减小功耗的mosfet栅极驱动器的制作方法

文档序号:7423008阅读:412来源:国知局
专利名称:减小功耗的mosfet栅极驱动器的制作方法
技术领域
本发明涉及诸如DC/DC变换之类的开关应用中分立或集成的功率MOSFET的驱动,尤其涉及以高频开关的分立或集成的功率MOSFET的驱动。

背景技术
使用开关调节器通过逐步升高或降低电压,或利用依赖于改变的条件而逐步升高或降低电压的能力来调节DC电压并将一个DC电压变换成另一个DC电压。通过DC/DC开关变换器和调节器对输入电压、输出电压、负载电流和温度的范围的调节能力来度量其质量。在电压和电流瞬态期间,以及在稳态操作期间,DC/DC开关变换器和调节器反应应该足够快,以确保良好的调节。在一些应用中,还应该提供电气隔离,以防止高输入电压耦合到输出端,消除电击和火灾的风险。
大多数开关调节器利用电感器或线圈作为能量存储器件,这是由于电感器容易生成不同于驱动电感器(即,不同于磁化电感器)的输入电压的一定范围的输出电压。一个或多个功率开关,典型的是功率MOSFET,与二极管整流器一起用于控制电感器中的电流,并且,通过使用负反馈,来控制调节器的输出电压,其中通过脉宽调制(PWM)控制器来控制所述一个或多个功率开关的开关和导通。在图1A-1F中图示了现有技术中众所周知的DC/DC变换调节器的一些例子。
常见DC/DC变换器拓扑在图1A中,降压(Buck)变换器1通过脉宽调制,高压侧功率MOSFET 2响应PWM控制器7来控制电感器4中的电流,由此提供逐步降低电压的调节。电容器5对变换器1的输出端上的电压纹波进行滤波。当高压侧MOSFET 2关断时,电感器4中的电流保持不变,这是因为电压Vx下降到地电压以下,正向偏置整流器3并使得电感器电流续流,直到MOSFET 2再次接通(turn on)为止。二极管6在正常操作下保持反向偏置。如所示的,MOSFET 2是P沟道器件,但利用对栅极驱动电路进行适当改变,高压侧N沟道MOSFET可以取代P沟道器件。
图1B图示了同步降压变换器10,其具备PWM控制器17、具有内在PN结二极管15的高压侧P沟道MOSFET 11、电感器13和电容器14。同步整流器包含具有内在PN结二极管16的N沟道MOSFET 12。同步降压变换器10包括先断后接(BBM)电路18,以防止高压侧P沟道MOSFET 11和低压侧N沟道同步整流器MOSFET 12同时导通。同步降压变换器10的操作采用与对非同步降压变换器1所描述的相同的控制和反馈技术,除了在二极管16导通的一部分时间期间,即,当MOSFET 11关断时MOSFET 12导通之外。
虽然同步降压变换器10采用具有P沟道MOSFET 11和N沟道MOSFET12的互补半桥,但图1C的非同步降压变换器20利用了包含N沟道高压侧MOSFET 21和N沟道低压侧同步整流器MOSFET 22的N沟道图腾柱布置。
在图1D中示出的升压(Boost)变换器30包含MOSFET 31和PWM控制器36,升压变换器30通过脉宽调制或通过以变频操作来控制MOSFET 31的接通时间来控制电感器32中的电流。每当MOSFET 31关断并且电感器32未被磁化时,电压Vx就很快上升,正向偏置整流二极管33并将向滤波电容器34和输出端供应电流。经由反馈电压VFB使用输出电压Vout的反馈来控制MOSFET 31的接通时间、电感器33中的电流、和Vout。同步升压调节器,升压变换器30的修改包括与二极管33并联放置N沟道或P沟道同步整流器MOSFET,以在二极管33正向偏置、即低压侧MOSFET 31关断时的一部分时间期间内从二极管33对电流进行分流。
典型地,对于开关调节器采用单个电感器而不是变压器或耦合电感器,在图1A-1C示出的降压或同步降压变换器可以只用于逐步降低电压的变换,即,将输入电压减少为较低的且良好调节的输出电压。降压变换器的逆向式(converse)、在图1D示出的升压变换器和相应同步升压变换器可以只用于逐步升高电压的变换,即,将输入电压增加为较高的且良好调节的输出电压。
获得具有使输入电压逐步升高或降低的能力的单个调节器需要更复杂的解决方案,使用数量加倍的功率MOSFET以将降压和升压变换器组合成单个电路,或者通过采用多绕组电感器和变压器。例如,在图1E中示出的变换器40中,高压侧MOSFET 41驱动匝数比为“n”的耦合电感器42,耦合电感器42的次级侧通过一个、两个、或四个整流二极管或同步整流器MOSFET而整流,以输出跨接电容器44的电压。为了调节输出电压,必须经由跨接隔离栅(barrier)46的反馈电压VFB将输出电压Vout反馈到PWM控制器47,隔离栅46可以包含变压器或光耦合器。
虽然变换器40利用与正输入电压Vcc连接的P沟道功率MOSFET,但在图1F中示出的变换器50使用接地的N沟道MOSFET 51来控制耦合电感器52中的电流,耦合电感器52的次级绕组通过二极管或MOSFET整流器电路53来整流并通过电容器54滤波。通过隔离变压器或光耦合器56将跨接电容器54的输出电压反馈到初级侧PWM控制器57。依赖于当MOSFET51导通时,同相地将能量传递给负载,还是当MOSFET关断时,异相地将能量传递给负载,变换器50可以操作为正激变换器或反激变换器。
在图1A-1F示出的所有调节器中,功率MOSFET和整流二极管用于控制变换器和调节电路中的能量流动。在同步整流器变换器中,通过导通MOSEFT对均匀的(even)二极管分流以减小导通损耗。
但是,以超过一兆赫的频率开关功率MOSFET引入(involving)了开关和栅极驱动功率损耗,而不仅仅是由导通引起的功率损耗。
功率MOSFET中的导通和开关损耗即使功率MOSFET向其它半导体器件提供了出色的电气性能,但是尤其对于低于100伏的操作,它们也不是理想的功率开关-事实上,它们的确消耗了功率,并且降低了采用它们的电路的效率。在导通或接通状态下,通过跨接漏极-源极端的电压乘以电流,或P=ID·VDS确定消耗的功率。由于该器件不是一直导通的,所以通过该器件接通和导通的时间占时钟周期T的百分比(即,ton/T)确定平均功率。
在如DC/DC开关调节器的主开关中,这个分数也称为变换器的占空比D。对于本领域的普通技术人员来说,众所周知,如果电路不是以固定频率f≡1/T操作,那么,它的平均功率逐个循环地改变,并且,必须进行更小心的时间积分,以计算在更长持续时间上,例如,在锂电池的放电期间的器件平均功率损耗。
导通、“接通”状态功率MOSFET中的功率损耗依赖于它的端电压。术语“接通”和“开关”不应该被理解为排他性地意味着或暗示数字操作。功率MOSFET可以操作为可编程电流源或操作为可变电阻。正如在此使用的,术语“开关”遵从IEEE和Webster(韦伯斯特)词典的定义,如指的是使电气电路接通(complete)或中断电气电路(即,允许或防止电流流过,而不考虑电流的量值)的器件。
在其操作的饱和区内,依赖于栅极电压和相对不依赖于其漏极电压VDS的值,“接通”功率MOSFET的表现为如同恒流源Isat。然后,通过下式给出平均功率损耗 当操作为受控电流源时,功率MOSFET的电流的量值必须保持低值,要不然该器件将过热。在电路设计中必须小心,以便使输入电压的变化对器件的栅极偏置的影响最小。利用栅极控制,功率MOSFET可以被操作为开关的电流源,在固定的漏极电流与其中除了器件漏电流之外没有电流流过的关断条件之间交替。
当将功率MOSFET用作低电阻开关时,该器件在它的“线性”区内操作,其特征在于,在它的漏极电压与它的漏极电流之间存在线性关系,直线的斜率定义可变电阻RDS(on),该可变电阻RDS(on)的量值随MOSFET栅极偏置而变化。由于根据欧姆定律,V=I·R,MOSFET在它的线性区内的功率损耗遵从如下关系 术语RDS(on)假定了该器件操作在它的线性区内,充当依赖于栅极电压的可变电阻。
以高频来开关功率MOSFET接通和关断也存在功率损耗。图2A-2D图示了由MOSFET的栅极电容引起的MOSFET中的功率损耗。如图2A所示,MOSFET 61的电容性栅极充放电所需的瞬态栅极电流Ig(t)由栅极缓冲器63供应并在栅极缓冲器63中损耗,首先对MOSFET的栅极充电将它接通,然后接着向地泄放(dump)存储在MOSFET栅极上的电荷。由驱动电容器引起的等效功率损耗由众所周知的公式P=Ceq·V2给出。使用术语Ceq是因为MOSFET呈现其结构内在的多个电压可变电容,最多使用未知的(problematic)电容进行简单功率计算。图2B图示了包括栅极-源极电容70(CGS)、栅极-漏极电容69(CDG)、和与PN结二极管71相关联的漏极-源极电容72(CDS)的MOSFET 66的电容网络。
除了电压可变之外,栅极-漏极电容69形成从MOSFET漏极的“输出”到其栅极的输入的反馈路径。在电路示出电压增益的任何时候,该电容也被放大,将比小信号电容CDG的量值大许多倍的电容加载在输入端上。这种现象称为Miller(密勒)效应,它使利用电容计算功率损耗变得极其复杂,因为在开关瞬态期间,MOSFET 66从截止转为饱和,并且进入其线性区,使电压增益和电容一前一后变化。
图2C图示了一个叠加在功率MOSFET ID-VDS曲线族上的这样的开关瞬态。具体地,“负载”表示在二极管恢复期间,即,当二极管停止导通以及MOSFET启动时,驱动整流二极管3和电感器4两者的诸如图1A的降压变换器1之类的开关调节器。
从“关断”器件在点78上没有电流开始,所示的开关瞬态以相对恒定漏极电压穿过路径71。漏极-源极电压不能立即发生改变,这是因为二极管3必须在漏极电压可以上升之前耗尽任何存储的电荷。对于大的VDS漏极电压,VDS>VGS并且MOSFET操作在它的饱和区内。作为受控于栅极电压74的饱和的MOSFET中的电流与VGS值成比例地沿斜坡上升。在这样的条件和电路下,饱和MOSFET呈现电压增益,通过恒定地改变和增加量来放大栅极-漏极反馈电容,使栅极缓冲器越来越难在转变期间内平滑地驱动MOSFET栅极。
在栅极偏置VGS5上,该器件进入电流和漏极电压两者迅速改变的操作条件72。点75对应于有时被称作饱和边缘或准饱和的线性与饱和之间的转变区内的偏置条件。该器件中的瞬时功率损耗达到峰值,并开始随VDS下降而下降。从栅极偏置VGS6和更高栅极偏置开始,MOSFET操作在它的线性区76内。
栅极电压73的进一步增加使MOSFET的电阻RDS进一步降低到点79,但削弱了对导通损耗的改善。在所示的示例中,电流在这个短间隔期间内变成半恒定的,这是因为负载是电感性的并且不允许电流立即发生改变。由于ID、VDS和VGS同时变化,所以难以计量所有器件内电流(intra-device current)。
虽然在实际应用中,用于驱动MOSFET栅极的栅极缓冲器表现为固定的电压源,但在电流源栅极驱动的情况下可以获得更清晰的器件操作。如图2D所示,向驱动负载的MOSFET的栅极供应恒定电流IG的电流源生成VDS开关瞬态,电压从截止区83处的Vcc开始随时间下降,通过饱和区87,进入它的线性区88。在相同时间期间内,VGS栅极电压从点90处的零电压开始,在截止期间内按线性81增加,当漏极电压87回转(slew)时到达处于饱和的平台(plateau)82,并且随着器件进入它的线性操作区而再次按83增加。在时间ton,瞬态结束,MOSFET完全导通并且现在的漏极电压是ID·RDS。由于栅极电流在整个转变期间是恒定的,并且由于Q=IG·ton,所以可以将x轴重绘为栅极电荷QG。
由于电荷总是守恒的,所以到达点84所需的电荷量不依赖于栅极驱动电路。换句话说,达到给定栅极和漏极偏置条件所需的栅极电荷QG是不依赖于路径的并且的确随驱动电路而改变。如图3A的曲线图100所示,可以以VGS在x轴上来重绘QG和VGS的曲线图,分别具有截止区、饱和区、和线性区104,105和106。被绘在相同轴上的漏极电压被表达为在饱和边缘101处迅速下降到线性区102,最终在点108处稳定在最小值RDS上的电阻。
然后,可以将到达栅极电荷107和漏极电压108的功率损耗表达成 Pdrive=QG·VGS·f。
这个方程考虑了Miller效应和所有依赖于电压的电容,但该方程随漏极偏置VDS,随栅极驱动VGS,和随技术而变化。然后,可以通过如下方程计算用于开关调节器中的功率MOSFET的总损耗 Pioss=Pcond(lin)+Pcond(sat)+Pdrive+Pother。
在传统开关调节器中,决不会有意使MOSFET操作处于饱和,而是只在开关瞬态和二极管恢复期间经历饱和。在这样的情况下,倘若变换器的频率不是太高,则可以忽略Pcond(sat)并且只需考虑线性区Pcond(lin)内的导通损耗。在低压下,可以忽略杂项损耗Pother并且将功率损耗方程简化成 给定曲线图100中的QG和RDS曲线,对于以固定的ton/T比率的操作,在图3B的曲线图120中示出使用上面方程计算的总体的功率损耗。如所示的,曲线121、122和123图示了功率损耗与频率f1、f2和f2成比例地增加,频率f1、f2和f3可以是,例如,300kHz、1MHz和2MHz。
功率损耗曲线具有在某个特定栅极电压处的最小值的U形,并且对于在那个值以上或以下的任何栅极驱动,损耗都增加。在较高栅极驱动电压处Ploss逐渐增加是由于与曲线图100中的曲线106一致增加的栅极驱动损耗Pdrive引起的。对于低栅极电压,Ploss随栅极电压的陡峭依赖性是MOSFET操作在与曲线图100中的曲线101相对应的饱和边缘处的结果。随着频率从曲线121增加到123,最小功率损耗增加,即,变换器呈现降低的效率,并且呈现较大的凹度(concavity),即,它的最小值出现在较窄范围的栅极电压上。换句话说,在较高频操作时栅极驱动损耗变得越来越关键。
在采用恒压驱动而不是恒流驱动的正常应用中,根据对VGS开关波形的检查,栅极驱动损耗不明显,这是因为它们出现得太快以至于看不见。例如,在图4A中,包含P沟道MOSFET 142和N沟道MOSFET 143和由提供电压Vcc的电压源146供电的栅极缓冲器141迅速驱动在Vcc与地电压之间的功率MOSFET 144的栅极。在接通期间,在图4B中示出的VGS开关波形150示出了在不同的平滑向上前进的(progression)151和154中斜率的稍微改变153,并且在关断期间再次显示至零电压的最终栅极电压159的平滑衰减156和158中的斜率改变157。
也在图4B中的曲线图170中示出实际驱动损耗的较清楚机理画面,其中栅极电荷从零库仑的开始值171线性增加,以斜率172上升,到达最终值173,并且在时间t3处按174衰减至开关瞬态结束处的零库仑的最终值175。因此,即使栅极驱动使用恒压驱动,功率损耗也与使用电流源驱动条件所示的相同。在充电期间存储在栅极上的总电荷在关断期间都损耗至地电压。
这样的轨到轨(rail-to-rail)驱动是有损耗的,这是因为从一个循环到下一个循环不回收或保存任何栅极电荷,并且因为将栅极驱动至可能不对应于在图3B中示出的最小功率损耗条件的电压Vcc。结果,由于丢弃电荷和过驱动MOSFET栅极而浪费了功率,这两个因素都降低了变换器的效率。
在以各个频率开关的任何MOSFET中,尤其在DC/DC开关调节器中需要的是这样的方式,其对功率MOSFET的栅极充电和放电,使得在逐个循环的基础上保存和重新使用一部分栅极电荷,以便提高变换器或其它电路的整体效率。


发明内容
在依照本发明操作的MOSFET满足这些需求,其中,开关MOSFET没有完全关断,而是在完全接通条件与低电流条件之间交替。MOSFET的低电流条件取代传统开关序列中使用的完全关断条件。在完全接通条件与低电流条件之间切换MOSFET减少了在每个开关循环期间必须移入MOSFET的栅极和从MOSFET的栅极移出的电荷量,从而减小了对栅极充电和放电的功率损耗。在许多状况下,这种功率节约不止补偿了来自在MOSFET低电流条件下继续流入MOSFET的漏极电流的附加功率损耗。因此,提高了MOSFET的整体效率。
可以使用各种栅极驱动电路来实现上述驱动MOSFET栅极的方法,所有这些栅极驱动电路都在本发明的范围之内。
在一组实施例中,利用双态栅极驱动器驱动栅极,该双态栅极驱动器在功能上被构造成单刀双掷开关,并且具有连接到足以完全接通MOSFET的第一电压的第一输入端和连接到典型地接近MOSFET的阈值电压的第二电压连接的第二输入端。与MOSFET的栅极连接的栅极驱动器的输出端在第一和第二输入端之间切换,以便在完全接通和低电流条件之间驱动MOSFET。可以使用一对互补MOSFET和连接到适合将MOSFET驱动成低电流条件的参考电压的传输晶体管来构造该栅极驱动器。可以使用连接成多路复用器的多个传输晶体管,或包括电阻器和/或二极管的分压电路来生成被传递给MOSFET栅极的电压。该栅极驱动器能够传递不止两个电压,以保证可获得适合MOSFET的低电流条件的电压。
可以采用反馈来保证让适当的漏极电流流过处于低电流条件下的MOSFET。反馈电路测量经过MOSFET的电流,然后将测量值与表示所期望电流值的参考值相比较。如果存在差异,就生成误差信号,并且如有必要,该误差信号促使栅极驱动器增大或减小处于低电流条件下的MOSFET的栅极电压,直到达到MOSFET中的漏极电流的正确值。该反馈电路可以包括放大器、感测电阻器、和/或电流镜。
可替代地,由于MOSFET的阈值电压是影响其饱和电流的最主要工艺参数,可以通过微调来校正其阈值电压的制造偏差以获得MOSFET中的低电流的正确值。当对于低电流条件偏置MOSFET的栅极时,微调电路可以测量MOSFET中的漏极电流,并且调整栅极驱动器传递给MOSFET栅极的参考电压,直到实现漏极电流的正确值。例如,该微调电路可以包括与串联在分压网络中的电阻器并联的一次可编程(OTP)MOSFET。各个MOSFET被编程,即,永久接通,以短路掉足够数量的电阻器,直到获得了提供MOSFET中的漏极电流的正确值的栅极电压。
可替代地,可以与第二阈连接(threshold-connected)的电流镜MOSFET一起单片(monithically)制造MOSFET。由于阈值电压的任何变化都将影响这两个MOSFET,将固定电流供应给电流镜MOSFET将促使电流按MOSFET的各自栅极宽度的比率(n)被镜像在主MOSFET中。因此,如果将等于主MOSFET中的目标电流除以n的电流供应给电流镜MOSFET,则正确量值的电流将流过主MOSFET。供应给电流镜MOSFET的电流可以在数字逻辑、数字信号处理器、或微处理器的控制下通过D/A转换器来调整,并且,如果需要,可以动态地和实时地调整。可替代地,可以在第一位置和第二位置之间切换电流镜MOSFET的栅极,所述第一位置与电流镜MOSFET的漏极和电流源连接,所述第二位置与地连接,关断电流镜MOSFET,并将主MOSFET的栅极连接到驱动主MOSFET为高电流状态的高压。
在另一组实施例中,栅极驱动器在功能上被构造成第三输入端与MOSFET的源极连接的三刀开关。通过将该栅极驱动器的输出端与第三输入端连接,使MOSFET关断或进入休眠或关闭模式,在所述情形下驱动MOSFET的栅极或允许电流流过MOSFET的漏极时都没有功率损耗。在一些实施例中,该栅极驱动器可以具有使能输入端,所述使能输入端在接通条件下,促使该栅极驱动器在高电流和低电流状态之间切换MOSFET,以及在关断条件下,促使该栅极驱动器将MOSFET的栅极与源极连接,关断MOSFET或使其进入其休眠模式。
本发明还包括通过在第一电压和典型地接近阈值电压的第二电压之间切换栅极来驱动MOSFET的方法,MOSFET在所述第一电压处完全接通,MOSFET在所述电压处于低电流或部分接通条件下。
上述利用低栅极驱动损耗来驱动功率MOSFET的方法和电路可以应用于N沟道或P沟道导通型的低压侧、高压侧或推挽配置的功率MOSFET。



图1A是降压变换器的电路图。
图1B是具有互补功率MOSFET的同步降压变换器的电路图。
图1C是具有图腾柱N沟道功率MOSFET的同步降压变换器的电路图。
图1D是非同步升压变换器的电路图。
图1E是具有P沟道功率MOSFET的反激或正激变换器的电路图。
图1F是具有N沟道功率MOSFET的反激或正激变换器的电路图。
图2A是图示栅极驱动器的操作的电路图。
图2B是图示MOSFET中的内在电容的图形。
图2C是示出叠加在ID-VDS曲线族上的开关瞬态的曲线图。
图2D是示出随着MOSFET从关断条件转到接通条件,漏极-源极电压和栅极电荷中的变化的曲线图。
图3A是示出作为栅极电压的函数的栅极电荷和RDS的变化的曲线图。
图3B是作为栅极偏置的函数的功率损耗的曲线图。
图4A是CMOS栅极驱动器的电路图。
图4B示出了在开关期间栅极驱动器中的栅极电荷和栅极电压的曲线图。
图5是按照本发明的栅极电荷减少的功率MOSFET栅极驱动器的概念电路图。
图6示出了本发明的栅极驱动器中的电压和电流开关波形。
图7是图示本发明的栅极驱动器中的有限的栅极电压摆动(swing)的、作为栅极电荷的函数的栅极电压和漏极电压的曲线图。
图8是示出由本发明的栅极驱动器驱动的MOSFET中有限的漏极电流摆动的曲线图。
图9是示出由本发明的栅极驱动器驱动的MOSFET中有限的栅极电荷摆动的曲线图。
图10是依照本发明的三态栅极驱动器的概念电路图。
图11A-11F是图示本发明的三态栅极驱动器的操作条件,包括低电阻条件、低电流或受控电流条件和关断状态条件的曲线图和电路图。
图12A示出了本发明的三态栅极驱动器的电压和电流开关波形的曲线图。
图12B是在低电流和传统的栅极驱动技术之间交替的、本发明的栅极驱动器中的栅极电压的曲线图。
图12C是具有软接通(turn-on)特征的本发明的栅极驱动器中的栅极电压的曲线图。
图13A是包含传输(pass)晶体管的栅极驱动器的电路图。
图13B是包含D/A转换器的栅极驱动器的电路图。
图13C是包含多路复用传输晶体管的栅极驱动器的电路图。
图13D是包含多路复用电阻器分压器的栅极驱动器的电路图。
图13E是包含多路复用电阻器/二极管分压器的栅极驱动器的电路图。
图14A是没有反馈的开环栅极驱动器的电路图。
图14B是具有电流感测反馈系统的栅极驱动器的电路图。
图14C是比较开环栅极驱动器和反馈栅极驱动器中的漏极电流的稳定性的曲线图。
图14D是图示在具有反馈的栅极驱动器中的漏极电流的控制的I-V曲线图。
图15A是具有利用电流感测电阻器的反馈系统的栅极驱动器的电路图。
图15B是具有利用电流镜感测技术的反馈系统的栅极驱动器的电路图。
图15C是具有利用共射共基(cascode)电流感测技术的反馈系统的栅极驱动器的电路图。
图16A是本发明的栅极驱动器的微调(trimming)电路的概念电路图。
图16B是包含一次可编程MOSFET的本发明的栅极驱动器的微调电路的电路图。
图16C是图16B的栅极驱动器的偏置编程代码的曲线图。
图16D是微调电路的校准算法的流程图。
图16E是微调电路的编程序列的曲线图。
图17A是利用电流镜来控制处于低电流条件下的MOSFET中的电流的栅极驱动器的电路图。
图17B是示出调整镜像电流的大小的微调电路的电路图。
图18是包括P沟道电流镜的栅极驱动器的电路图。
图19是包括将参考电压变换成参考电流以控制处于低电流状态下的MOSFET中的电流的大小的电路的栅极驱动器的电路图。
图20是包括获得可变参考电流以控制处于低电流状态下的MOSFET中的电流的大小的电路的栅极驱动器的电路图。
图21A是包括获得可变参考电流以控制处于低电流状态下的MOSFET中的电流的大小的电路的另一栅极驱动器的电路图。
图21B是包括生成可变参考电流以控制处于低电流状态下的MOSFET中的电流的大小的数模转换器的栅极驱动器的电路图。
图22A是示出作为漏极电流的函数的栅极驱动电流的曲线图。
图22B是示出作为导通时间的函数的栅极驱动电流的曲线图。
图23A是在地电压与偏置供应电流之间切换MOSFET镜像的栅极的栅极驱动器的概念电路图。
图23B是在图23A中示出的栅极驱动器的更详细电路图。
图24A是示出与同负载连接的N沟道低压侧MOSFET一起使用本发明的栅极驱动器的电路图。
图24B是示出与同负载连接的N沟道高压侧MOSFET一起使用的本发明的栅极驱动器的电路图。
图24C是示出在同步升压变换器中使用本发明的栅极驱动器的电路图。
图24D是示出在同步降压变换器中使用本发明的栅极驱动器的电路图。
图25A是示出与同负载连接的P沟道高压侧MOSFET的一起使用的本发明的栅极驱动器的电路图。
图25B是示出在互补降压变换器中使用本发明的栅极驱动器的电路图。

具体实施例方式 虽然可以使用功率MOSFET的设计和制造来优化或小型化在功率开关应用中使用的器件的导通电阻与栅极电荷的乘积,但也可以通过限制在每次开关转变期间移动的栅极电荷量使功率损耗最小。可以以两种方式来完成这个任务-通过将最大栅极驱动限制在最优化的点或通过在开关转变期间保留(conserve)一些栅极电荷。本申请公开了在随后的(subsequent)开关循环期间保存一些栅极电荷的方式。
在图5中图示了本发明的一个实施例,其中电路200图示了驱动控制负载204的功率MOSFET 203的栅极的方式。负载204可以包含与电源电压VDD连接的任何电气组件或与VDD连接并且可选地与地电压或与其它电压源连接的电气网络的组件。到栅极驱动器202的输入信号是从缓冲器或反相器201输出的逻辑信号,缓冲器或反相器201具有在电源电压Vcc与地电压之间切换的输出端。通常,电源电压Vcc与VDD不相同,并且一般小于VDD,尽管不需要是这种情况。
栅极驱动器202驱动MOSFET 203的栅极-源极端,利用比缓冲器201的输出端处的电压范围小的电压范围对栅极重复地充电和放电。在栅极电压VGSH所表示的MOSFET 203的高或完全接通条件下,MOSFET 203的栅极被偏置为如下电位 VGS=VGSH=Vcc。
从而,将MOSFET驱动到它的线性区,即,操作为可变电阻,使得通过下式给出漏极电流ID ID=VDS/RDS(on)。
在这种条件下,VD=VDS<<VGS和VGS>>Vt,其中,Vt是MOSFET 203的阈值电压。
在传统的栅极驱动电路中的状况相反,其中在第二状态下,将功率MOSFET偏置成其栅极与其源极短路的完全“关断”,在本发明的技术中,不是将MOSFET 203阻断(shut off),而是将它偏置在低或部分接通条件VGSL下,栅极电位是 VGS=VGSL=VBIAS。
假定VBIAS的值较小,典型地接近阈值电压,那么,在这种状态下,VDS>(VGS-Vt)并且该器件处于漏极电流相对不依赖于漏极电压VDS的饱和状态下,使得通过下式给出漏极电流ID ID=IDBIAS∝VBIAS。
栅极电位VBIAS>0由偏置电源205建立,偏置电压205可以包含固定值参考电压或它的倍数。可替代地,VBIAS可以作为Vcc的倍数而变化。如图所示,栅极驱动器202执行选择两种可能的栅极电位VBIAS和Vcc之一的单刀双掷开关的功能。与偏置MOSFET栅极的传统方法相反,不将MOSFET 203的栅极驱动到地电压。
典型地,IDBIAS在MOSFET的栅极-源极电压Vgs等于零时,比通过MOSFET的漏电流的大小大至少一个或两个数量级(即,10到100倍),而当MOSFET处于其完全接通条件下时,IDBIAS比MOSFET中的电流的量值小不超过一个或两个数量级(即,它的1%到10%)。处于其饱和低电流状态下的MOSFET的栅极-源极电压VBIAS典型处于其外推(extrapolate)阈值电压的10%到125%的范围内,优选地,在其外推阈值电压的25%到100%的范围内。在Dieter K.Schroder的《Semiconductor Material and DeviceCharacterization(1990))》中定义了外推阈值电压,在特此通过引用并入其内容。
对于在阈值上下几百毫伏的栅极偏置,例如,VGS=Vt±400mV的栅极偏置,饱和的漏极电流急剧改变。难以挑选生成特定所期望的漏极电流的栅极偏置,尤其在考虑到制造的可变性(variability)时。将电压源306设置在固定值上可能导致MOSFET 308中的饱和的漏极电流中很宽的批次间(lot-to-lot)偏差。因此使用固定栅极偏置方法时,必须有可能筛选(screen)产品以适合漏极电流的特定范围。例如,在便携式应用中使用的具有固定偏置的1W开关调节器的漏极电流的筛选限制可以包含在表1中示出的指定范围 表1 在低功率应用中(典型的,当MOSFET完全接通时,漏极电流处于0.5A到5A的范围内),太大的饱和电流浪费功率,如果不通过减小二极管恢复损耗来补偿(offset),这可能导致较低的整体变换器效率。在高功率变换器中(典型的,当MOSFET完全接通时,漏极电流处于5A到50A的范围内),这样的小损耗可忽略不计,并且,甚至在较高偏置电流上,噪声获益可以补偿在任何对效率有影响的代价。注意,也存在较低的限制;如果低电流饱和模式下的漏极电流下降到某指定值以下,则一起减少了或丧失了所公开技术在分流二极管电流和减少二极管中存储的电荷方面的益处。
在图6的曲线图中示出电路200的开关波形,在曲线图220、230、240和250中相对于时间分别绘出了VIN、VGS、ID和VDS。如曲线图220所示,到栅极缓冲器202的输入VIN在地电压221,即,0V与Vcc输入电压223之间交替,在地电压221和Vcc输入电压223之间存在迅速转变222和224。
在曲线图230中示出的驱动MOSFET 203的栅极电压VGS的栅极驱动器202的输出在电压VBIAS与Vcc之间交替,决不会到达零。如所示的,VGS中的转变232和234与VIN中的转变222和224同步且同相,但极性可以相反。与所示的VGS脉冲相对应,半对数曲线图240中的漏极电流ID在量值IDBIAS的最小电流241与量值(VDS/RDS(on))的最大电流243之间交替,在最小电流241和最大电流243之间存在转变242和244。
跨接MOSFET 203的漏极电压VDS在量值(VDD-δV)≈VDD的最大电压251与量值(ID·RDS(on))的最小电压253之间交替。电压δV是跨接承载小电流IDBIAS的负载204的电压降。如果IDBIAS在1mA以下并且优选地在1μA到100μA的范围内,那么,MOSFET 203中的功耗,即, PBIAS=IDBIAS·(VDD-δV)≈IDBIAS·VDD 可忽略不计。通过限制栅极驱动电压范围并因此限制栅极电荷的摆动来实现在节约栅极驱动损耗中的功率。
使栅极电荷摆动最小在图7的曲线图280中图示出上述的功率节约的概念,其中包括VGS(在左侧y轴上)和VDS(在右侧y轴上)相对于栅极电荷QG(在x轴上)的图。实线指示依照本发明操作的器件中的栅极和漏极电压的范围,而实线和虚线一起指示使用传统的栅极驱动技术操作的器件中的相同的范围。
具体地,在传统栅极驱动中,栅极电荷从零开始,然后沿着曲线281、282、283、和284增加到点287。如果输入Vcc增加,则最大栅极电荷QGH将进一步沿着直线285增加超过点287。随着栅极电荷增加,相应的漏极电压从MOSFET 203的关断状态下的VDD开始移动,然后经由曲线290、291和292至点294处的MOSFET 203的接通状态。如果输入电压Vcc增加,则即使QG在这个区域中线性增加,电压VGS也将沿着曲线293下降只稍微低于点294。
在传统开关应用中,在接通期间处于MOSFET栅极上的所有电荷在关断期间都泄放到地。总的栅极电荷对应于将栅极充电到VCC,然后放电到地电压,导致栅极电压和栅极电荷的大的“摆动”。在此将栅极电荷摆动定义为 ΔQG≡QGH-Q0=QG(VGH)-0。
然后,对于传统栅极驱动方法,该总的栅极电荷摆动是 ΔQG=QG(Vcc)-0=QGH。
再次参照图7中的曲线图280,当依照本发明来驱动栅极时,栅极电荷沿着曲线283和284,只在点286和287之间交替。然后,通过下式给出改善的栅极电荷摆动ΔQ′G ΔQ′G≡QGH-QGL=QG(VGH)-QG(VG(on))。
其中,QGL>0。因为(QGH-QGL)<QGH,所以以给定的频率开关需要较少的栅极电荷,并且,通过沿着从零到点286的路径的电荷或(QGL-QG0)=QGL,成比例地减少了驱动栅极所需的功率。
为了更好图示减小的栅极电荷摆动,如在图9的曲线图320中图示,可以将本发明的方法表示成QG相对于时间的图,其中,在MOSFET栅极上出现的电荷的变化随着充电和放电转变322和324在量值QGL(曲线321)与量值QGH(曲线323)之间交替。由于在器件栅极上总是留下某些最少量的电荷QGL,从一个循环到下一个循环保存着由面积325所表示的电荷,相应地提高了栅极驱动的效率。
使平均功率损耗最小如前所述,与按照本方法的驱动栅极相关联的功率损耗通过下式给出 Pdrive=(QG·VG)/T=QGH·VGH·f。
然后,在高频MOSFET栅极驱动期间与减少的电荷相关联的相应的功率节约PGsaved通过下式给出 PGsaved=(QGL·VG(on))/T=QGL·VG(on)·f。
再次参照图7中的曲线图280,当使用本发明的技术时,漏极电压VDS沿着曲线292从点296变化到点294,跳过(skip)曲线290和291所表示的截止操作区。在点294上,跨接功率MOSFET的电压由ID·RDS(on)给出。
进一步在图8中图示电流ID与漏极电压VDS之间的关系,其中将诸如降压变换器1之类的开关变换器的开关波形303叠加在表示栅极电压VSG0到VGS5的MOSFET I-V曲线族上。从栅极电压等于VGS0和ID>0的点301开始,在MOSFET的栅极被偏置在它的饱和区305内并且VDS相对恒定的同时,电流沿着曲线302随VGS增加。在I-V曲线306所表示的栅极电压VGS3以下,漏极电压VDS沿着曲线303改变,直到MOSFET操作在它的线性操作区307,这时VDS沿着曲线304继续下降但ID基本上不变化。栅极放电过程以相反方向在两个相同端点301和304之间转变。
在周期T的每次循环中持续接通时间ton的完全接通条件的平均功率损耗由下式给出 其中,D=ton/T。
再次参照图7,在点296上,低电流条件,即,跨接MOSFET 203的电压由VDS=(VDD-δV)≈VDD给出,并且在持续时间tsat=T-ton期间的相应功率损耗是 然后,功率MOSFET中的总的导通损耗是在MOSFET被偏置为完全接通处于其线性区时的导通损耗Pcond与MOSFET处于其饱和操作区时在间隔tsat期间由偏置电流IDBIAS引起的功率损耗PBIAS之和,或 其中,T=(tsat+ton),并且,其在可变频率操作中从一个循环到另一个循环是变化的,或在具有占空比D的固定频率操作中 P′cond=ID2·RDS(on)·D+IDBIAS·VDD·(1-D)。
使用所公开的技术时,则器件中的总的导通和栅极驱动损耗由下式给出 其中,带方括号的项表示使用传统的栅极驱动技术的栅极驱动和导通损耗Ploss。代入这一项中得出如下关系 其中,在可变频率操作中,T从一个循环到另一个循环是变化的,或对于固定的频率操作, P′loss=[Ploss]+(IDBIAS·VDD·(1-D))-(QGL·VGL·f)。
对于所公开的方法,节约功率P′loss<Ploss,因此, 这意味着通过减小栅极驱动节约的功率必须补偿由偏置电流IDBIAS导致的增加的导通损耗所消耗的任何附加的功率。当以固定频率f和占空比D≡ton/T操作时,可以将该方程表达为 (IDBIAS·VDD·(1-D))<(QGL·VGL·f) 当减小的栅极驱动中的功率节约比由偏置电流导致的增加的功耗PBIAS更有益时,在较高频率f上和对于较低VDD输入条件更容易满足这个条件。
难以对IDBIAS相对于QGL·VGL之间的关系做出任何一般性的结论,这是由于它们是相关的并且依赖于特定的功率MOSFET的制造工艺和设计。对于给定器件,增加驱动电路中的QGL·VGL,即,增加VBIAS将减小栅极驱动损耗,但同时也使IDBIAS增加并使导通损耗增加。因此,最优化的功率节约的偏置条件是特定于技术的。
占空比D对于每种开关应用是特定的。例如,在图1A、1B和1C中示出的逐步降低的降压变换器,高压侧MOSFET 2、11、和21的占空比由D=Vout/Vin给出,其中Vin=VDD。代入这个表达式为我们给出了在所公开的减小的栅极驱动方法是有益时的降压调节器的特定条件 (IDBIAS·(VDD-Vout))<(QGL·VGL·f)。
这个方程意味着,随着降压变换器的输出电压与输入电压之间的差增加,所公开的低栅极驱动损耗技术益处不大。
对于升压变换器,如图1D所示,变换比Vout/Vin=1/(1-D),其中D反映低压侧MOSFET 31的接通时间。重新排列并用Vin/Vout代替(1-D)为我们给出了在所公开的减小的栅极驱动方法是有益时的升压调节器的特定条件 在升压变换器中,即,在Vout>Vin的情况下,当从较低输入电压生成较大输出电压时,所公开的方法更有益处。
再次参照图7中的曲线图280,当MOSFET 203操作在它的线性区时,跨接MOSFET 203的VDS电压降在点295上几乎达到它的最小值。在所述的操作中,尽管在减小接通电阻或电压降方面具有最少的益处,但栅极驱动电路将MOSFET“过驱动”至栅极偏置294。不容易实现防止栅极被过驱动,这是由于将MOSFET的栅极部分地充电到小于Vcc的任何电压造成在电路的其它地方出现相同的功率损耗并且也不会使效率提高。
具有关闭(shutdown)模式的减小的栅极驱动损耗电路图10图示了依照本发明的另一个实施例。在许多应用中,当不对功率MOSFET进行开关时,例如,当计算机处于待命或休眠模式时,可能出现延长的时间段。在这样的操作条件下,从电池流过负载和功率MOSFET的任何导通电流,甚至如同IBIAS那样的少量导通电流都将使电池随时间放电。对延长的关断时间的问题的解决方案是将所公开的本发明修改为包括关闭模式。
电路350图示了所公开的扩增了具有增加的关闭模式特征的、减小的栅极驱动损耗的功率MOSFET的一般描述。与图5的电路200类似,电路350包括栅极驱动器352,但在这种情况下,栅极驱动器352不是具有两种状态,而是具有三种状态,即,低电阻的完全导通、饱和的并且被偏置在VBIAS上以导通小的固定电流,以及低的漏电流的截止的完全关断。相应地,栅极驱动器352有两个输入端,即,接收逻辑或PWM信号的IN、和用于关闭器件的使能引脚。
如图所示,缓冲器351的输出将范围从Vcc到地电压的信号,即,从轨到轨切换的数字信号馈送到栅极驱动器352的“IN”输入端。只要将使能端偏置成它的“接通”状态,则栅极驱动器352就对其“IN”端上的信号作出响应,并且栅极驱动器352的输出以在Vcc和VBIAS之间交替的电压VGS1来驱动MOSFET 353的栅极。功率MOSFET 353又向负载354提供由栅极驱动电压Vcc和VBIAS确定的、在高的和低的漏极电流之间交替的电流。如前所述,在高频操作期间,通过将MOSFET 353的栅极偏置在不低于VBIAS的电压上,从一个循环到另一个循环保存栅极电荷,并且减小了栅极驱动损耗。倘若通过限制栅极电荷摆动实现的功率节约大于在开关期间的最小漏极电流IBIAS增加的导通损耗,则由此提高了效率。
当关断使能信号时,栅极驱动器352切换到使MOSFET 352的栅极接地,即,与它的源极连接并且VGS1=0的第三状态。然后,功率MOSFET 353中的漏极电流减小到器件的IDSS漏电流,即在栅极连接到源极的情况下从漏极到源极的结的漏电流。即使电流IBIAS很小,优选地,在微安到几十微安范围内-IDSS甚至更小,优选地,一个微安以下或甚至比IBIAS小几个数量级。
在图11A-11F中图示和对比了三个条件,并在以下表2中进行了总结。在图11A中,栅极驱动器361将MOSFET 353的栅极偏置成VGS=Vcc,并且,器件在MOSFET的线性操作区内是完全导通的,即,如图11B的I-V曲线图365所示,表现为栅极受控的可变电阻。在这个区域内和在点366处的漏极电流和电压服从欧姆定律,即,VDS=ID·RDS(on)。在许多功率电路中,ID的值由功率MOSFET与电路中的其它元件的分压器确定,其中漏极电流ID=VDS/RDS(on)与漏极电压VDS成比例地变化。在具有以高频开关的电感器或其它电流源的电路中,ID的量值受电路影响并且相应地调整VDS。
在图11C中示出的第二状态下,栅极缓冲器371将功率MOSFET 353的栅极偏置成由电压源或参考电压源355设定的值VGS=VBIAS。然后,如图11D中的点376所示,MOSFET 353导通漏极电流ID=IBIAS。在这种模式下,漏极电流ID相对“恒定”,这意味着它示出与VDS值的最小依赖性。然而,漏极电流ID强烈地依赖于栅极偏置VBIAS。
在图11E中示出的第三状态下,栅极缓冲器381将MOSFET 353的栅极与源极短路,使得VGS=0。假定N沟道MOSFET 353是具有正阈值电压,即,Vth>0的增强型器件,则,如在图11F中图示的,在VGS=0上,该器件处于截止,其中关断状态的漏极电流IDSS由结的漏电流引起。虽然对于VDD的反向偏置在点386上的漏电流似乎是零,但在半对数曲线图上绘制的实际IDSS漏电流可能示出某些电压依赖性,但一般地,在功率MOSFET的指定的漏极电压范围内漏电流很好地保持在1μA以下。
在如下的真值表中总结了按照本发明的三态栅极驱动器和功率MOSFET的操作条件 表2 表2揭示了当将使能端偏置成高状态时,功率MOSFET的导通依赖于逻辑输入IN,但当使能端处于低状态时,MOSFET被关断,并且操作不依赖于IN信号。将输出电导gDS≡dID/dVDS包括作为漏极电压灵敏性的定性的度量。
在优选实施例中,如图12A的曲线图410中的方波411、412、413和414所示,在高频开关期间,驱动MOSFET 353的栅极驱动器的输出VGS在Vcc与VBIAS之间交替,并且跟随由曲线图400带箭头线所示的逻辑输入电压转变404、405、406和407。在这个时间内,虚线所示的使能信号EN保持在高电平Vcc上(曲线401)。类似地,如半对数曲线图420所示,如方波421、422、423和424所示,漏极电流ID从IDBIAS切换到VDS/RDS(on),并且如曲线图430所示,漏极电压VDS以波形431、432、433和434在(VDD-δV)与ID·RDS(on)之间交替。
在时间tsleep处,随着MOSFET 353进入休眠或关闭模式,将使能信号VEN拉低(曲线402)并偏置在零伏上(曲线403),将VGS向下(曲线415)驱动到零伏(曲线416),栅极电压低于VBIAS。在关闭模式下,如曲线图420所示,漏极电流ID下降(曲线425)到量值接近零的漏电流IDSS(曲线426)。并且,如曲线图430所示,在MOSFET 353的切换期间,VDS跳跃(曲线435)到曲线435所图示的电压VDD,稍高于曲线434所示的最大漏极电压(VDD--δV)。
在可替代实施例中,如在图12B中图示,栅极驱动器352可以在两种不同开关波形之间交替。如曲线图440所示,在时间t1之前,栅极驱动器352的电压输出在Vcc与VBIAS之间交替。在依照本发明的栅极驱动器在低QG栅极驱动操作(区域441)期间,最小栅极驱动是偏置电压VBIAS>0(曲线442)。
如前所述,虽然所公开的低栅极电荷的栅极驱动技术在某些条件下可能提高效率,但由于与曾经存在的偏置电流IDBIAS相关联的导通损耗引起的功率损耗可能降低效率。如果出现这样的条件,可以动态地变更电路350的操作,以便于其中在时间t1处栅极电压VGS在Vcc与地电压(曲线444)之间交替的传统的轨到轨栅极驱动(区域443)。在轨到轨间隔内丧失了减小的栅极电荷摆动的益处。在时间tsleep处,将MOSFET的栅极接地445持续与休眠模式相对应的某个不定时间。
在轨到轨操作期间,如图12C的曲线图446所示,可以操作电路350来降低与接通相关的噪声。在“软开关”轨到轨操作期间(区域447),在每次接通转变期间栅极电压在被驱动成Vcc(曲线449)之前首先短暂地上升到VBIAS一小段持续时间(曲线448)。曲线448和449的步进的(stair-stepped)栅极波形降低了MOSFET 353的漏极处的波形的变换率(slew rate),并且可以有益地降低噪声。
实施三态低损耗栅极驱动图13A-13E图示了实施具有减小的驱动损耗的功率MOSFET栅极驱动的几种电路。在图13A中,包含高压侧P沟道MOSFET 451和低压侧N沟道MOSFET 453的互补MOSFET栅极驱动器驱动功率MOSFET 454的栅极。N沟道传输晶体管452还将MOSFET 454的栅极与参考电压源455提供的参考电压Vref连接。MOSFET 452上的栅极电压相对于它的源极电压必须足够正,以接通MOSFET 452。受控于合适的定时和逻辑电路,一次只接通一个器件。当高压侧MOSFET 451接通时,VGS=Vbatt,并且MOSFET 454操作在它的线性区。当MOSFET 452接通时,VGS=Vref,并且将MOSFET 454偏置为电流源。当低压侧MOSFET 453接通时,VGS=0,并且MOSFET 454关断。
如所示的,将MOSFET 452的壳体(body)接地。接地壳体是防止MOSFET452中的寄生二极管导通所需的,这是由于依赖于MOSFET 451和453的状态,栅极电压VGS可以大于或小于Vref的值。
通过将MOSFET 452的壳体接地,寄生体二极管457A和457B永久地保持反向偏置。如果MOSFET 452的壳体不接地,而是并入(incorporate)源极-壳体短路,则这些二极管之一将与MOSFET 452的沟道并联,类似于二极管456与MOSFET 454并联。源极-漏极并联二极管在各种栅极偏置条件之一下,即,当VGS>VBIAS时,或当VGS<VBIAS时,将变成正向偏置。
诸如在图13B中示出的壳体偏置发生器或“壳体抓取器(body snatcher)”之类的其它电路技术可以用于避免这个问题。如电路460所示,传输晶体管462包含寄生PN结二极管469A和469B。为了防止任一个二极管导通,两个交叉耦合的N沟道MOSFET 468A和468B的网络偏置MOSFET 462的壳体电位,使得无论哪一个二极管变为正向偏置,都被并联MOSFET短路掉,让其它寄生二极管反向偏置或不导通。
例如,如果VGS>VBIAS,则二极管469B被正向偏置而二极管469A被反向偏置。由于VGS是正极性更强的端,N沟道MOSFET 468B接通并短路掉正向偏置的二极管469B,将MOSFET 462的壳体与它的更负的VBIAS端连接,关断MOSFET 468A,并让二极管469A反向偏置并且与MOSFET 462并联。作为对称电路,每当极性反向时,器件就切换状态并且二极管469B变成反向偏置并与传输晶体管462并联。壳体偏置发生器技术可以应用于,例如,电路450中的任何传输晶体管。在此将传输晶体管定义成源极和漏极都不连接到固定功率轨的MOSFET。
除了交叉耦合的MOSFET 468A和468B之外,电路460与电路450类似,除了用数模转换器465取代了固定的参考电压455。D/A转换器的输出使用转换器465的数字控制来调整VBIAS。如所示,数据转换器465输出的电压高达由参考电压源466供应的最大量Vref。否则,每当N沟道传输晶体管462关断时,图13B的电路460利用驱动功率MOSFET 464的栅极的、包含高压侧P沟道MOSFET 461和低压侧N沟道MOSFET 463的互补MOSFET栅极驱动器。与前面一样,MOSFET 462的栅极相对于它的源极必须被偏置得足够正,以接通MOSFET 462。
图13C图示了依照本发明制造的具有低驱动损耗的D/A转换器-驱动的功率MOSFET的实施方案。如电路470所示,功率MOSFET 471的栅极由包含一次只有一个可以导通的N沟道和/或P沟道传输晶体管472、473、474和475的多路复用器供电。低压侧MOSFET 475将功率MOSFET 471的栅极偏置成VG0=0或地电压,传输晶体管MOSFET 474将功率MOSFET 471的栅极偏置成VG1=VBIAS1,传输晶体管MOSFET 473将功率MOSFET 471的栅极偏置成VG2=VBIAS2,以及高压侧MOSFET 472将功率MOSFET 471的栅极偏置成VG3=Vbatt。如有需要,可以采用上面所述的壳体偏置技术。
图13D图示了另一个D/A转换器驱动的功率MOSFET,其中偏置条件由包含电阻器496A、496B和496C以生成偏置点VG2和VG1的电阻器分压器网络确定。这些电阻器的大小适合于设置偏置点,例如,VG2=Vbatt·(R2+R3)/(R1+R2+R3)。使用包含MOSFET492、493、494和495的模拟多路复用器来选择VGS栅极电压。如所示的,VGS3=Vbatt,VGS0=0,以及在这些栅极电压值之间的中间偏置条件。可以使用任何数量的电阻器来形成分压器网络。
可替代地,如图13E所示,也可以使用正向偏置的二极管和电阻器的组合。分压器网络无需包含线性梯级(step),而是可以包括目标偏置电压附近的更大的分辨率。上述的所有D/A转换器栅极驱动方法提供了在制造期间或在操作期间对设置IDBIAS值的某种程度控制。
利用电路反馈的减小的栅极驱动损耗电路虽然提供了设置IDBIAS值的不同程度的灵活性,但上述电路和栅极驱动方法采用了固定偏置电压,而不会自动补偿由制造或操作条件改变引起的功率MOSFET的偏差(variation)。
例如,图14A图示了实施在图5中示出的栅极驱动器202的电路550。如所示,功率MOSFET 556的栅极由包含与Vcc连接的高压侧P沟道MOSFET553和源极被偏置在由电压源555提供的参考电压VBIAS上的N沟道MOSFET554的CMOS驱动器驱动。当MOSFET 554被偏置在其低电流接通状态时,则VGS1=VBIAS,并且漏极电流ID与(VBIAS-Vt)成比例。由于Vt随温度以及随从批次的制造而变化,于是电流也相应地变化。
为了移除这种变化的影响,图14B中的电路580包括ID电流反馈电路90,ID电流反馈电路90使用放大器588动态地调整参考电压源585提供的参考电压VBIAS的值,以迫使漏极电流ID为电流源589提供的参考电流Iref的倍数。漏极电流的量值由电流传感器590测量,并被传递给放大器588的负输入端。该反馈稳定输出电流。对于电流ID的任何增加,到放大器588的负输入都使放大器588的输出减小,降低VBIAS的量值并减小ID,由此补偿电流的增加。
在图14C的曲线图600中示出了净效应(net effect),其中绘出了功率MOSFET的阈值电压对漏极电流IDBIAS的影响。当没有反馈时,如曲线602所示,Vt1的任何增加都导致漏极电流ID的相称的(commensurate)减小。相反,利用反馈,漏极电流601保持恒定。进一步在图14D中图示反馈的效果,其中ID相对于VDS的曲线图动态地调整栅极偏置,以将过电流607A减小到它的目标值606,或相反,将漏极欠电流607B增加到目标值606。
在图15A中示出的本发明的实施例中,使用感测电阻器618B来实现ID漏极电流反馈。跨接电阻器615B的电压降Vs由运算放大器618相对于电压源619提供的参考电压VREF进行差分放大,以生成电压VBIAS。每当MOSFET614被偏置在接通状态条件下时,偏置电压VBIAS驱动功率MOSFET 616的栅极。电流感测电阻器615B增加了与电气负载617串联的总的电阻,并因此减少了效率。
在图15B中示出的本发明的另一个实施例中,改进的电路620利用包含栅极宽度n·W的功率MOSFET 626A和栅极宽度W的感测MOSFET 626B的电流镜,功率MOSFET 626A和感测MOSFET 626B具有公共栅极和源极端以及分开的漏极连接。在包含P沟道MOSFET 623和N沟道MOSFET 624的COMS栅极驱动器的栅极控制下,功率MOSFET 626A控制通过负载629的电流ID。运算放大器628控制电流源627中的电流,迫使MOSFET 626B的漏极电压Vβ至与功率MOSFET 626A的漏极相同的电压。假设MOSFET626A和626B的VGS相同,当Vα=Vβ时,两个器件中的电流处于分别由它们的相对栅极宽度n·W和W所确定的比例。相应地,当功率MOSFET 626A导通漏极电流ID时,与MOSFET处于其线性操作区还是饱和操作区内无关,由sense=ID/n给出依赖于电流源627的感测电流。
感测电流Isense627被镜像到电流源630并被变换成跨接感测电阻器631的电压Vsense。与电路610中的电阻器618B不同,感测电阻器631对增加与负载629串联的电阻没有作用。然后,感测电压Vsense由放大器623相对于电压源632提供的参考电压VREF差分放大,在MOSFET 624的源极上生成输出电压VBIAS。每当VGS1=VBIAS时,即,当MOSFET 624接通而MOSFET 623关断时,电流感测电路和偏置网络形成具有负反馈的闭环,对功率MOSFET626A中的低漏极电流条件IBIAS提供稳定控制。MOSFET 626A中的漏极电流ID的任何增加都造成电流源627供应的Isense电流增加以平衡电压。这又使电流Imirror增加,并使被施加于运算放大器633的负输入端的Vsense增加。较大的负输入信号使VBIAS降低,使功率MOSFET 626A上的VGS减小并补偿增加的电流,因此,尽管在温度或制造方面的偏差(variation),但保持ID恒定。
电流镜电路620相对电路610的一个优点是其不与电气负载629串联地引入任何附加电压降,并因此提高了从电源到负载629的能量传输效率。与在电路610中体现的感测电阻器技术不同,在电路620中体现的电流镜方法只能与诸如MOSFET的漏极可以被分开连接的MOSFET 626A和626B之类的共源极分漏极MOSFET一起使用。它不能与诸如槽沟门控(trench-gated)垂直DMOS或平面垂直DMOS之类的共漏极器件一起使用。
可替代地,可以不用引入与负载657串联的大阻值的感测电阻器而采用在图15C中示出的电路650来精确监视分立功率MOSFET 656中的漏极电流。然后,将感测电流660用于在低电流导通期间控制IDBIAS的量值并且用于在高电流低电阻状态下感测短路条件。在与本申请同时提交并且在此通过引用被并入的、名称为“Cascode Current Sensor For Discrete Power SemiconductorDevices”的申请[代理案号第AATI-26-DS-US]中描述了这种电流感测方法。
具体地说,如图15C所示,被施加于功率MOSFET 656的栅极偏置受包含P沟道MOSFET 653和N沟道MOSFET 654的栅极驱动器控制。栅极电位VGS在操作在低电阻条件下时可以包含Vcc,或在操作在低电流状态下可以包含VBIAS。使用反馈来控制电压VBIAS,以生成所期望的输出电流IDBIAS而与操作条件或制造工艺的偏差无关。使用与功率MOSFET 656串联的具有栅极宽度n·W的低电阻低压MOSFET 658A实现电流感测。功率MOSFET 656可以包含低压或高压器件,并且无需与电路650中的其它组件部件集成。电流感测元件包括与较大的MOSFET 658A一起单片制造的、并且共用公共的源极和分开的漏极的栅极宽度W的电流镜MOSFET 658B。
在一个优选实施例中,使MOSFET 658A和658B两者的栅极偏置为电源电压Vcc并因此被偏置到它们的低电阻线性操作区。甚至在高ID漏极电流上,MOSFET 658A的低电阻也保证MOSFET 658A的漏极处的电压Vα保持低。将MOSFET 658B的漏极电压指定成Vβ。差分放大器659控制所依赖的电流源660中的电流Isense,直到MOSFET 658A和658B的漏极电压相等,即,Vβ=Vα。在这种条件下,Isense=(ID/n),并且精确度量流入功率MOSFET 656中的电流ID,而与其偏置条件无关。
使用与感测电阻器664串联的电流镜661将Isense的值镜像为成比例的电流Imirror,以生成与Vα成比例的感测电压Vsense。因为运算放大器659的电压增益,尽管事实上电压Vα小,但可以使信号Vsense大。Vsense的值由运算放大器663相对于电压源662生成的参考电压VBIAS差分放大。
在闭环操作下,当MOSFET 654接通而MOSFET 653关断时,放大器663的输出在ID等于目标电流IDBIAS时,具有~VBIAS的输出电压。如果ID太小,电流Imirror也将减小,从而降低到运算放大器663的负输入端的Vsense电压。较低的负输入电压导致放大器663的输出电压增加,这又将功率MOSFET 656的栅极驱动到更高的偏置,将ID增加到它的目标值。
当N沟道MOSFET 654关断而P沟道MOSFET 653接通时,功率MOSFET656被偏置成它的高电流状态,并且忽略跨接在电阻器655的降低的运算放大器663输出。为了短路和过电流保护的目的,仍然可以使用电压Vsense来监视MOSFET 658A中的电流ID。如所示,通过磁滞比较器670将电压Vsense与电压源671提供的参考电压Vref相比较。当Vsense超过Vref时,电流ID太高,并且过电流关闭,即,OCSD比较器670生成通知系统已经出现过电流条件和应该关闭功率MOSFET 656的高逻辑输出信号。
由此,通过利用包括感测电阻器、电流镜、共射共基电流感测、或任何其它方法的电流感测技术,并通过将电流感测技术与负反馈组合以调整栅极偏置VBIAS,可以精确控制漏极电流IDBIAS的值。通过控制IDBIAS的值,也可以依照本发明的方法和与图9的曲线图一致地控制在每个开关循环的低状态下在功率MOSFET栅极上保留的最小栅极电荷QGL,以使栅极驱动损耗最小。
利用电流微调的减小的栅极驱动损耗的电路虽然上面的技术使用电流反馈来设置IDBIAS低电流条件的值,但对许多应用来说,可能不止要求电流精确度和电路复杂度。由于饱和的MOSFET具有如下方程给出的漏极电流 ID=k(VGS-Vt)2, 该漏极电流与跨导(transconductance)因子成比例并且与(VGS-Vt)的平方成比例,所以阈值电压是影响饱和电流的最主要工艺参数。同样,可以合理地通过电路的电气微调来实现精确的电流控制以补偿作为制作工艺的一部分的阈值可变性。
如图16A所示,依照本发明制造的具有低驱动损耗的功率MOSFET栅极驱动器701利用在用于低电阻操作的Vcc与用于低电流导通的VBIAS之间交替的电压来驱动功率MOSFET 702的栅极。固定电压源706设置VBIAS的值。在制造好之后,通过测试设备测量电流ID,并将它用于调节微调网络705,直到ID的测量值与偏置电流IDBIAS的目标值匹配。优选地在室温下进行这种校准。
由于饱和电流也随温度变化,主要由于阈值电压,可以使用可选的温度补偿电路709来调节VBIAS 706,以便保持ID对于温度的半恒定值。
在图16B中示出的微调栅极驱动电路720包括具有MOSFET 721和722的栅极驱动器、功率MOSFET 724、和负载725。其余部件用于实施微调的偏置电压VBIAS,包括提供参考电压Vref的参考电压源726、包括电阻器728A和728B和729a-729e的电阻器分压网络728、一次可编程(OTP)MOSFET730a-730e、偏置多路复用器731a-731e和OTP编程器727。电阻器728A和728B分别具有值RA和RB。
在制造好之后,OTP MOSFET 730a-730e呈现比Vcc低得多的正常阈值电压。在操作期间,多路复用器731a-731e将OTP MOSFET 730a-730e每一个的栅极偏置成Vcc,接通OTP MOSFET 730a-730e中的每一个,并且短路掉与之并联的电阻器729a-729e之一。例如,在未编程状态下,OTP MOSFET 731c具有0.7V的阈值。当多路复用器731c将OTP MOSFET 730c的栅极与Vcc连接时,它就导通,并短路掉相应电阻器729c。
在未编程状态下,将所有电阻器729a-729e短路,使得通过电阻器分压器728将VBIAS设置成 编程涉及到将OTP MOSFET 731a-731e中给定的任何一个的栅极与编程器727连接,并且以高压将该器件偏置成饱和。该过程生成热载流子,并且永久地对栅极氧化物充电,使该器件的阈值电压增加到较高值,使得在正常操作下,OTP MOSFET不导通。由此,将电阻器729a-729e中并联那一个插入分压器728中,调节电阻器分压器比率和VBIAS的值。电阻器729a-729e的值可以相同或不同,使得微调可以是线性的或非线性的。依赖于电阻器729a-729e的值,微调输出的范围可以从高至Vref到它的几分之一Vref/m。诸如图16C中示出的,可以以任何数量的组合来排列代码。如所示,代码C1到C8对应于依赖于通过未编程的OTP MOSFET 730a-730e短路的那些电阻器的各种电阻器组合。代码C1从最低电压处的VBIAS开始(直线741),并且随着通过关断OTP MOSFET 730a-730e中的各个OTP MOSFET所编程的各种比特而增加(直线742)。直线743所指示的可替代的模式使用非线性梯级,并且以量值Vref的最大电压(直线744)结束。
虽然许多特定的编程序列是可能的,但在图16D中示出了用于微调VBIAS的一般编程算法780,其中将固定电压VDS施加于操作在低电流,即,IDBIAS状态下的功率MOSFET 724。在步骤781中施加了这个偏置之后,在步骤782中测量漏极电流ID,并在步骤783中将漏极电流ID与IDBIAS的目标范围在某个容限内比较。如果电流太低,则在步骤784中编程OTP MOSFET 730a-730e的一个或多个,增加VBIAS和ID。然后,重复该过程(步骤785),直到测量的ID达到IDBIAS的指定范围,然后该程序终止(步骤786)。
在图16E中示出了IDBIAS编程的例子,其中制造好的产品具有量值Iinitial(直线801)的电流,并且在每次叠代期间电流都增加,直到达到正好在IDlow到IDhigh的目标范围之外的直线802所表示的值。在第五次叠代中,电流增加到目标范围之内的、由直线804所表示的值,然后终止该程序。虽然可以在室温下进行该程序,但也可以在更高温度上使用相同的程序。
可替代地,可以在两种温度下进行编程-一种是校正初始电流的误差,另一种是微调以补偿随温度的阈值变化的影响。图16A中的温度补偿电路709可以假定某个温度系数,例如,处于-3mV/℃上,以避免需要在高温下微调。不管怎样,都使用微调来提高IDBIAS的精度,并且因此更严密地控制MOSFET702的栅极电荷摆动。
利用电流镜驱动的减小的栅极驱动损耗的电路在上述的技术中,IDBIAS的量值依赖于功率MOSFET的阈值。在一种情况下,采用主动微调来调节VBIAS的值,以生成IDBIAS的目标值。在另一种情况下,采用电流反馈来迫使在闭环操作下ID至目标值IDBIAS。
在本发明的另一个实施例中,减小的栅极驱动损耗电路利用对功率MOSFET的阈值波动不敏感的栅极驱动技术。一种消除对阈值的敏感性的这样的方法利用在图17A中示出的电流镜栅极驱动电路820。不用实际感测电流,该技术采用以下原理被单片制造的两个MOSFET将呈现基本匹配的阈值电压并且在相同栅极驱动条件下,在饱和时漏极电流大致与MOSFET栅极宽度成比例地缩放(scale)。
具体地说,单片地制造MOSFET 824A和824B作为电流镜830。功率MOSFET 824A是具有大栅极宽度n·W的低电阻器件,而电流镜MOSFET824B具有栅极宽度W-是MOSFET 824A的栅极宽度的“n”分之一。MOSFET824A的栅极由栅极驱动器821从三个输入-Vcc、VBIAS和地电压中选择的选项驱动。当选择Vcc时,将功率MOSFET 824A偏置成操作在其线性区内的低电阻状态。当选择地电压时,切断功率MOSFET 824A并且没有电流流过。
当选择VBIAS时,功率MOSFET 824A的栅极驱动由包含电流源822和镜像MOSFET 824B的偏置网络确定。在图17B中示出这种模式下的等效电路,其中固定电流源822被选择或预置成供应目标电流IDBIAS除以宽度比率“n”。让这个电流IDBIAS/n馈入其漏极和栅极被短路的、即,阈连接的MOSFET 824B中。阈连接的MOSFET 824B是自偏置的,意味着它将其栅极电压调节为承载固定电流源822供应的漏极电流所需的电位VBIAS。通过定义,因为VDS=VGS保证了饱和条件VDS>(VGS-Vt)总是得到满足,阈连接的MOSFET操作在它的饱和区内。
这个VBIAS电压,即,MOSFET 824B的栅极电压也是大功率MOSFET824A上的栅极电压。倘若MOSFET 824A上的VDS很大,意味着IDBIAS不会太大,那么,其也处于饱和中并且MOSFET 824A和824B中的电流应该按比率“n”缩放。如果电流源822被预置成电流IDBIAS/n,那么,MOSFET 824A和负载823中的电流应该是 ID=n·(IDBIAS/n)=IDBIAS。
由于MOSFET 824A和824B的阈值电压接近匹配,在两个器件中出现由于工艺偏差或温度引起的Vt的任何漂移,并且作为共模噪声加以抑制。例如,如果由于任何原因Vt下降到(Vt-ΔVt),那么,VBIAS下降相称的量至(VBIAS-ΔVt)。MOSFET 824A上的栅极驱动从(VBIAS-Vt)改变为与原始条件相同的值 (VBIAS-ΔVt)-(Vt-ΔVt)=(VBIAS-Vt)。
因此,使用电流镜栅极驱动取消了阈值变化的影响。
因此,由于诸如短沟道效应、串联电阻、准饱和等的次级(secondary)因素引起在设置IDBIAS中的任何误差。如果需要,作为制造工艺的一部分,可以采用微调电路831来调节电流源822的值。
在图18中示出了没有微调的电流镜栅极驱动电路860。栅极驱动电路860包含电流镜MOSFET对861、负载863、包括MOSFET 864、865和870的三态栅极驱动器、先断后接(BBM)缓冲器866和具有电阻器869的偏置电流发生器MOSFET对871。如所示,功率MOSFET 862A在P沟道MOSFET 864接通时可以被偏置成低电阻状态,在N沟道MOSFET 870接通时可以被偏置成完全关断不导通状态,以及在N沟道MOSFET 865接通时可以被偏置为处于低受控电流IDBIAS的饱和。在BBM缓冲器866的控制下,一次可以仅仅接通MOSFET 864、865和870中的一个。
MOSFET对861包含具有栅极宽度n·W的功率MOSFET 862A和具有栅极宽度W的小电流镜MOSFET 862B。利用在MOSFET 862B的栅极和漏极上的电压VBIAS,该器件导通漏极电流IDBIAS/n。这个电流由包含P沟道MOSFET 867和868的电流镜871建立。阈连接的MOSFET 868导通由电阻器869设置的、具有如下量值的电流Iref 电流Iref被MOSFET 867镜像以驱动MOSFET 862B。给定P沟道阈值电压Vtp,将电阻器869的值R调节为将这个电流设置成目标值IDBIAS/n。
图19图示了按照本发明制造的电流镜栅极驱动器880,其中使用提供电压Vref的参考电压源890和电阻器889实现Iref。然后,通过下式给出电流Iref 其中,选择R的值使得Iref=IDBIAS/n。
电路880还图示了三态栅极驱动器的另一种实施方式。该栅极驱动器包含通过逻辑“AND(与)”门892和893和反相器894、895和896驱动的连接Vcc的P沟道MOSFET 884、连接VBIAS的N沟道MOSFET 885、和连接地的N沟道MOSFET 891。每当使能信号EN处于逻辑低状态状态下时,AND门892和893的输出是关断MOSFET 885的低电平,并且,经反相器894反相,AND门892的输出将P沟道MOSFET 884的栅极偏置成高电平,将它关断。经反相器896反相的低电平使能信号驱动具有高栅极偏置的接地的MOSFET891,将它接通,并且将功率MOSFET 882A的栅极与地短路。在这样的状态下,MOSFET 891接通而MOSFET 884和885关断。
当使能信号EN是高电平时,反相器896的输出是低电平并且MOSFET891关断。当EN作为高电平被输入AND门892和893时,它们的输出只依赖于输入引脚IN的状态。当IN是高电平时,反相器895将AND门893的输入端和输出端驱动成低电平,并且关断N沟道MOSFET 885。但是,高电平输入将AND门892的输入端和输出端驱动成高电平,并且,经反相器894反相,将P沟道MOSFET 884的栅极驱动成低电平,接通P沟道MOSFET 884。在这样的状态下,MOSFET 884接通而MOSFET 885和896关断。
相反,当EN是高电平而IN是低电平时,反相器895将AND门893的输入端和输出端驱动成高电平,并且接通N沟道MOSFET 885。但是,低电平输入将AND门892的输入端和输出端驱动成低电平,并且,经反相器894反相,将P沟道MOSFET 884的栅极驱动成高电平,关断P沟道MOSFET 884。在这样的状态下,MOSFET 885接通而MOSFET 884和896关断。
当使用组合逻辑时,在任何一个时刻都只接通驱动功率MOSFET 882A的栅极的三个MOSFET 884、885或891之一。因此,电路880操作为依照本发明控制功率MOSFET 882A的导通和栅极电荷摆动的三态栅极驱动器。表3是三态栅极驱动器的逻辑的真值表
表3 在图20中图示依照本发明的电流镜栅极驱动器的另一种变型,其中三态栅极驱动器901利用值VGS1将功率MOSFET 903A的栅极驱动成三个电位之一-Vcc、地电压或VBIAS。电压VBIAS由导通来自受控电流源904的电流Iref的阈连接的MOSFET 903B确定。分别具有栅极宽度W和n·W的MOSFET903B和903A一同构成被单片制造的MOSFET对902。
在数字逻辑、数字信号处理器、或微处理器907的控制下通过D/A转换器906来调整电流Iref,并且,如果需要,可以动态地和实时地调整电流Iref。D/A转换器906和相关电流源904可以一起构成电流输出D/A转换器。
在图21B中图示直接驱动镜像MOSFET 942B的电流型D/A转换器947的例子。电流模式D/A转换器947包括生成参考电压Vref的参考电压源949以消除对电源电压Vcc波动的敏感性。可替代地,如图21A所示,可以使用D/A转换器929控制受控电压源928来生成电流Iref。使用具有值R的电阻器927将电压Vref变换成电流,从而Iref=(Vref-Vtn)/R。如前所述,可以使用一系列电阻器和OTP MOSFET来微调R的精确值。
为了有利于VBIAS的系统控制,可以响应不断改变的条件来调整饱和期间的漏极电流IDsat,即,IDBIAS的值。例如,可以将IDBIAS调整成在线性低电阻状态期间导通的IDlin的百分数,即, IDsat=IDBIAS∝IDlin=Vcc/RDS(on)。
在图示IDBIAS相对于IDlin的图22A中示出这样的例子。曲线图980中的曲线983图示了使用线性区电流的模拟反馈控制的恒定百分比。可替代地,可以使用D/A转换器和数字控制来实现被示为曲线982a、982b和982c的包含的电流的IDBIAS的步进的增加。作为参考,将恒定IDBIAS示为直线981。在图22B的曲线图990中,IDBIAS作为频率f的函数变化(曲线992)而不是保持恒定(曲线991)。
利用切换偏置电流镜驱动的减小栅极驱动损耗的电路在前面的电流镜驱动电路中,功率MOSFET栅极偏置由从Vcc、VBIAS和可选的地电压中选择的多路复用栅极驱动器确定。在这样的实施方式中,向被硬连线成阈连接的器件,即,具有VGS=VDS的电流镜MOSFET馈送的电流源建立VBIAS。
图23A中图示的一种可替代方式是在高频开关期间在地电压与偏置电源电流Iref之间切换电流镜MOSFET 1002B上的栅极偏置。当P沟道MOSFET1004接通并且使能信号是高电平时,栅极驱动器1005将N沟道MOSFET1002B的栅极与地连接,关断MOSFET 1002B。其结果是,VGS1=Vcc,并且功率MOSFET1002A被偏置成低电阻状态,在该状态中MOSFET 1006保持关断。
在饱和低电流模式下,MOSFET 1004关断并且使能信号具有高电平,栅极驱动器1005将镜像MOSFET 1002B的栅极与漏极短路。同时,MOSFET1006接通,并且参考电压源1008通过电阻器1007向阈连接MOSFET 1002B供应电流Iref。镜像MOSFET 1002B只有在VGS1=VBIAS的时间期间内是阈连接的。其结果是,利用漏极电流IDBIAS将功率MOSFET1002A偏置成饱和。
如果使能信号是低电平,则栅极驱动器1005将MOSFET 1002B的栅极与Vcc连接,将它接通,并将功率MOSFET 1002A的栅极接地。在这种条件下,MOSFET 1004和1006保持关断。
切换偏置电路1000的优点在于只需两个大面积MOSFET作为缓冲器来驱动功率MOSFET 1002A的栅极,即,将功率MOSFET 1002A驱动到低电阻状态的高压侧MOSFET 1004,和为功率MOSFET 1002A在饱和下操作而提供VBIAS栅极驱动以及关断功率MOSFET 1002A的多功能镜像MOSFET1002B。
图23B图示了电路1000的一种形式,其中驱动电流镜MOSFET 1022B的栅极的栅极驱动器包含用于关断MOSFET 1022B的接地的N沟道MOSFET1025、和将MOSFET 1022B的栅极和漏极短路的N沟道MOSFET 1029。采用MOSFET 1026将镜像MOSFET 1022B的栅极偏置在电压VBIAS上。使用MOSFET 1024将功率MOSFET 1022A驱动到低电阻状态。
减小栅极驱动损耗的电路的应用和拓扑上述具有低栅极驱动损耗的用于驱动功率MOSFET的方法和电路可以被应用于N沟道或P沟道导通型的低压侧、高压侧或推挽配置的功率MOSFET。图24A-24D图示了使用N沟道功率MOSFET的低损耗栅极驱动器,而图25A和25B图示了使用P沟道和互补功率MOSFET的低损耗栅极驱动器。
如上所述,栅极驱动器可以包含在低电阻完全接通条件与有限电流饱和MOSFET条件之间切换的双态驱动器。可替代地,栅极驱动器可以包含在低电阻完全接通条件、有限电流饱和MOSFET条件、和用于休眠模式操作的完全关断条件之间切换的三态缓冲器。功率电路中的每个功率MOSFET可以采用所述低栅极驱动损耗技术之一,或可替代地,仅仅功率器件中的一个可以利用低驱动损耗方法。
图24A图示了驱动接地的、即低压侧配置的N沟道功率MOSFET 1101、利用电压源1106生成VBIAS并且由生成Vcc的电压源1105供电的三态栅极驱动器1102。由生成VDD的电压源1104供应的功率MOSFET 1101和负载1103中的电流可以包含在低电阻状态下的VDD/R;当饱和时的恒定电流IDBIAS;以及当没有进行切换时的ID=0。当使能信号EN是低电平并且功率MOSFET1101的栅极接地时,禁止切换。电压源1104(VDD)和1105(Vcc)可以包含相同功率。通过在Vcc与VBIAS之间的切换期间限制栅极偏置,减小了栅极电荷摆动,并提高了切换期间功率MOSFET 1101的效率。
图24B图示了驱动高压侧,即源极跟随器配置的N沟道功率MOSFET1121的、由自举电容器1128供电、利用浮置电压源1126生成VBIAS的浮置三态栅极驱动器1122。每当MOSFET 1121关断并且负载1123上的电压Vx处于地电压上或小于电源电压Vcc时,生成Vcc的电压源1125就通过自举二极管1127对自举电容器1128充电。自举电容器1128在VGS1=Vboot≈Vcc的间隔内对栅极驱动器1222供电并且MOSFET 1121以低电阻完全接通。
由生成VDD的电压源1124供应的功率MOSFET 1121和负载1123中的电流在MOSFET 1121处于低电阻状态下,可以等于VDD/R;在MOSFET 1121处于饱和时,可以等于恒定电流IDBIAS;或者在MOSFET 1121没有进行开关时,可以等于零。当使能信号EN是低电平并且功率MOSFET 1121的栅极与它的源极电压Vx连接时,禁止MOSFET 1121进行开关。通过电平移位电路1129对使能信号和输入信号进行电平移位来馈入栅极驱动器1122。电压源1124(VDD)和1125(Vcc)可以是单个电压源。通过在Vcc与VBIAS之间切换MOSFET 1121的栅极,减小了栅极电荷摆动,并提高了切换期间MOSFET1121的效率。
图24C图示了同步升压变换器1160,其包含低压侧N沟道功率MOSFET1161、同步整流器MOSFET 1166、和按照本发明的低损耗栅极驱动器1162和1167。如所示的,利用电压源1163生成VBIASL的三态栅极驱动器1162由Vbatt供电,并且驱动接地的低压侧配置的N沟道功率MOSFET 1161。功率MOSFET 1161中的电流在MOSFET 1161处于低电阻状态下,可以等于Vx/R;在MOSFET 1161饱和时,可以等于恒定电流IDBIAS;或者在MOSFET 1161没有开关时,可以等于零。当使能信号EN是低电平并且功率MOSFET 1161的栅极接地时,禁止切换。当使能时,脉宽调制(PWM)控制器1164确定MOSFET 1161的脉冲宽度和接通时间,MOSFET 1161又控制流入电感器1165的电流。通过在Vbatt与VBIASL之间的切换期间限制MOSFET 1161的栅极偏置,减小了栅极电荷摆动,并提高了切换期间功率MOSFET 1161的效率。
升压变换器1160还图示了每当低压侧MOSFET 1161关断并且Vx很快超过(fly above)Vout时导通的PN结整流二极管1169。为了减小功率损耗,浮置N沟道同步整流器MOSFET 1166在低压侧MOSFET 1161关断的时间的某个部分内导通。如所示的,同步整流器MOSFET 1166由双态栅极驱动器1167驱动,并由自举电容器1172供电。每当Vx接近地电压时,Vbatt通过自举二极管1171对自举电容器1172充电。电压Vboot浮置在Vx的之上,使得向栅极驱动器1167供应与电压Vx的量值无关的Vboot≈(Vbatt-Vf)。Vf是对自举电容器1172充电时跨接自举二极管1171的正向偏置电压。
浮置双态栅极驱动器1167驱动浮置MOSFET 1166的栅极,利用电位VGSF=Vboot使其操作在低接通状态电压降上,利用电位VGSF=VBIASF使其操作为处于电流IDBIAS上的饱和电流源。优选地通过使先断后接缓冲器1173反相来使同步整流器MOSFET 1166与低压侧MOSFET 1161异相地被驱动,使得一次只有一个MOSFET操作在低电阻大电流状态下。按照本发明,在这样的间隔期间,另一个MOSFET可以关断或导通小偏置电流IDBIAS,以减小栅极电荷摆动。由于N沟道MOSFET 1161在导通期间呈现比同步整流器MOSFET1166大的漏极电压转变,对于驱动低压侧MOSFET 1161的栅极驱动器1162而言,本发明限制栅极电荷摆动的益处是最大的。不过,驱动同步整流器MOSFET 1166的驱动器1167使栅极驱动损耗有所减小,并且,更重要的是,减小了整流二极管1169中二极管恢复生成的效率损失和噪声。与本申请同时提交并且在此通过引用并入其全文的、名称为“Low-Noise DC/DC ConverterWith Controlled Diode Conduction)”的申请号[代理案号第AATI-18-DS-US号]中提出了将同步整流器MOSFET偏置成电流源来控制二极管恢复的主题。表4是描述上述各种组合的真值表。

表4 还要注意,在图24C的实施例中,只有栅极驱动器1162是三态的,这是由于MOSFET 1161形成从电池输入到地的串联分路。使MOSFET 1166进入其中禁止MOSFET 1166开关的休眠模式不会防止Vbatt将输出电容器1170充电到近似Vbatt,这是由于每当Vbatt>Vout时,二极管1169被正向偏置。使同步整流器MOSFET 1166进入休眠模式的主要益处是防止电容器1170反向对Vbatt逐渐放电。
在本发明的另一个实施例中,在图24D中图示按照本发明的具有减小的栅极驱动损耗的N沟道同步降压变换器1180。如所示的,降压变换器1180包含利用浮置电压源1183生成VBIASH的浮置三态栅极驱动器1182。栅极驱动器1182由自举电容器1185供电并且驱动高压侧,即源极跟随器配置的N沟道功率MOSFET 1181。每当MOSFET 1181关断并且电压Vx处于地电压上或小于电源电压Vbatt时,Vbatt通过自举二极管1184对自举电容器1185充电。自举电容器1185在VGSH=Vboot≈Vbatt的间隔期间内对栅极驱动器1282供电并且MOSFET 1181以低电阻完全接通。
MOSFET 1181具有其受PWM控制器1193控制的接通时间。调制被供应给MOSFET 1181的脉冲宽度以控制流过电感器1190以及对电容器1191充电的电流。当使用闭环控制时,使用反馈信号VFB将输出电压Vout反馈到PWM控制器1193,以针对输入电压Vbatt和负载电流的变化来调节输出电压。每当MOSFET 1181饱和并且导通低电流IDBIAS时,电感器1190就迫使Vx低于地电压,其结果是,二极管1189变成正向偏置。每当栅极驱动器1187将MOSFET1186的栅极偏置成Vbatt时,包括低压侧N沟道MOSFET 1186,以通过较低电压降路径来分流电流以减小二极管导通损耗。
相反,每当高压侧MOSFET 1181在VGSH=Vboot情况下的低电阻状态下导通电流时,通过VGSL=VBIAS的栅极缓冲器偏置同步整流器MOSFET 1186,并且同步整流器MOSFET导通低电流IDBIAS。BBM电路1192防止高压侧MOSFET 1181和低压侧MOSFET 1182两者同时导通高电流。
由于高压侧MOSFET 1181在导通期间呈现比同步整流器MOSFET 1186大的漏极电压转变,本发明限制栅极电荷摆动的益处对于驱动高压侧MOSFET 1181的栅极驱动器1182是最大的。不过,驱动同步整流器MOSFET1186的栅极驱动器1187使栅极驱动损耗有所减小,并且,更重要的是,减小了整流二极管1189中二极管恢复生成的效率损失和噪声。
在上面引用的申请[代理案号AATI-18-DS-US]中提出了通过将同步整流器MOSFET偏置成电流源来控制二极管恢复的主题。表5是描述上述各种组合的真值表。

表5 还要注意,只有栅极驱动器1182需要三态,这是由于关断MOSFET 1181或1186都中断了从Vbatt到地电压的电流路径。
在本发明的另一个实施例中,图25A中的电路1200图示了利用电压源1203生成VBIAS的三态栅极驱动器1202。生成VDD的电压源1205经由连接Vcc的,即高压侧配置的P沟道功率MOSFET 1201来驱动负载1204。由电压源1205供应,功率MOSFET 1201和负载1204中的电流在MOSFET 1201的低电阻状态下,可以等于VDD/R;在MOSFET 1201饱和时,可以等于恒定电流IDBIAS;以及在MOSFET 1201没有进行开关时,可以等于零。当使能信号EN是低电平并且功率MOSFET 1201的栅极与VDD连接时,禁止MOSFET1201进行开关。
如被偏置在VDD与地电压之间的反相器1206和1209所指示的,可以将使能(EN)和输入(IN)信号传递给在VDD与地电压之间切换的逻辑。如果电源电压VDD大于Vcc,必须将EN和IN信号电平移位到VDD。在图25A的实施例中,电平移位电路采用N沟道MOSFET 1207和电阻器1208将反相器1206的输出变换成在VDD与地电压之间切换的输入信号IN′。类似地,N沟道MOSFET 1210和电阻器1211将反相器1206的输出变换成在VDD与地电压之间切换的使能信号EN′。可替代地,可以通过单个功率供应Vcc和VDD,使得不需要电平移位电路。总而言之,通过在VDD与VBIAS之间的切换期间限制功率MOSFET 1201的栅极偏置,减小了栅极电荷摆动,并提高了切换期间功率MOSFET的效率。
在图25B中图示按照本发明的减小了栅极驱动损耗的互补同步降压变换器1220。变换器1220包含高压侧参考三态栅极驱动器1222,所述高压侧参考三态栅极驱动器1222利用高压侧参考电压源1223生成VBIASH、由Vbatt直接供电并且驱动高压侧,即共源极配置的P沟道功率MOSFET 1221。
MOSFET 1221的接通时间受PWM控制器1231控制。调制被传递给MOSFET 1221栅极的脉冲的宽度以控制流过电感器1228、对电容器1229充电的电流。在使用闭环控制时,使用反馈信号VFB使输出电压Vout反馈到PWM控制器1231,以针对输入电压和负载电流的变化调节输出电压。每当MOSFET1221饱和并且导通低电流IDBIAS时,电感器1228就迫使Vx低于地电压,其结果是,二极管1227变成正向偏置。每当栅极驱动器1225将MOSFET 1224的栅极偏置成Vbatt时,包括了低压侧N沟道MOSFET 1224,以通过较低电压降路径来分流电流以减小二极管导通损耗。
相反,每当高压侧P沟道MOSFET 1221在VGSH=-Vbatt的情况下的低电阻状态下导通电流时,利用VGSL=-VBIAS通过栅极缓冲器偏置同步整流器MOSFET 1224,并且同步整流器MOSFET 1224导通低电流IDBIAS。BBM电路1230防止MOSFET 1221和1224同时导通高电流。
由于P沟道MOSFET 1221在导通期间呈现比同步整流器MOSFET 1224大的漏极电压转变,本发明限制栅极电荷摆动的益处对于驱动高压侧P沟道MOSFET 1221的栅极驱动器1222是最大的。不过,驱动同步整流器MOSFET1224的栅极驱动器1225使栅极驱动损耗有所减小,并且,更重要的是,减小了整流二极管1227中二极管恢复生成的效率损失和噪声。
在上面引用的申请[代理案号AATI-18-DS-US]中提出了通过将同步整流器MOSFET偏置成电流源来控制二极管恢复的主题。表6是描述上述各种组合的真值表。

表6 还要注意,只有栅极驱动器1222需要三态,这是由于关断MOSFET 1221或1224都中断了从Vbatt到地电压的电流路径。
虽然在此描述了本发明的特定实施例,但本领域的普通技术人员应该明白,所述的实施例只是例示性的,而不是限制性的。本发明的宽泛的原理由随后的权利要求限定。
权利要求
1.一种包含栅极驱动器和功率MOSFET的组合体,所述栅极驱动器的输出端与所述功率MOSFET的栅极端连接,所述栅极驱动器进一步包含
第一输入端和第二输入端,所述第一输入端与第一电压源连接,所述第二输入端与第二电压源连接;
切换元件,在所述第一输入端和所述第二输入端之间切换所述输出端;
其中,在所述第一电压源提供的第一电压被传递给所述栅极端时,促使所述功率MOSFET处于完全接通条件,以及在所述第二电压源提供的第二电压被传递给所述栅极端时,促使所述功率MOSFET处于低电流条件。
2.如权利要求1所述的组合体,进一步包含与所述栅极驱动器连接的缓冲器,以便在所述第一和第二输入端之间重复地切换所述输出端。
3.如权利要求1所述的组合体,其中,所述切换元件包含CMOS对,所述COMS对的第一MOSFET连接在所述第一输入端和所述输出端之间,所述COMS对的第二MOSFET连接在所述第二输入端和所述输出端之间。
4.如权利要求1所述的组合体,其中,所述栅极驱动器包含第三输入端,所述第三输入端与所述功率MOSFET的源极端连接,所述切换元件能够在所述第一、第二和第三输入端之间切换所述输出端。
5.如权利要求4所述的组合体,其中,所述栅极驱动器包含CMOS对和第三MOSFET,所述COMS对的第一MOSFET连接在所述第一输入端和所述输出端之间,所述COMS对的第二MOSFET连接在所述第三输入端和所述输出端之间,所述第三MOSFET连接在所述第二输入端和所述输出端之间。
6.如权利要求1所述的组合体,其中,所述功率MOSFET与功率电路中的负载连接,所述组合体进一步包含连接在所述功率电路与所述栅极驱动器的第二端之间的反馈电路,所述反馈电路生成用于将所述功率MOSFET的低电流条件下的电流保持在目标值上的误差信号。
7.如权利要求6所述的组合体,其中,所述反馈电路包含连接在所述功率电路中的电流传感器和放大器,并且其中所述第二电压源包含可变电压源,所述电流传感器与所述放大器的第一输入端连接,所述放大器的第二输入端与参考电流源连接,所述放大器的输出与所述可变电压源连接。
8.如权利要求6所述的组合体,其中,所述功率电路包括感测电阻器,以及所述反馈电路包含放大器和参考电压源,所述放大器的第一输入端与所述感测电阻器连接,所述放大器的第二输入端与所述参考电压源连接,以及所述放大器的输出端与所述栅极驱动器的第二端连接。
9.如权利要求6所述的组合体,其中,所述反馈电路包含
电流镜布置,生成镜像电流,所述镜像电流的大小与所述功率电路中的电流的大小成比例;
感测电阻器,与所述电流镜布置连接,使得所述镜像电流流过所述感测电阻器;以及
放大器,所述放大器的第一输入端与参考电压源连接,所述放大器的第二输入端与所述感测电阻器连接,以及所述放大器的输出端与所述栅极驱动器的第二输入端连接。
10.如权利要求9所述的组合体,其中,所述反馈电路包含与所述功率MOSFET串联的第二MOSFET。
11.如权利要求1所述的组合体,其中,所述功率MOSFET与功率电路中的负载连接,以及所述第二电压源包含可变电压源,所述组合体进一步包含连接在所述功率电路中的电流传感器和与所述电流源和所述可变电压源连接的微调电路,所述微调电路适用于响应来自所述电流传感器的输出信号来调整所述第二电压的量值。
12.如权利要求11所述的组合体,其中,所述微调电路包含多个电阻器和多个一次可编程MOSFET,所述电阻器中的每一个与所述一次可编程MOSFET中的对应的一个并联。
13.如权利要求1所述的组合体,其中,所述功率MOSFET与功率电路中的负载连接,所述组合体进一步包含
电流镜MOSFET,所述电流镜MOSFET的栅极端和漏极端短接在一起并与所述栅极驱动器的第二端连接;
电流传感器,连接在所述功率电路中;
可变电流源,与所述电流镜MOSFET连接;以及,
微调电路,与所述电流源和所述可变电流源连接,所述微调电路适用于响应来自所述电流传感器的输出信号来调整所述可变电流源供应的电流的量值。
14.如权利要求1所述的组合体,其中,所述功率MOSFET与功率电路中的负载连接,所述组合体进一步包含
电流镜MOSFET,所述电流镜MOSFET的栅极端和漏极端短接在一起并与所述栅极驱动器的第二端连接;以及
电流源,与所述电流镜MOSFET连接,所述电流源适用于供应具有量值等于处于低电流条件下的所述功率MOSFET中的期望的电流量值的指定比例的电流。
15.如权利要求14所述的组合体,其中,所述电流源包含可变电流源,所述组合体进一步包含与所述可变电流源的输入端连接的数字-模拟转换器、以及与所述数字-模拟转换器的输入端连接的数字器件。
16.如权利要求1所述的组合体,其中,所述功率MOSFET是升压变换器的组件,所述功率MOSFET与电感器串联,在所述升压变换器的输出端与所述功率MOSFET和所述电感器之间的公共节点之间连接同步整流器MOSFET。
17.如权利要求1所述的组合体,其中,所述功率MOSFET是降压变换器的组件,所述功率MOSFET与同步整流器MOSFET串联,在所述降压变换器的输出端与所述功率MOSFET和所述同步整流器MOSFET之间的公共节点之间连接电感器。
全文摘要
一种用于例如DC/DC变换器中功率MOSFET的栅极驱动器,其在完全接通条件与低电流条件之间切换MOSFET,而不是在MOSFET完全接通条件与完全关断条件之间切换MOSFET。由此减少了对MOSFET的栅极充电和放电所必须转移的电荷量,并且提高了MOSFET的效率。可以使用反馈电路来保证处于低电流条件下的功率MOSFET中的电流的量值是正确的。可替代地,可以使用微调处理来校正栅极驱动器供应给处于低电流条件下的功率MOSFET的栅极的电压的量值。
文档编号H02M1/08GK101785187SQ200880025666
公开日2010年7月21日 申请日期2008年4月30日 优先权日2007年5月21日
发明者理查德·K·威廉斯 申请人:先进模拟科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1