用于电动车辆的感应充电系统的制作方法

文档序号:7460320阅读:173来源:国知局
专利名称:用于电动车辆的感应充电系统的制作方法
技术领域
本发明大体涉及用于电动车辆的感应充电系统。
背景技术
车辆使用用于推进的各种动力源。这种动力源可包括内燃机和/或一个或多个电马达或燃料电池。每个动力源典型地需要能量储存装置,所述能量储存装置被构造为接收和储存能量,和提供被储存的能量以操作动力源。储存在能量储存装置内的特定量的能量通常操作车辆用于有限的驾驶里程。当容纳在能量储存装置内的能量减少时,能量储存装置将被再充电。

发明内容
一种电动车辆,包括充电接收器单元。充电接收器单元包括多个芯部构件、多个偏置装置和接收器线。多个芯部构件以彼此间隔的关系布置。多个芯部构件的每个被构造为与多个磁性元件对准。多个偏置装置将多个芯部构件的相应一个朝向多个磁性元件的相应一个纵向地偏置,从而磁通量在多个磁性元件的每个和多个芯部构件的相应一个之间被传递。接收器线被布置为与多个芯部构件的每个电连通。在多个芯部构件中的磁通量在接收器线中感生出电流。一种感应充电系统,包括充电供应单元和电动车辆。充电供应单元包括多个磁性元件、供电线和电源。多个磁性元件以彼此间隔的关系布置。供电线被布置为与多个磁性元件的每个电连通。第一电流被传递通过供电线并在多个磁性元件的每个中感生出磁通量。电源与供电线电连通。电源将第一电流提供给供电线。电动车辆包括充电接收器单元。充电接收器单元包括多个芯部构件、多个偏置装置、接收器线和能量储存装置。多个芯部构件以彼此间隔的关系布置。多个芯部构件的每个与多个磁性元件的相应一个纵向地对准。多个偏置装置将多个芯部构件的相应一个朝向多个磁性元件的相应一个纵向地偏置,从而磁通量在多个磁性元件的每个和多个芯部构件的相应一个之间被传递。接收器线被布置为与多个芯部构件的每个电连通。多个芯部构件中的磁通量在接收器线中感生出电流。能量储存装置被布置为与接收器线电连通。接收器线将第二电流传递给能量储存装置。一种感应充电系统,包括充电供应单元和电动车辆。充电供应单元包括多个磁性元件和供电线。多个磁性元件以彼此间隔的关系布置。供电线布置为与多个磁性元件的每个电连通。第一电流被传递通过供电线并在多个磁性元件的每个中感生磁通量。电动车辆包括充电接收器单元。充电接收器单元包括多个芯部构件、多个偏置装置和接收器线。多个芯部构件以彼此间隔的关系布置。多个芯部构件的每个与多个磁性元件的相应一个纵向地对准。多个偏置装置将多个芯部构件的相应一个朝向多个磁性元件的相应一个纵向地偏置,从而磁通量在多个磁性元件的每个和多个芯部构件的相应一个之间被传递。接收器线被布置为与多个芯部构件的每个电连通。多个芯部构件中的磁通量在接收器线中感生电流。能量储存装置被布置为与接收器线电连通。本发明的上述特征和优势及其他特征和优势将从用于实施本发明的最佳实施例和最佳模式的以下详细描述并连同附图显而易见。


图I是感应充电系统的示意局部横截面侧视图,该系统包括充电供应单元和具有充电接收器单元的电动车辆,充电接收器单元处于收回位置;图2是图I的感应充电系统的示意局部横截面侧视图,充电接收器单元处于延伸位置;图3是图I的充电供应单元的示意平面图;图4是图I的充电接收器单元的示意平面图; 图5是图I的感应充电系统的另一实施例的示意局部横截面侧视图,充电接收器单元处于收回位置;图6是图5的感应充电系统的示意局部横截面侧视图,充电接收器单元处于延伸位置;图7是图5的充电供应单元的示意平面图;图8是图5的充电接收器单元的示意平面图;图9是图I的感应充电系统的又一实施例的不意局部横截面侧视图,充电接收器单元处于收回位置;图10是图9的感应充电系统的示意局部横截面侧视图,充电接收器单元处于延伸位置;图11是图9的充电供应单元的示意平面图;和图12是图9的充电接收器单元的示意平面图。
具体实施例方式参考附图,其中,相同的附图标记在多幅图中对应相同或相似的部件,图I示出了感应充电系统10,包括电动车辆12和充电供应单元14。电动车辆12可以是电池电动车辆12 (BEV)、增程式电动车辆12 (EREV)、插电式混合电动车辆12 (PHEV)等。电动车辆12包括充电接收器单元16。充电接收器单元16被构造用于接收从充电供应单元14传递的电流,该充电供应单元14定位在多个充电站17的任意充电站处,所述多个充电站布置在不同地理位置处。充电接收器单元16包括能量储存装置18,所述能量储存装置可以是电能储存装置18,诸如可再充电电池等,其被构造为经由充电供应单元14在充电站17中的一个处充电。当电动车辆12位于充电站17中的任一个处时,能量储存装置18被构造为选择性地从充电站17的充电供应单元14接收电荷。更具体地,当电动车辆12的充电接收器单元16与充电站17的充电供应单元14配合或对准时,充电接收器单元16和充电供应单元14协作以提供感应充电系统10,该感应充电系统10选择性地将电能从充电供应单元14传递到电动车辆12的充电接收器单元16的能量储存装置18。如以下更详细地解释的,为了允许磁通量26在充电供应单元14和充电接收器单元16之间高效地流动,充电供应单元14和充电接收器单元16需要尽可能地靠近在一起,以消除或减小任何气隙58。充电供应单元14并入充电站17中,或被充电站17提供。充电供应单元14包括多个磁性元件20、供电线22和电源24。磁性元件20以彼此间隔的方式布置,如图3所示。磁性元件20可以由磁性材料形成,例如,铁、钢、陶瓷,和/或由其他非磁性和磁性材料。电源24与供电线22电连通,从而电源24将第一电流25供应给供电线22。供电线22被布置为与每一个磁性元件20电连通。更具体地,第一电流25被电源24传递通过供电线22,这在多个磁性元件20的每一个中感生磁通量26。充电供应单元14还包括具有第一表面30的板28。充电供应单元14可以布置在地32中,从而第一表面30与地32大体齐平。每个磁性元件20具有端表面34,且被嵌入在板28内,从而每个端表面34至少靠近板28的第一表面30。参考图2,第一表面30和每个端表面34是齐平的。第一表面30可以是平的。但是,一旦板28安装在地32中,环境操作 条件可影响板28,使得第一表面30可以变为卷曲的、弯曲的和/或不平的,如以下详细解释。参考图4,充电接收器单元16包括多个芯部构件36、多个偏置装置38、接收器线40和能量储存装置18。芯部构件36可以由磁性材料形成,例如,铁、钢、陶瓷,和/或由其他非磁性和磁性材料。芯部构件36可以是大致圆柱形的,且在第一端42和第二端44之间纵向地延伸。芯部构件36可以是除了圆柱形之外的其他形状。芯部构件36以彼此间隔的关系布置,且与充电供应单元14的磁性元件20的相应一个纵向地对准,如图I和2所示。接收器线40布置为与芯部构件36和能量储存装置18的每个电连通。参考图2,磁通量26从多个磁性元件20流动到相应芯部构件36中,以在接收器线40中感生第二电流45(图3)。接收器线40则将第二电流45传递到能量储存装置18。为了在充电供应单元14和充电接收器单元16之间获得紧密的配合并减小气隙58,充电接收器单元16可远离电动车辆12并朝向充电供应单元14的磁性元件20纵向移动。促动器46操作性地连接到充电接收器单元16,且被构造用于将充电接收器单元16在收回位置50 (如图I所示)和延伸位置48 (如图2所示)之间纵向地移动。延伸位置48是远离车辆朝向多个磁性元件20的位置。收回位置50是朝向车辆远离磁性元件20的位置。促动器46将充电接收器单元16降低到延伸位置48中,从而芯部构件36靠近或接触相应的磁性元件20。同样,促动器46将充电接收器单元16收回到收回位置50中。具体地参考图1,气隙58大体限定在每个芯部构件36的第一端42和相应磁性兀件20的端表面34之间。当芯部构件36的第一端42至少靠近相应磁性元件20的端表面34时,如图2所示,磁通量26可以在每个磁性元件20和相应芯部构件36之间传递。但是,气隙58越大,通过气隙58的磁漏越大,在磁性元件20和芯部构件36之间传递的磁通量26越小。因此,减小或消除气隙58减小从气隙(一个或多个)58的磁漏,并增加感应充电系统10的效率。充电接收器单元16还包括壳体52,所述壳体52限定多个孔54。每个孔54纵向地延伸到相应的顶板56。芯部构件36纵向地可移动地布置在在孔54的相应一个中。偏置装置38中的一个被布置在芯部构件36的相应一个和相对应的顶板56之间。偏置装置38各自使芯部构件36的相应一个朝向或抵靠磁性元件20中的相应一个纵向地偏置,以便减小或消除限定在每个芯部构件36的第一端42和每个相对应磁性元件20的端表面34之间的气隙58。偏置装置38可以是弹簧,例如,压缩弹簧60、叶簧等。每个偏置装置38在相应孔54的第二端44和相应顶板56之间反作用,以便将每个相应的芯部构件36独立地、纵向地偏置远离相应顶板56并朝向相应磁性元件20。这意味着,每个芯部构件36可相对于其他芯部构件36被独立地、纵向地偏置,从而芯部构件36顺应布置在板28内的相应磁性元件20,而不管磁性元件20的第一表面30是否彼此以非平面关系设置或是否有碎屑62存在于一个或多个磁性兀件20上。因此,磁通量26以尽可能少的磁漏在每个磁性元件20和相应芯部构件36之间传递。每个芯部构件36均具有偏置装置38允许芯部构件36独立地顺应第一表面30的形状和/或存在于第一表面30上的任何碎屑62。作为非限制性例子,如果碎屑62存在于第一表面30上,如图I和2所示,当充电接收器单元16处于延伸位置48时,仅对应于碎屑62并接触碎屑62的芯部构件(一个或多个)36将被碎屑62偏置,而其他芯部构件36将不受碎屑62影响。因此,其他芯部构件36将被朝向或抵靠第一表面30偏置,以减小和/或消除气隙58。作为另一非限制性例子,如果第一表面30是卷曲的、弯曲的和/或不平的,当充电接收器单元16处于延伸位置48时,每个芯部构件36将被独立地偏置不同量,基于每个芯部构件36的纵向地接触第一表面30的相应部分的位置。 通过独立地偏置每个芯部构件36,芯部构件36被构造用于顺应第一表面30,即使当第一表面30是非平面的和/或不与第一表面30平行。芯部构件36被设置在第一阵列64中,如图4所示,磁性元件20被设置在第二阵列66中,如图3所示。充电接收器单元16的第一阵列64,和充电供应单元14的第二阵列66,可以相同地设置。替换地,第一阵列64具有的芯部构件36的数量可不同于第二阵列66的磁性元件20的数量。附加地,第一阵列64和/或第二阵列66可以形成为矩形、正方形、八边形、圆形等。并且,基于供电线22关于和/或在磁性元件20之间的路线以及接收器线40关于和/或在芯部元件之间的路线,磁通的不同图样可以被产生,以在磁性元件20和芯部构件36之间流动。参考图4所示的充电接收器单元16,接收器线40在第一组芯部构件68和第二组芯部构件70之间延伸,从而磁通量26 (图2所示)在多个芯部构件36和多个磁性元件20之间流动,以感生穿过接收器线40的第一电流25。流动通过第一组芯部构件68的磁通量26的极性与流动通过第二组芯部构件70的磁通量26的极性相反。芯部构件36被设置在第一格栅状阵列72中,所述阵列72具有多个列74。接收器线40在芯部构件36的多个列74的每一对相邻列之间前后编织,从而磁通量26在多个芯部构件36和多个磁性元件20之间流动,以感生穿过接收器线40的第一电流25。流动穿过在多个列74的每个中的芯部构件36的磁通量26的极性与流动穿过各自的相邻列74中的芯部构件36的磁通量26的极性相反。参考图3所示的充电供应单元14,供电线22在第一组磁性元件76和第二组磁性元件78之间延伸,以产生穿过多个磁性元件20的磁通量26。被产生穿过第一组磁性元件76中的每个的磁通量26的极性与被产生穿过第二组磁性元件78中的每个的磁通量26的极性相反,从而流动通过供电线22的第二电流45产生通过多个磁性元件20的磁通量26。磁性元件20被设置在第二格栅状阵列80中,所述第二格栅状阵列80具有多个列74。供电线22在磁性元件20的多个列74中的每一对相邻列之间前后编织,以产生穿过多个磁性元件20的磁通量26。被产生穿过多个列74中的每个中的每个磁性元件20的磁通量26的极性与被产生穿过在相应的相邻列74中的每个磁性元件20的磁通量26的极性相反,从而流动穿过供电线22的第二电流45产生穿过多个磁性元件20的磁通量26。现参考图5和6,显示了另一感应充电系统100。图5和6所示的感应充电系统与图I和2的感应充电系统10基本相同,除了供电线22在充电供应单元14内的布置和接收器线40在充电接收器单元16内的布置。更具体地,参考图8,接收器线40在第一组芯部构件68和第二组芯部构件70之间延伸或安排路线,从而磁通量26(图6所示)在多个芯部构件36和多个磁性元件20之间流动,以感生穿过接收器线40的第一电流25。流动穿过第一组芯部构件68的磁通 量26的极性与流动通过第二组芯部构件70的磁通量26的极性相反。芯部构件36被布置在第一格栅状阵列72中,所述第一格栅状阵列72具有多个列74。接收器线40圈住第二组芯部构件70的外周边并在第一组芯部构件68内。相应地,磁通量26在多个芯部构件36和多个磁性元件20之间流动,以感生穿过接收器线40的第一电流25。流动穿过第一组芯部构件68的磁通量26的极性与流动穿过第二组芯部构件70的磁通量26的极性相反。再次参考图7,供电线22在第一组磁性元件76和第二组磁性元件78之间延伸,以产生穿过多个磁性元件20的磁通量26。被产生穿过第一组磁性元件76的每个的磁通量26的极性与被产生穿过第二组磁性元件78的每个的磁通量26的极性相反,从而流动穿过供电线22的第二电流45产生穿过多个磁性元件20的磁通量26。磁性元件20被设置在第二格栅状阵列80中,所述第二格栅状阵列80具有多个列74。供电线22圈住第二组磁性元件78的外周边,并在第一组磁性元件76内。相应地,磁通量26被产生穿过多个磁性元件20。被产生穿过第一组磁性元件76中的每个磁性元件20的磁通量26的极性与被产生穿过第二组磁性元件78的每个的磁通量26的极性不同,从而流动穿过供电线22的第二电流45产生穿过多个磁性元件20的磁通量26。参考图9和10,显示了又一感应充电系统200。图9和10所示的感应充电系统与图1-8的感应充电系统10、100基本相同,除了供电线22在充电供应单元14内的布置和接收器线40在充电接收器单元16内的布置。附加地,充电供应单元14的磁性元件被形成为单个磁性板220。供电线22围绕磁性板220 (图11所示)延伸,从而磁通量26从磁性板220流动到多个芯部构件36,以感生穿过接收器线40的电流25,如图10所示。现参考图12,芯部构件36被布置在第一格栅状阵列72中,所述第一格栅状阵列72具有多个列74。接收器线40圈住芯部构件36的外周边。相应地,磁通量26从磁性板220流动到多个芯部构件36的每个以感生穿过接收器线40的第二电流45 (图9)。流动穿过在多个列74中的每个中的芯部构件36的磁通量26的极性与流动穿过各个相邻列(一个或多个)74中的芯部构件36的磁通量26的极性相同。尽管已经对执行本发明的较佳模式进行了详尽的描述,但是本领域技术人员可得知在所附的权利要求的范围内的用来实施本发明的许多替换设计和实施例。
权利要求
1.一种电动车辆,包括充电接收器单元,其中,该充电接收器单元包括 多个芯部构件,以彼此间隔的关系布置,其中,该多个芯部构件的每个被构造为与至少一个磁性元件对准; 多个偏置装置,其中,该多个偏置装置的每个将多个芯部构件的相应一个朝向所述至少一个磁性元件纵向地偏置,从而磁通量在多个磁性元件中的每个和多个芯部构件中的相应一个之间被传送;和 接收器线,布置为与多个芯部构件的每个电连通,其中,穿过多个芯部构件的磁通量在接收器线中感生出电流。
2.如权利要求I所述的电动车辆,其中,所述电动车辆还包括能量储存装置,所述能量储存装置与所述接收器线电连通,其中,所述接收器线将电流传送到所述能量储存装置。
3.如权利要求I所述的电动车辆,其中,充电接收器单元还包括限定出多个孔的壳体, 其中,该多个孔的每个延伸到相应的顶板; 其中,多个芯部构件的每个移动地布置在多个孔的相应一个中;和 其中,多个偏置装置的每个布置在多个芯部构件的相应一个和相应的顶板之间,使得多个偏置装置的每个在多个孔的相应一个和相应的顶板之间反作用,以将多个芯部构件的每个相应的一个远离相应顶板并朝向所述至少一个磁性元件偏置,使得磁通量在所述至少一个磁性元件和多个芯部构件的相应一个之间被传递。
4.如权利要求3所述的电动车辆,其中,所述充电接收器单元远离车辆并朝向所述至少一个磁性元件纵向地移动。
5.如权利要求4所述的电动车辆,还包括促动器,所述促动器操作地连接到所述充电接收器单元且被构造用于将所述充电接收器单元在延伸位置和收回位置之间纵向地移动; 其中,延伸位置沿朝向所述至少一个磁性元件的方向远离车辆,收回位置沿与所述至少一个磁性元件相反的方向。
6.如权利要求I所述的电动车辆,其中,所述多个芯部构件被设置在阵列中。
7.如权利要求6所述的电动车辆,其中,所述接收器线在第一组芯部构件和第二组芯部构件之间延伸,以产生穿过每组芯部构件的磁通量;且 其中,被产生穿过第一组芯部构件的磁通量的极性与被产生穿过第二组芯部构件的磁通量的极性相反,以感生穿过所述接收器线的电流。
8.如权利要求6所述的电动车辆,其中,所述多个芯部构件被设置在具有多个列的格栅状阵列中; 其中,所述接收器线在芯部构件的多个列的每个相邻对之间前后编织,以产生穿过多个芯部构件的每个的磁通量;和 其中,被产生穿过多个列的每个中的芯部构件的磁通量的极性与被产生穿过相应的相邻列中的芯部构件的磁通量的极性相反,使得被产生穿过多个芯部构件的磁通量感生穿过接收器线的电流。
全文摘要
一种电动车辆,包括充电接收器单元。充电接收器单元包括多个芯部构件、多个偏置装置和接收器线。多个芯部构件以彼此间隔的关系布置。多个芯部构件的每个被构造为与多个磁性元件对准。多个偏置装置将多个芯部构件的相应一个朝向多个磁性元件的相应一个纵向地偏置,从而磁通量在多个磁性元件的每个和多个芯部构件的相应一个之间被传递。接收器线被布置为与多个芯部构件的每个电连通。多个芯部构件中的磁通量在接收器线中感生出电流。
文档编号H02J7/02GK102738874SQ201210090558
公开日2012年10月17日 申请日期2012年3月30日 优先权日2011年3月30日
发明者小爱德华.D.泰特, 艾伦.G.霍尔姆斯 申请人:通用汽车环球科技运作有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1