右侧突出的爪形磁极6上感应出N极,并同时在从左侧突出的爪形磁极7上感应出S极。因此,可以在转子的外圆周侧上沿着其圆周方向交替地产生多个N极和多个S极。
然而,励磁绕组5被形成为转子的一部分,且需要通过滑动接触经由滑环9向旋转移动的励磁绕组5提供电功率。因此,结构变得复杂。此外,存在诸如以下的问题,如由于滑环9处的接触磨损而导致的寿命下降,以及由于滑环9处的滑动接触的不稳定而导致的功率供应的不稳定。
专利文献1JP-A-54-116610专利文献2JP-A-6-86517

发明内容
本发明将要解决的问题已经考虑到上述问题而做出了本发明,且其目的是允许一种用于向线圈提供电功率的简单结构。
解决所述问题的装置为了解决所述问题,本发明提供了一种感应型同步电机,包括励磁定子,其具有励磁元件,通过该励磁元件同心地形成N极和S极;转子,其具有N极电感器,该N极电感器由磁性材料形成且被配置为面对励磁元件的N极,以及具有S极电感器,其由磁性材料形成且被配置为面对励磁元件的S极,其中旋转轴被固定到转子;以及电枢定子,其具有电枢线圈,该电枢线圈被配置为面对所述N极电感器以及所述S极电感器。
根据上述结构,由于励磁元件以及电枢线圈连接到相应的定子,因此不需要用于将电功率馈送到线圈的例如滑环的滑动接触部件。因此,可以简化结构,以及可以解决例如由于滑环处的接触磨损而导致的寿命下降以及功率供应的不稳定。
当转子旋转时,在励磁定子的N极产生位置处,N极电感器沿着圆周移动,同时在励磁定子的S极产生位置处,S极电感器沿着圆周移动。因此,每个电感器感应了特定的极性。励磁定子以及电枢定子可以彼此分离或者彼此结合。
在同步电机是电动机的情况下,通过周期性地改变电枢线圈的极性来进行功率馈送。因此,在电枢线圈以及N极和S极电感器之间产生了吸引力/推斥力,由此使转子旋转以及产生了旋转轴的驱动力。在同步电机作为发电机的情况下,通过旋转轴的旋转运动而使N极电感器以及S极电感器围绕轴旋转,由此使得感应电流流入电枢线圈。
励磁元件可以围绕旋转轴的轴卷绕的励磁线圈,以及部分N极电感器可以被配置为面对励磁线圈的外圆周侧以及内圆周侧的其中一个,同时部分S电感器被配置为面对另一个。
根据上述结构,当向励磁线圈提供直流电流时,在励磁线圈的外圆周侧以及内圆周侧的其中一个上产生了N极,同时在另一个上产生了S极,由此使得N极和S极可以是同心的。因此,可以使得N极电感器和S极电感器利用单个励磁线圈产生多极的磁场。相应地,可以简化线圈绕组的制造,由此可以提高制造效率。
可选地,励磁元件可以是围绕旋转轴的轴配置的永磁体,以及部分N极电感器被配置为面对永磁体的N极侧,同时部分S极电感器被配置为面对永磁体的S极侧。
根据上述结构,永磁体被配置到所述励磁定子。因此,提高了感应型同步电机的制造效率,以及可以简化结构。
此外,在根据本发明的感应型同步电机是感应型电动机的情况下,即使当永磁体被用作励磁元件时,该感应型电动机也可以充分地处理从1kW到5MW的输出功率,由此减小了感应型同步电机的尺寸。
励磁元件以及电枢线圈中的至少其中之一由超导材料形成。
构成每个电感器的磁性材料通常大于空气三个数位或更多。因此,励磁元件产生的磁通主要通过该电感器。然而,由于在励磁元件以及每个电感器之间或在电枢线圈以及电感器之间配置了预定的气隙,因此存在这样的情况,即磁阻增加了,由此出现磁通泄漏,其中磁通朝着不期望的方向偏离,以及对输出起作用的磁通量因此减少了。
当励磁元件以及电枢线圈的其中一个或者两个由超导材料形成时,可以在不担忧发热的情况下馈送较大电流,以及可以显著地提高将要产生的磁通。相应地,即使当出现了磁通泄漏时,由于所产生的总磁通增加了,因此对输出起作用的磁通也增加了,从而获得了大功率输出。此外,通过超导化,可以获得较大的电流密度。因此,可以减小励磁元件和电枢线圈的尺寸,由此可以减少同步电机的尺寸以及重量。作为超导材料,可以适当地使用基于铋或者基于钇的高温超导材料。
此外,考虑提供超导材料冷却结构以发挥预定超导性能的情况,由于励磁元件以及每个电枢线圈都连接到定子并且不从那里移动,因此可以更加容易地设计冷冻剂供给路径或密封结构,以及可以简化冷却结构。
每个N极电感器和S极电感器的横截面积从一端到另一端可以是恒定的。
即,根据上述结构,由励磁元件产生的以及被引入每个电感器的磁通变得不易于在电感器内饱和。因此,可以有效地将磁通引入电枢线圈。
同时,N极电感器的横截面积以及S极电感器的横截面积可以大体上相等。
即,由于使电感器的横截部分一致,因此在电感器以及电枢线圈之间产生的吸引力/推斥力变得恒定的,由此可以使转子旋转平衡变得稳定。
同步电机的具体结构可以是轴向气隙结构,其中励磁定子被配置为在转子的轴向方向上面对转子的一侧,且在转子和励磁定子之间具有预定的气隙,以及电枢定子被配置为在转子的轴向方向上面对转子的另一侧,且在该电枢定子和转子之间具有预定的气隙,固定到转子的旋转轴可旋转地穿过并桥接在励磁定子以及电枢定子之间,以及每个励磁元件和电枢线圈的磁通方向被导向为轴向方向。
可选地,其可以是径向气隙结构,其中励磁定子和电枢定子的其中一个是外圆周管,以及转子被配置在外圆周管内,且在所述定子和转子之间具有预定的气隙。
本发明的优点如上述说明所示的,根据本发明,励磁元件和电枢线圈都连接到定子。因此,不需要用于馈送电功率到线圈的例如滑环的滑动接触部件。因此,实现了结构的简化,寿命的延长以及功率馈送的稳定。
此外,当励磁元件(励磁线圈)和电枢线圈的其中一个或者两个由超导材料形成时,可以在不担忧发热的情况下馈送较大电流,由此可以显著地提高磁通。因此,即使在出现磁通泄漏的情况下,也可以增加对输出起作用的磁通,由此允许大功率输出。
在每个N极电感器和S极电感器的横截面积从一端到另一端是恒定的情况下,磁通不易于在电感器内饱和,由此可以有效地感应磁通到电枢线圈侧。进一步,在N极电感器的横截面积和S极电感器的横截面积大体上相等的情况下,在电感器和电枢线圈之间产生的吸引力/推斥力是恒定的,由此可以使转子旋转平衡变得稳定。


图1(A)示出了根据本发明第一实施例的感应型同步电动机的剖面图,以及图1(B)示出了从旋转90°的位置观察的感应型同步电动机的另一剖面图。
图2(A)示出了转子的前视图,图2(B)示出了沿着如图2(A)所示的线I-I的剖面图,图2(C)示出了转子的后视图,以及图2(D)示出了沿着如图2(A)所示的线II-II的剖面图。
图3(A)示出了励磁定子的前视图,以及图3(B)示出了沿着图3(A)所示的线I-I的剖面图。
图4(A)示出了其中转子和励磁定子被旋转轴穿透的状态的前视图,图4(B)示出了沿着如图4(A)所示的线I-I的剖面图,以及图4(C)示出了沿着如图4(A)所示的线II-II的剖面图。
图5(A)示出了根据本发明第一实施例的第一变型例的感应型同步电动机的剖面图,以及图5(B)示出了从旋转90°的位置观察的感应型同步电动机的剖面图。
图6(A)以及6(B)示出了根据第一变型例的相应的励磁定子的前视图。
图7(A)以及7(B)示出了根据第二变型例的相应的励磁定子的前视图。
图8(A)以及8(B)示出了根据第三变型例的相应的励磁定子的前视图。
图9(A)示出了根据本发明第一实施例的第二变型例的感应型同步电动机的剖面图,以及图9(B)示出了从旋转90°的位置观察的感应型同步电动机的剖面图。
图10示出了根据第二实施例的感应型同步电动机的剖面图。
图11示出了根据第三实施例的感应型同步电动机的剖面图。
图12(A)示出了其中根据第四实施例的转子和励磁定子被旋转轴穿透的状态的前视图,图12(B)示出了沿着如图4(A)所示的线I-I的剖面图,以及图12(C)示出了沿着如图12(A)所示的线II-II的剖面图。
图13示出了根据第五实施例的感应型同步电动机的剖面图。
图14示出了沿着图13所示的线I-I的剖面图。
图15示出了沿着图13所示的线II-II的剖面图。
图16示出了转子的透视图。
图17示出了根据第六实施例的转子以及励磁定子的透视图。
图18示出了转子以及励磁定子的剖面图。
图19示出了从图18旋转90°的位置观察的剖面图。
图20示出了常规实例的视图。
参考数字和符号的说明10,40,50,70 感应型同步电动机11,15,51,72,92 励磁定子12,14,41,44,60,73,91 转子13,71 电枢定子17,23,30,76,79 真空绝缘外壳18,31,78,93 励磁线圈20,28,62,81,98 N 极电感器21,27,63,82,97 S 极电感器24,7 电枢线圈34,101旋转轴35,36,35′,36′,37,38,37′,38′ 永磁体95 固定轴99,100支撑部分具体实施方式
将参考附图描述本发明的实施例。
图1示出了根据第一实施例的感应型同步电动机(感应型同步电机)10。
感应型同步电机10具有轴向气隙结构,其中旋转轴34依次穿透励磁定子11,转子12,电枢定子13,转子14,以及励磁定子15。将励磁定子11,15以及电枢定子13固定到安装表面G,且相对于旋转轴34提供气隙,以及通过从旋转轴34到转子12,14提供气隙而将转子12,14装配并固定到旋转轴34。
励磁定子11以及励磁定子15相对于映像双向对称。因此,图3(A)以及3(B)示意地示出了其中一个定子15。
每个励磁定子11,15具有由磁性材料制成且被固定到安装表面G的磁轭16,29;绝热冷冻剂容器17,30,其具有嵌入在相应的磁轭16,29内的真空绝缘结构,以及励磁线圈18,31,该励磁线圈是由超导材料制成的绕组,以及被容纳在相应的绝热冷冻剂容器17,30内。
每个磁轭16,29具有松散装配孔16b,29b,其中在磁轭的中心部分钻孔从而具有大于旋转轴34的外径的直径,以及具有凹槽部分16a,29a,该凹槽部分被凹陷地配置为围绕松散装配孔16b,29b的环形形状。每个励磁线圈18,31被容纳在相应的绝热冷冻剂容器30中,液氮在该绝热冷冻剂容器30内循环。每个绝热冷冻剂容器17,30被嵌入在相应的凹槽部分16a,29a中。
磁轭16,29由磁性材料制成,例如波明德合金,硅钢片,铁,以及坡莫合金。作为用于形成励磁线圈18,31的超导材料,可以适当地使用基于铋或者基于钇的高温超导材料。
转子12,14双向对称。因此,图2(A)到2(D)示意地示出了其中一个转子14。
每个转子12,14包括由非磁性材料制成的圆盘形支撑部分19,26,以及具有旋转轴安装孔19a,26a,S极电感器对21,27以及N极电感器对20,28,其中该S极电感器对嵌入在围绕旋转轴安装孔19a,26a的点对称位置处,以及N极电感器对20,28嵌入在从相应的S极电感器21,27的位置旋转90°的位置处。
S极电感器21,27以及N极电感器20,28被配置为使面对电枢定子13的相应的扇形状端面20a,21a,27a,28a被设置在沿着同心圆的相等间距处,以及使得端面20a,21a,27a,28a的面积彼此相等。
S极电感器21,27的另一端面21b,27b被配置为面对励磁线圈18,31的S极产生位置。例如,如图3(C)以及4(B)所示,S极电感器27的另一端面27b具有圆弧形状,且被配置为面对励磁线圈31的外圆周侧。
N极电感器20,28的另一端面20b,28b被配置为面对励磁线圈18,31的N极产生位置。例如,如图3(B)以及4(C)所示,S极电感器27的另一端面27b具有圆弧形状,且被配置为面对励磁线圈31的内圆周侧。
即,每个S极电感器21,27以及N极电感器20,28具有三维形状,其横截面形状沿着如下的轴向方向改变,所述轴向方向是从另一端面20b,21b,27b,28b上的圆弧形状到端面20a,21a,27a,28a上的扇形形状。从另一端面20b,21b,25b,28b到端面20a,21a,25a,28a的每个S极电感器21,27以及N极电感器20,28的横截面积是恒定的。此外,S极电感器20,28的每个另一端面20b,28b的面积与N极电感器21,27的每个另一端面21b,27b的面积相同。
支撑部分26由非磁性材料形成,例如FRP以及不锈钢。电感器27,28由磁性材料制成,例如波明德合金,硅钢片,铁,以及坡莫合金。
如图1(A)以及1(B)所示,电枢定子13包括由非磁性材料形成并被固定到安装表面G的支撑部分22,具有真空绝缘结构并被嵌入在支撑部分22中的绝热冷冻剂容器23,以及电枢线圈24,其每个都是由超导材料制成的绕组并被容纳在绝热冷冻剂容器23中。
支撑部分22具有松散装配孔22b,在支撑部分22的中心部分处钻孔,从而具有大于旋转轴34的外径的直径,以及具有四个安装孔22a,该安装孔22a被钻孔以及被设置在围绕松散装配孔22b沿圆周方向的相等间距处。每个电枢线圈24被容纳在绝热冷冻剂容器23中,液氮在绝热冷冻剂容器23中循环,以及由磁体形成的磁通汇集器25被配置在每个电枢线圈24的中空部分中。分别容纳电枢线圈24的四个绝热冷冻剂容器23被嵌入在线圈安装孔22a中。
磁通汇集器25由磁性材料制成,例如波明德合金,硅钢片,铁,以及坡莫合金。作为形成电枢线圈24的超导材料,可以适当地使用基于铋或者基于钇的高温超导材料。支撑部分22由非磁性材料形成,例如FRP以及不锈钢。
功率馈送装置32通过线路连接到励磁线圈18,31以及电枢线圈24,并向励磁线圈18,31提供直流电流,同时向电枢线圈24提供三相交流电流。
液氮舱33通过绝热管道连接到绝热冷冻剂容器17,23,30,以及循环液氮作为冷却剂。
接着,将描述感应型同步电动机10的操作原理。当向图1中右侧的励磁线圈31提供直流电流时,在励磁线圈31的外圆周侧上产生了S极,同时在其内圆周侧上产生了N极。随后,如图4(A)以及4(B)所示,S极侧上的磁通从另一端面27b被引入S极电感器27,由此S极磁通出现在端面27a上。进一步,如图4(A)以及4(C)所示,N极侧上的磁通从另一端面28b被引入N极电感器28,由此N极磁通出现在端面28a上。由于分别沿着励磁线圈3 1的外圆周以及内圆周同心地设置了另一端面27b,28b,因此S极磁通总是出现在S极电感器的端面27a上,而N极总是出现在N极电感器28的端面28a上。
基于相似的原理,当向图1中左侧的励磁线圈18提供直流电流时,N极总是出现在转子12的N极电感器20的端面20a上,而S极总是出现在S极电感器21的端面21a上。
当在该状态中向电枢线圈24提供三相交流电流时,由于三相当中功率馈送相移而导致围绕电枢定子13的轴产生了旋转磁场18。由于旋转磁场的缘故,围绕转子12,14的N极电感器20,28以及S极电感器21,27的每个轴而产生了转矩,由此转子12,14旋转从而旋转地驱动旋转轴34。
根据上述结构,分别连接有励磁线圈18,31的励磁定子11,15以及连接有电枢线圈24的电枢定子没有旋转,同时,分别连接有电感器20,21,27,28的转子12,14与旋转轴34一起旋转。因此,这不再需要用于向相应的线圈18,31馈送电功率的例如滑环的滑动接触部件,由此可以实现功率馈送结构的简化以及功率馈送的稳定,以及有益于电动机的更长的寿命。进一步,固定了绝热冷冻剂容器17,23,30并且在电动机处于操作中时不会移动,其中从液氮舱33向该绝热冷冻剂容器提供液氮。因此,冷却剂供给路径以及密封结构的设计变得更容易,由此可以实现冷却结构的简化。
此外,由于励磁线圈18,31以及电枢线圈24由超导材料形成,因此可以提供较大电流以急剧地提高磁通。相应地,即使当出现磁通泄漏而使得磁通在不期望的方向上偏离时,也可以增加有益于输出的磁通量,因此,可以实现大功率输出。
此外,由于从另一端面20b,21b,27b,28b到端面20a,21a,27a,28a的每个N极电感器20,28以及S极电感器21,27的横截面积被设置为恒定,因此抑制了电感器20,21,27,28内的磁通饱和,由此可以有效地朝着每个电枢线圈24的方向感应磁通。
此外,由于每个N极电感器20,28的横截面积和每个S极电感器21,27的横截面积大体上相等,因此在电感器和电枢线圈24之间产生的吸引力/推斥力是恒定的,由此可以使转子12,14的旋转平衡变得稳定。
励磁线圈18,31或者电枢线圈24可以由通常的导电材料形成,例如铜导线。在这种情况下,可以省略用于通常导电线的冷却结构。此外,尽管该实施例涉及电动机,但是相同的结构可以在发电机中使用。
图5到9示出了第一实施例的变型例。该变型例与第一实施例的不同之处在于,励磁元件是永磁体。
在图5和6所示的第一变型例中,在径向方向上具有U形横截面以及环形形状的每个永磁体35,36连接到励磁定子11,15的相应磁轭16,29,由此使得同心地配置了N极以及S极。
具体地说,在内圆周侧上具有S极并且在外圆周侧上具有N极的永磁体35连接到环形凹槽部分16a中,该环形凹槽部分16a被凹陷地配置在围绕松散装配孔16b(在图5中的左侧)的励磁定子11的磁轭16上。
另一方面,在内圆周侧上具有S极并且在外圆周侧上具有N极的永磁体36连接到环形凹槽部分29a中,该环形凹槽部分29a被凹陷地配置在围绕松散装配孔29b(在图5中的右侧)的励磁定子15的磁轭29上。
在图7所示的第二变型例中,被分成扇形形状的多个永磁体37,38被配置在凹槽部分16a,29a中,其中,在相邻磁体之间没有间隔的情况下,沿着励磁定子的圆周方向将该凹槽部分16a,29a配置在励磁定子11,15的磁轭16,29中,由此提供了与第一变型例的永磁体的形状相同的形状。
在图8所示的第三变型例中,类似于第二变型例,将多个被分开的永磁体37′,38′沿着励磁定子的圆周方向配置在凹槽部分16a,29a中,该凹槽部分16a,29a配置在励磁定子11,15的磁轭16,29中。然而,代替被分成扇形形状,永磁体37′,38′被形成为外圆周侧上的宽度等于内圆周侧的宽度。因此,尽管在内圆周侧上的相邻磁体之间没有间隔的情况下配置了永磁体37′,38′,但是外圆周侧上的相邻永磁体37′,38′之间具有气隙。
在图9所示的第四变型例中,每个环形永磁体35′,36′的径向方向上的剖面形状被形成在为矩形形状,这与第一到第三变型例不同。
类似于第一变型例,永磁体35′连接到环形凹槽部分16a,该环形凹槽部分16a被凹陷地配置为围绕松散装配孔16b,由此使得S极位于内圆周侧上以及N极位于外圆周侧上。另一方面,永磁体36′连接到环形凹槽部分29a,该环形凹槽部分29a被凹陷地配置为围绕松散装配孔29b,由此使得S极位于外圆周侧上以及N极位于内圆周侧上。
沿圆周方向划分的永磁体也可以用在该变型例中,类似于第二以及第三变型例。
在具有上述结构的感应型同步电机中,永磁体的S极侧上的磁通被引入S极电感器21,27内,由此使得S极磁通出现在S极电感器21,27的端面21a,27a上。此外,永磁体的N极侧上的磁通被引入N极电感器20,28内,由此使得N极磁通出现在N极电感器20,28的端面20a,28a上。
当在该状态中向电枢线圈24提供三相交流电流时,由于三相当中功率馈送相移而导致围绕电枢定子13的轴产生了旋转磁场。该旋转磁场围绕转子12,14的每个N极电感器20,28以及S极电感器21,27的轴而产生了转矩,由此转子12,14旋转从而旋转地驱动旋转轴34。
根据上述结构,由于永磁体被配置在励磁定子11,15处,因此提高了感应型同步电机的制造效率。此外,不再需要励磁元件的功率馈送装置以及冷却结构,由此可以使结构得到简化。
此外,输出功率从1kW到5MW,因此使用永磁体作为励磁元件是足够的。因此,与如在第一实施例中使用超导材料作为励磁元件的情况相比,可以实现减小尺寸的感应型同步电机。
类似于本实施例,还可以在下面的实施例中使用永磁体作为励磁元件。
图10示出了第二实施例。
第二实施例与第一实施例的不同之处在于,增加了转子41,44以及电枢定子13的数目。
更具体地,在第一实施例的电枢定子13和转子14之间添加了转子41,电枢定子13,转子44以及电枢定子13。
每个转子41,44包括由非磁性材料制成的圆盘形制成部分41,45,并且其形成有用于旋转轴34的旋转轴安装孔41a,45a,以及电感器43,46具有四个磁部件,其围绕旋转轴安装孔41a,45a沿着圆周方向分别以相等的间距嵌入。每个电感器43,46具有扇区,其形状与电枢定子13的磁通汇集器25的扇区形状相同。支撑部分41,45由非磁性材料形成,例如FRP以及不锈钢。电感器41,45由磁性材料制成,例如波明德合金,硅钢片,铁,以及坡莫合金。
在上述结构中,励磁线圈18,31由超导材料形成,由此可以显著地提高磁通从而达到远的位置。因此,多个转子12,41,45可以被配置在相应侧上的励磁定子11,15之间,并且可以提高输出转矩。
由于第二实施例的其他结构类似于第一实施例,因此给出了相同的参考数字并省略了其说明。
图11示出了第三实施例。
第三实施例与第一实施例的不同之处在于,增加了转子12,14,电枢定子13以及励磁定子51。
更具体地,在第一实施例的励磁定子15和转子14之间添加了励磁定子51,转子12,电枢定子13以及转子14。
励磁定子51包括由非磁性材料形成并被固定到安装表面G的磁轭52,具有嵌入在磁轭52中的真空绝缘结构的绝热冷冻剂容器54,以及电枢线圈53,该励磁线圈是由超导部件制成的绕组并被容纳在绝热冷冻剂容器54中。
磁轭52具有松散装配孔52b,在磁轭52的中心处进行钻孔,由此使得松散装配孔的外径大于旋转轴34的外径,以及磁轭52具有安装孔52a,其围绕该松散装配孔52b被钻孔为环形形状。励磁线圈53被容纳在环形绝热冷冻剂容器54中,液氮在该绝热冷冻剂容器54内循环。绝热冷冻剂容器54被嵌入在安装孔52a中。
由于第三实施例的结构类似于第一实施例,因此给出了相同的参考数字并省略了其说明。
图12示出了第四实施例。
第四实施例与第一实施例的不同之处在于,增加了转子60的N极电感器62以及S极电感器63的数目。
转子60具有由非磁性材料制成的圆盘形支撑部分61,并形成有用于旋转轴的安装孔61a,以及围绕安装孔61a以规则的间隔沿圆周方向交替配置的六个N极电感器62以及六个S极电感器63。
N极电感器62的另一端面62b被配置为面对励磁线圈31的外圆周侧,该外圆周侧是N极产生位置。S极电感器63的另一端面63b被配置为面对励磁线圈31的内圆周侧,该内圆周侧是S极产生位置。面对电枢定子13的N极电感器62以及S极电感器63的端面62a,63a以规则的间距配置在同心圆上。每个N极电感器62以及S极电感器63的横截面积从端面62a,63a到另一端面62b,63b是恒定的。同时,每个N极电感器62的横截面积以及每个S极电感器73的横截面积大体上相等。
由于其他结构类似于第一实施例,因此省略了其说明。
图13到16示出了第五实施例。
第五实施例与第一实施例的不同之处在于,其涉及径向气隙结构的感应型同步电机70。
电枢定子71包括由磁性材料形成的磁轭74,且该磁轭具有四个齿部分74b,该齿部分沿圆周方向以规则的间隔从圆柱状部分74a的内圆周表面突出,环形绝热冷冻剂容器76,其每个都具有真空绝缘结构以及包围每个齿部分74b,以及电枢线圈75,其每个都是由超导材料制成的绕组,并被容纳在相应的绝热冷冻剂容器76内。
励磁定子72被装配并固定到电枢定子71的磁轭74,并包括由磁体形成的圆盘形磁轭77;绝热冷冻剂容器79,其具有真空绝缘结构并被嵌入在磁轭77中,以及励磁线圈78,其是由超导材料制成的绕组并被容纳在绝热冷冻剂容器79内。磁轭77具有松散装配孔77a,其中在磁轭的中心部分钻孔,由此具有大于旋转轴84的外径的外径,以及具有凹槽部分77b,该凹槽部分被凹陷地配置为围绕松散装配孔77a的环形形状。励磁线圈78被容纳在绝热冷冻剂容器79中,液氮在该绝热冷冻剂容器79中循环。绝热冷冻剂容器79被嵌入在凹槽部分77b中。
转子73包括由非磁性材料制成的圆盘形支撑部分80,以及具有安装孔80a,通过该安装孔安装旋转轴84;一对N极电感器81,其嵌入在围绕安装孔80a的点对称位置处;以及一对S极电感器82,其嵌入在通过从N极电感器81的位置旋转90°的位置处。
如图14和16所示,每个N极电感器81具有多级带状的形状,以及一端81a被配置为面朝以及沿着励磁线圈78的N极产生位置,同时另一端侧上的外表面8 1b被配置为面对电枢线圈75。
如图15和16所示,每个S极电感器82具有折回带状的形状,以及一端82a被配置为面朝以及沿着励磁线圈78的S极产生位置,同时另一端侧上的外表面82b被配置为面对电枢线圈75。S极电感器82的另一端82c没有延伸至转子73的端面,而S极电感器82被形成为折回形状,由此将其与励磁线圈78的N极间隔开,从而使得很难出现磁通泄漏。
每个N极电感器81以及S极电感器82的横截面积是恒定的,且其横截面积大体上彼此相等。
磁轭74,77,N极电感器81,以及S极电感器82由磁性材料形成,例如波明德合金,硅钢片,铁,以及坡莫合金。支撑部分80由非磁性材料形成,例如FRP以及不锈钢。
功率馈送装置32通过线路连接到励磁线圈78以及电枢线圈75。向励磁线圈78提供直流电流,并同时向电枢线圈75提供三相交流电流。
液氮舱33通过绝缘管道连接到绝热冷冻剂容器76,79。由此循环液氮作为冷却剂。
接着,以下将要描述感应型同步电机70的操作原理。
当向励磁线圈78提供直流电流时,在励磁线圈78的外圆周侧上产生了N极,同时在其内圆周侧上产生了S极。随后,如图14所示,从另一端面81a将N极侧上的磁通引入N极电感器81,由此N极磁通出现在另一端侧上的外表面81b上。此外,如图15所示,将S极侧上的磁通从另一端面82a引入S极电感器82,由此S极磁通出现在另一侧上的外表面82b上。
当在该状态中向电枢线圈75提供三相交流电流时,由于功率馈送相移而导致围绕电枢定子71的轴在内圆周表面上产生了旋转磁场。旋转磁场导致围绕轴在N极电感器81以及S极电感器82上产生了转矩。由此,使转子73旋转从而旋转地驱动该旋转轴84。
图17示出了第六实施例。
第六实施例与第五实施例的不同之处在于,第六实施例具有如下结构,其中,该圆柱形励磁定子90被大体上管状的转子91所围绕,且在该定子和转子之间配置了气隙。
由于电枢定子71类似于第五实施例的电枢定子,因此省略了其说明。
励磁定子90具有由磁体形成的圆柱形磁轭92,环形真空绝缘外壳94,其被装配并固定到磁轭92的外圆周,励磁线圈93,其由超导材料形成,被容纳在绝热冷冻剂容器94内并被围绕轴卷绕,以及固定轴95,其从磁轭92的其中一个端面的中心横向地突出。
转子91包括由磁性材料形成的S极电感器97,该S极电感器具有U形的横截面,并被设置为在旋转90°的位置处覆盖励磁定子90的左侧部分;由磁性材料形成的N极电感器98,该N极电感器具有U形横截面,并被设置为覆盖励磁定子90的右侧部分,支撑部分99,100,其由非磁性材料形成,并将S极电感器97和N极电感器98连接成为一体,以及旋转轴101,其从转子91的右侧端面的中心横向地突出。
如图18所示,S极电感器97被配置为使左侧端面97a面对励磁线圈93的S极产生位置,以及由此使外圆周表面97b面对电枢定子71的电枢线圈75。在左侧端面97a的中心处钻孔获得松散装配孔97c,其直径大于固定轴95的直径。
如图19所示,N极电感器98被配置为使得右侧端面98a面对励磁线圈93的N极产生位置,以及由此使外圆周表面98b面对电枢线圈75。旋转轴101被固定到右侧端面98a的中心。
根据上述结构,N极和S极沿圆周方向交替地出现在转子91的外圆周表面上。每个S极电感器97和N极电感器98的横截面积是恒定的,以及S极电感器97和N极电感器98的横截面积大体上彼此相等。
磁轭92,S极电感器97以及N极电感器98由磁性材料形成,例如波明德合金,硅钢片,铁,以及坡莫合金。支撑部分99,100由非磁性材料形成,例如FRP以及不锈钢。
接着,以下将要描述操作原理。
当向励磁线圈93提供直流电流时,如图所示,在右侧上产生N极以及在左侧上产生S极。随后,如图18所示,将从左侧端面97a将S极侧上的磁通引入S极电感器97,由此S极磁通出现在外圆周表面97b上。此外,如图19所示,从右侧端面98a将N极侧上的磁通引入N极电感器98,由此N极磁通出现在外圆周表面98b上。
当在该状态中向电枢线圈75(未示出)提供三相交流电流时,由于功率馈送相移而导致围绕电枢定子71的轴在内圆周表面上产生了旋转磁场。旋转磁场导致围绕该轴在N极电感器98以及S极电感器97上产生转矩。由此,使转子91旋转从而旋转地驱动该旋转轴101。
权利要求
1.一种感应型同步电机,包括励磁定子,其具有励磁元件,通过该励磁元件同心地形成N极和S极;转子,其具有N极电感器,该N极电感器由磁性材料形成且被配置为面对励磁元件的N极,以及S极电感器,其由磁性材料形成且被配置为面对励磁元件的S极,其中旋转轴被固定到转子;以及电枢定子,其具有电枢线圈,该电枢线圈被配置为面对所述N极电感器以及所述S极电感器。
2.根据权利要求1的感应型同步电机,其中励磁元件包括励磁线圈,该励磁线圈围绕旋转轴的轴而卷绕,其中部分N极电感器被配置为面对励磁线圈的外圆周侧和内圆周侧的其中一个,以及部分S电感器被配置为面对另一个。
3.根据权利要求1的感应型同步电机,其中励磁元件包括永磁体,其中围绕旋转轴的轴而配置该永磁体,其中部分N极电感器被配置为面对永磁体的N极侧,以及部分S电感器被配置为面对永磁体的S极侧。
4.根据权利要求1到3的任意一项的感应型同步电机,其中励磁元件和电枢线圈中的至少其中之一由超导材料形成。
5.根据权利要求1到4的任意一项的感应型同步电机,其中从一端到另一端的每个N极电感器和S极电感器的横截面积是恒定的。
6.根据权利要求5的感应型同步电机,其中N极电感器的横截面积与S极电感器的横截面积大体上相等。
7.根据权利要求1到6的任意一项的感应型同步电机,其中该感应型同步电机具有轴向气隙结构,其中励磁定子被配置为在转子的轴向方向上面对转子的一侧,且在该转子和励磁定子之间具有预定气隙,以及电枢定子被配置为在转子的轴向方向上面对转子的另一侧,且在该转子和电枢定子之间具有预定气隙,固定到转子的旋转轴可旋转地穿过并桥接在励磁定子以及电枢定子之间,以及每个励磁元件和电枢线圈的磁通方向被导向为轴向方向。
8.根据权利要求1到6的任意一项的感应型同步电机,其中感应型同步电机具有径向气隙结构,其中励磁定子和电枢定子的其中一个是外圆周管,以及转子被配置在外圆周管内,且在转子和该定子之间具有预定气隙。
全文摘要
提供了励磁定子(11,15),其具有励磁线圈(18,31),通过该励磁线圈(18,31)同心地形成了N极和S极,转子(12,14),旋转轴34被固定到该转子,以及具有被配置为面对励磁线圈(18,31)的N极的N极电感器(20,28),以及被配置为面对励磁线圈(18,31)的S极的S极电感器(21,27),以及电枢定子(13),其具有电枢线圈(24),该电枢线圈(24)被配置为面对N极电感器(20,28)以及S极电感器(21,27)。
文档编号H02K16/00GK101088210SQ20058004470
公开日2007年12月12日 申请日期2005年12月16日 优先权日2004年12月24日
发明者冈崎彻, 大桥绅悟, 杉本英彦, 竹田敏雄 申请人:住友电气工业株式会社, 石川岛播磨重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1