功率因数校正器的控制方法以及不间断电源的制作方法

文档序号:7463742阅读:162来源:国知局

专利名称::功率因数校正器的控制方法以及不间断电源的制作方法
技术领域
:本发明涉及供配电领域,尤其涉及一种功率因数校正器的控制方法以及不间断电源。
背景技术
:伴随电气化和信息化的发展,良好的数据传输和保存已成为工作和生活中不可缺少的一部分。在现有的公共电网中,会连接各种各样的负载,其中如容性负载和感性负载等不仅从电网中获得电能,还会对公共电网本身造成影响,恶化公共电网的供电品质;另外自然和人为事故,如雷击和输变电系统短路等多会危害电力的正常供应;其中,公共电网中所出现的电涌、高压突破和电压过低等情况,会影响负载的正常工作。在许多电气化和信息化企业中,必须实现通过公共电网中的市电进行高质量的供电;例如在企业系统中,在市电接入时,通过不间断电源(UninterruptablePowerSupply,以下简称UPS)对市电进行整流和逆变等,以形成稳定、高质量的输出电压,对企业系统中的计算机和服务器进行供电。现有的UPS可承受输入电压的范围在相电压有效值176-276伏的交流电,当输入电压在UPS的可承受输入电压的范围内时,UPS通过功率因数校正器(PowerFactorCorrection,以下简称PFC)对输入电压进行整流,以使逆变器对整流后的输入电压进行逆变,从而产生稳定、高质量的输出电压对企业系统中的设备进行供电;当公共电网中所提供的市电的电压超出UPS所能承受的输入电压的范围时,UPS会因启动过载保护而关机,或者是切换使用蓄电池供电,以避免UPS的损坏。当UPS启动过载保护而关机时,与UPS相连接的设备失去了供电,从而导致失去供电的设备直接关机,造成数据丢失或工作终端;当UPS使用蓄电池作为UPS的输入电压时,也会使UPS切断来自公共电网的市电供电,无法使UPS继续工作于交流模式。
发明内容本发明所要解决的技术问题在于提供一种PFC的控制方法以及UPS,能够实现在市电过高时,通过UPS进行交流供电。为解决上述技术问题,本发明一种PFC的控制方法以及UPS采用如下技术方案一种PFC的控制方法,包括检测输入电压的瞬时值;当所述输入电压的瞬时值的绝对值大于预设的电压上限值时,关断功率因数校正器中的输入端开关和高功率开关管,其中所述电压上限值小于电压指令值,所述电压指令值是所述功率因数校正器中母线的工作指定电压。一种UPS,包括检测单元,用于检测输入电压的瞬时值;控制单元,用于当所述输入电压的瞬时值的绝对值大于预设的电压上限值时,关断功率因数校正器中的输入端开关和高功率开关管,其中所述电压上限值小于电压指令值,所述电压指令值是所述功率因数校正器中母线的工作指定电压。本发明提供了一种PFC的控制方法以及UPS,在公共电网的市电所提供的输入电压的瞬时值超过UPS所能承受的输入电压的瞬时值时,关断PFC中的输入端开关和高功率开关管,使输入电流呈断续模式从而使UPS继续工作于公共电网所提供的市电下工作,提高了UPS交流模式工作的可靠性。为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图I为本发明一种PFC的控制方法的流程图;图2为本发明实施例I中PFC的输入电压和输入电流的波形图;图3为本发明实施例中所述的双BOOST电路的结构示意图;图4为本发明实施例2中一种PFC的控制方法根据输入电压的相角进行控制的流程图;图5为本发明实施例2所述的PFC输入电压和输入电流的波形图;图6为本发明实施例3所述的一种PFC的控制方法中根据负载总电流调整电压指令值和电压上限值的流程图;图7为本发明实施例所述的一种UPS的结构示意图。具体实施例方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。UPS通常通过公共电网中的市电直接供电,所述公共电网中的市电为正弦交流电,该市电的相电压有效值范围一般为176伏-276伏,相对应的输入电压的瞬时值为249伏-390伏;UPS获取市电后,通过PFC进行整流为稳定于电压指令值的直流电,逆变器的逆变将该直流电转换为稳定的工频交流电对与所述UPS连接的系统进行高质量的供电,并对PFC输出端的母线电容进行充电。但是,当公共电网中的市电出现电压高于UPS所能承受的电压范围时,现有的UPS便会关闭,或断开公共电网中的市电并通过蓄电池进行直流供电,从而使UPS脱离交流模式。实施例I为解决上述问题,本发明实施例提供了一种PFC的控制方法,如图I所示,包括100、UPS检测输入电压的瞬时值。UPS对公共电网的市电,即UPS的输入电压的瞬时值Vin进行检测,当出现输入电压的瞬时值Vin过高时,则会超出了UPS能承受的电压范围,其中超出时间较短,一般为5ms。101、当所述输入电压的瞬时值的绝对值大于预设的电压上限值时,UPS关断PFC中的输入端开关和高功率开关管,其中所述电压上限值小于电压指令值,所述电压指令值是所述PFC中母线的工作指定电压。因所述输入电压为正弦交流电,故当出现输入电压的瞬时值Vin过高时,如图2所示,输入电压的瞬时值Vin的绝对值在正半周期和负半周期都会大于所设置的电压上限值Vp,其中所述电压上限值Vp略小于由工作人员所设置的电压指令值Vm;例如在UPS通过逆变器逆变后的工频为220伏,50赫兹的系统中,VMf的值可依据PFC中所选用的器件设置,是所述功率因数校正器中母线的工作指定电压。例如可设置为电压指令值Vref为405伏,相对应的可设置电压上限值Vp为400伏;此时,当输入电压Vin的瞬时值超过400伏时,UPS分别控制PFC中的输入端开关和高功率开关管关断,输入电流Iin进入断续模式;因在一般UPS的PFC中都会包含输入端开关和高功率开关管关断,为说明更加清晰,如图3所示,以PFC为双向BOOST电路为例进行描述,所述双向BOOST电路,包括与交流母线一端相连的输入端开关SI、S2,交流母线另一端与高功率开关管Ql的漏极和第一母线电容Cl一端相连,并且与高功率开关管Q2的源极和第二母线电容C2—端相连;所述高功率开关管Ql的源极分别连接第一二极管Dl的阳极和第一线圈LI一端相连,所述高功率开关管Q2的漏极与第二二极管D2的阴极和第二线圈L2的一端相连;第一二极管Dl的阴极和第一母线电容Cl的另一端相连,第二二极管D2的阳极和第二母线电容C2的另一端相连;第一线圈LI另一端与输入端开关SI相连,第二线圈L2另一端与输入端开关S2相连。当输入电压的瞬时值Vin的绝对值大于所设置的电压上限值Vp时,UPS关断双向BOOST电路中的输入端开关S1、S2以及高功率开关管关断Q1、Q2,其中所述输入端开关SI、S2可为继电器或晶闸管,高功率开关管关断Q1、Q2所述可为绝缘性场效应管(Metal-Oxide-Semiconductor,以下简称MOS管)或绝缘栅双极型晶体管(InsulatedGateBipolarTransistor,以下简称IGBT);即在输入电压的正半周期,关断双向BOOST电路正边BOOST中的输入端开关SI和高功率开关管Ql,从而使正半周期内的电流进入断续模式,在输入电压的负半周期,关断双向BOOST电路负边BOOST的输入端开关S2和闻功率开关管Q2,从而使负半周期内的电流进入断续丰旲式。本发明提供了一种PFC的控制方法,在公共电网的市电所提供的输入电压的瞬时值超过UPS所能承受的输入电压的瞬时值时,关断PFC中的输入端开关和高功率开关管,使输入电流呈断续模式,从而使UPS继续工作于公共电网所提供的市电下工作,提高了UPS交流模式工作的可靠性。进一步的,为了对UPS的输出电流进行补偿,以更好地保持UPS的工作性能,所述的方法,还包括102、在关断所述功率因数校正器中的输入端开关和高功率开关管期间,UPS通过母线电容为输出电流进行补偿。在PFC的输入端开关SI、S2和高功率开关管Ql、Q2关断期间,在PFC的输出端,通过已完成充电的母线电容对所述PFC的输出电压Vwt进行补偿,使输出电压Vrat接近所设置的电压指令值;将该输出电压Vrat接入UPS的逆变器,通过逆变器对所述输出电压Vwt进行逆变,即根据PFC所输出的直流电进行脉冲宽度调制(PulseWidthModulation,以下简称PWM),从而形成稳定、高质量的工频电压,即220伏,50赫兹。实施例2当UPS根据输入电压Vin的瞬时值进行判断时,因关断PFC的输入端开关和高功率开关管的时间很短,则相对应的,通常与UPS所连接的系统中负载所消耗的功率较大;当系统中的负载所消耗的功率较小而母线电容仍以较大的功率进行补偿,则缩短了可进行补偿的时间,如果此时输入端开关和高功率开关管出现较长时间的关断,则母线电容所充的电量无法支撑较长的关断时间,仍会使UPS进行由蓄电池进行供电的直流模式。为解决上述问题,可选的,如图4所示,在所述检测输入电压的瞬时值之后,还包括200、根据所述输入电压的瞬时值,UPS确定输入电压的相角。因公共电网的市电为正弦交流电,UPS根据所检测到的输入电压的瞬时值,通过锁相环确定输入电压的相角,为使描述更加清晰,以如图5所不的PFC的输入电压和输入电流为例进行描述。201、当所述输入电压的相角处于所设置的相角区间外时,UPS分别关断PFC中的所述输入端开关和所述高功率开关管。当所述输入电压的相角处于由工作人员所设定的相角区域外时,在图5中所设置的相角区域为0-70度以及180-250度,即在正半周期所确定的输入电压的相角为70度时,关断PFC中的所述输入端开关和所述高功率开关管。此时如实施例I所述相同,充电后的母线电容对输出电压Vrat进行补偿,因与UPS连接的负载的功率下降,从而使母线电容也通过较小的功率进行补偿,从而可以为负载补偿更长时间,避免了补偿功率较大所造成功率的消耗,延长了输入端开关和所述高功率开关管关断时的断续模式的工作时间。另外,通过输入电压的相角进行判断,可分别在正半周期和负半周期中减少输入端开关和所述高功率开关管关断的次数,从而也延长了UPS中器件的使用寿命。实施例3为进一步的降低系统中的负载在低功率时的工作时间,可选的,如图6所示,在所述检测输入电压的瞬时值之后,还包括300、UPS检测负载端总电流。UPS可对所连接的系统的总电流,即负载端总电流进行检测,根据该检测可获知负载端总电流的变化。例如,当负载端总电流降低时,UPS便可得知系统中的部分负载已经关闭。301、根据所述负载端总电流与总电流预设值进行匹配,UPS离散地调整所述电压指令值和所述电压上限值。在UPS的设置过程中,可进行负载端总电流的预设,即设置总电流预设值,其中可同时设置多个总电流预设值;UPS检测到负载端总电流发生变化时,根据负载端总电流与总电流预设值进行匹配;在多个总电流预设值中确定最适合现阶段功率消耗的总电流预设值,从而根据总电流预设值离散地调整所述电压指令值Vref和所述电压上限值Vp;在PFC通过PWM进行整流时,因电压指令值Vref和所述电压上限值Vp的降低,PFC的输出电压Vtjut和输出电流U也随之降低,进而在断续模式下,降低了母线电容补偿时的电量消耗,从而也延长了可关断输入端开关和所述高功率开关管的时间。与上述一种PFC的控制方法相对应,本发明还提供了一种UPS,如图7所示,包括检测单元,用于检测输入电压的瞬时值;控制单元,用于当所述输入电压的瞬时值的绝对值大于预设的电压上限值时,关断功率因数校正器中的输入端开关和高功率开关管,其中所述电压上限值小于电压指令值,所述电压指令值是所述PFC中母线的工作指定电压。进一步的,为了对UPS的输出电流进行补偿,以更好地保持UPS的工作性能,所述的装置,还包括补偿单元,用于在关断所述PFC中的输入端开关和高功率开关管期间,通过母线电容为输出电容进行补偿。所述UPS,还包括相角确定单元,用于根据所述输入电压的瞬时值,并根据所述输入电压的瞬时值,确定输入电压的相角。所述控制单元,还用于当所述输入电压的相角处于所设置的相角区间外时,分别关断功率因数校正器中的所述输入端开关和所述高功率开关管。所述UPS,还包括负载检测单元,用于检测负载端总电流;调整单元,用于根据所述负载端总电流与总电流预设值进行匹配,离散地调整所述电压指令值和所述电压上限值。本发明提供了一种PFC的控制方法以及UPS,在公共电网的市电所提供的输入电压的瞬时值超过UPS所能承受的输入电压的瞬时值时,关断PFC中的输入端开关和高功率开关管,使输入电流呈断续模式,从而使UPS继续工作于公共电网所提供的市电下工作,提高了UPS交流模式工作的可靠性。通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本
技术领域
的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。权利要求1.一种功率因数校正器的控制方法,其特征在于,包括检测输入电压的瞬时值;当所述输入电压的瞬时值的绝对值大于预设的电压上限值时,关断功率因数校正器中的输入端开关和高功率开关管,其中所述电压上限值小于电压指令值,所述电压指令值是所述功率因数校正器中母线的工作指定电压。2.根据权利要求I所述的方法,其特征在于,在关断所述功率因数校正器中的输入端开关和高功率开关管期间,通过母线电容为输出电流进行补偿。3.根据权利要求I所述的方法,其特征在于,在所述检测输入电压的瞬时值之后,还包括根据所述输入电压的瞬时值,确定输入电压的相角。4.根据权利要求3所述的方法,其特征在于,还包括当所述输入电压的相角处于所设置的相角区间外时,分别关断功率因数校正器中的所述输入端开关和所述高功率开关管。5.根据权利要求1-4任一所述的方法,其特征在于,在所述检测输入电压的瞬时值之后,还包括检测负载端总电流;根据所述负载端总电流与总电流预设值进行匹配,离散地调整所述电压指令值和所述电压上限值。6.一种不间断电源,其特征在于,包括检测单元,用于检测输入电压的瞬时值;控制单元,用于当所述输入电压的瞬时值的绝对值大于预设的电压上限值时,关断功率因数校正器中的输入端开关和高功率开关管,其中所述电压上限值小于电压指令值,所述电压指令值是所述功率因数校正器中母线的工作指定电压。7.根据权利要求6所述的不间断电源,其特征在于,还包括补偿单元,用于在关断所述功率因数校正器中的输入端开关和高功率开关管期间,通过母线电容为输出电容进行补偿。8.根据权利要求6所述的不间断电源,其特征在于,还包括相角确定单元,用于根据所述输入电压的瞬时值,并根据所述输入电压的瞬时值,确定输入电压的相角。9.根据权利要求8所述的不间断电源,其特征在于,所述控制单元,还用于当所述输入电压的相角处于所设置的相角区间外时,分别关断功率因数校正器中的所述输入端开关和所述高功率开关管。10.根据权利要求6-9任一所述的不间断电源,其特征在于,还包括负载检测单元,用于检测负载端总电流;调整单元,用于根据所述负载端总电流与总电流预设值进行匹配,离散地调整所述电压指令值和所述电压上限值。全文摘要本发明实施例公开了一种功率因数校正器的控制方法以及不间断电源,涉及供配电领域,为解决现有技术中,当出现输入电压的瞬时值高于不间断电源所能承受的输入电压时,所造成的不间断电源脱离交流模式的问题。一种功率因数校正器的控制方法,包括检测输入电压的瞬时值;当所述输入电压的瞬时值的绝对值大于预设值电压上限值时,关断功率因数校正器中的输入端开关和高功率开关管,其中所述电压上限值小于电压指令值,所述电压指令值是所述功率因数校正器中母线的工作制定电压。文档编号H02J9/06GK102801299SQ20121024917公开日2012年11月28日申请日期2012年7月18日优先权日2012年7月18日发明者舒畅,何波,张力申请人:华为技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1