具有多绕组电感器的谐振模式功率供应的制作方法

文档序号:7349513阅读:230来源:国知局
具有多绕组电感器的谐振模式功率供应的制作方法
【专利摘要】一种谐振模式功率供应,包括以桥或半桥配置连接的开关组件、以桥或半桥对角连接的串行谐振电路以及控制器,通过多绕组电感器形成串行谐振电路的一部分,通过所述多绕组电感器连接负载,并且所述控制器被配置为通过控制所述开关组件的开关频率来稳定输出电压或电流。所述串行谐振电路包括能量再循环电路(ERC1)和电流监控电路(CMC),所述能量再循环电路用于限制谐振电路质量因数并通过二极管整流器(DR2)连接到供应电压节点,并且所述电流监控电路被配置为监控所述再循环电路电流(Ilim),并且通过所述控制器(C),改变所述开关组件(K1、K2、K3、K4)的开关频率,以便在所述能量自循环电路(ERC1)中的所述电流(Ilim)超过阈值时,减小供应到所述谐振电路的功率。
【专利说明】具有多绕组电感器的谐振模式功率供应
【技术领域】
[0001]本发明涉及具有用于直流电压变换的多绕组电感器的谐振模式功率供应。
【背景技术】
[0002]已知的谐振模式功率供应通常在由从电压源功率供应供应的可控制半导体器件(最通常为晶体管)构成的桥或半桥配置中包括开关,在桥或半桥对角中,连接有具有通过输出变压器所连接的负载的谐振电路。
[0003]在波兰专利申请P-313150中,描述了这样的谐振模式功率供应,该谐振模式功率供应与负载无关地保持谐振电路的恒定质量因数。谐振模式功率供应集成质量因数限制器,所述质量因数限制器包括变压器,其中主绕组与谐振电路电容器并行连接,而所述变压器的次绕组与功率供应源连接,以允许将额外的能量从所述电容器馈送回所述源。该谐振模式功率供应的区别性的特征在于能够以短路输出电路和打开输出电路两者进行正确操作的能力。
[0004]在波兰专利申请P-339678中,采用具有与所需要的谐振电路能力相同的等同能力的电容式分压器而不是变压器。通过在电流开关功率供应总线和电容式分压器电容器的公共节点之间连接二极管限制器,限制在此点的电压幅度,因此实现了能量再循环和对串行谐振电路质量因数的限制。
[0005]根据专利文献P-313150和P-339678的具有能量再循环的功率供应的技术缺陷在于,在这两者中,在负载降低(即负载阻抗增力口)的情况中,串行电路电流也降低并且其波形变为与期望的正弦曲线形不同。在专利申请P-313150中描述的方案的另一个主要的技术缺陷在于能量再循环电路使得使用与输出变压器的功率几乎相同的功率的变压器成为必需。在现有技术文献中描述的方案使用通过整流器连接到功率供应源的输出变压器的额外的绕组,以便稳定输出电压或限制所述输出电压,其中所述输出电路变为打开。
[0006]根据美国专利申请US2006/0227577,已知用于利用逆变器操作的谐振逆变器。逆变器使得从可更新的能量源获取的波动的和相对较低的电压变换为电网所需的电平。变换器包括并行谐振链路,通过开关元件从低压直流功率供应向所述并行谐振电路输入直流功率。通过零电压开关执行DC-AC变换。高频变压器的主侧连接到提供了电隔离和高压的生成的并行谐振电路。变压器的辅侧通过串行的谐振电路连接到整流器。变换器提供具有大约25-30%的输出电压变化的450V的输出电压。所描述的变换器结构对于快速负载变化敏感。如果在最大输出功率处,突然出现与负载断开连接,在谐振电路中存储的能量(其通常比在单个换相周期期间发送到负载的能量大得多)可以产生超过可允许的值的在换相电路中的电流。
[0007]本发明的目的在于开发出用于直流电压转换的谐振模式功率供应,其特征在于与负载无关的谐振电路中的正弦电流以及对输出功率中的快速变化的高抗扰度。

【发明内容】
[0008]本发明的一个目的在于一种谐振模式功率供应,包括以桥或半桥配置连接的开关组件、以桥或半桥对角连接的串行谐振电路以及控制器,通过多绕组电感器形成串行谐振电路的一部分,通过所述多绕组电感器连接负载,并且所述控制器被配置为通过控制所述开关组件的开关频率来稳定输出电压或电流。所述串行谐振电路包括能量再循环电路和电流监控电路,所述能量再循环电路用于限制谐振电路质量因数并通过二极管整流器连接到供应电压节点,并且所述电流监控电路被配置为监控所述再循环电路电流,并且通过所述控制器,改变所述开关组件的开关频率,以便在所述能量自循环电路中的所述电流超过阈值时,减小供应到所述谐振电路的功率。
[0009]优选地,多绕组电感器漏电感构成20%到80%的串行谐振电路电感。
[0010]优选地,所述电流监控电路被配置为,即使在所述谐振电路振荡的单个周期期间,也通过所述控制器实现所述开关组件的开关频率中的变化。
[0011]优选地,所述电流监控电路被配置为,通过所述控制器实现所述开关组件的开关频率中的增加。
[0012]优选地,所述电流监控电路适用于通过所述控制器关断所述开关组件。
[0013]优选地,所述能量再循环电路与谐振电路电容器并行连接。
[0014]优选地,主谐振电路的电感元件具有集成电感器的形式。
[0015]优选地,所述能量再循环电路通过多绕组电感器以强磁耦合连接到谐振电路的电感元件。
[0016]优选地,主谐振电路的电感元件具有所述集成电感器的形式。
[0017]优选地,电容器与所述开关中的每一个分别并行连接。
【专利附图】

【附图说明】
[0018]将通过附图上的示例性实施例来示出本发明,在附图中:
[0019]图1示出了作为全桥谐振变换器的谐振模式功率供应的第一示例性实施例,其中所述全桥谐振变换器具有多绕组电感器,并且所述全桥谐振变换器具有集成分离谐振电容的质量因数限制器,
[0020]图2示出了作为全桥谐振变换器的谐振模式功率供应的第二示例性实施例,其中所述全桥谐振变换器具有多绕组电感器,并且所述全桥谐振变换器具有集成多绕组电感器的质量因数限制器,
[0021]图3示出了作为半桥谐振变换器的谐振模式功率供应的第三示例性实施例,其中所述半桥谐振变换器具有多绕组电感器,并且所述全桥谐振变换器具有集成分离谐振电容的质量因数限制器,
[0022]图4示出了作为半桥谐振变换器的谐振模式功率供应的第四示例性实施例,其中所述半桥谐振变换器具有多绕组电感器,并且所述全桥谐振变换器具有集成多绕组电感器的质量因数限制器,
[0023]图5示出了在全负载以及标称输出电压和电流的情况下的谐振模式功率供应的第一实施例中的电流和电压的波形,
[0024]图6示出了具有短路输出和标称输出电流的谐振模式功率供应的第一实施例中的电流和电压的波形,[0025]图7示出了在标称输出电压情况下的以2%的标称负载加载的谐振模式功率供应的第一实施例中的电流和电压的波形。
【具体实施方式】
[0026]图1示出了作为全桥谐振变换器的谐振模式功率供应的第一示例性实施例,其中所述全桥谐振变换器具有多绕组电感器,并且全桥谐振变换器具有集成分离谐振电容的质量因数限制器。所述谐振模式功率供应包括在桥配置中连接的电流开关的组件K1、K2、K3、Κ4。在桥中,对角连接串行谐振电路,其一部分是多绕组电感器DL1,通过所述多绕组电感器DL1,负载连接到所述谐振模式功率供应。谐振模式功率供应还包括控制器C,该控制器C响应于输出电压和/或电流监控电路SMC的指示,通过控制开关组件Κ1、Κ2、Κ3、Κ4的开关频率,稳定输出电压或电流。串行谐振电路包括限制谐振电路质量因数且通过二极管整流器DR2连接到供应电压Usup的能量再循环电路ERC1。ERC1电路针对过电压和过电流对谐振模式功率供应结构提供保护,这是因为在短暂的状态中,其将在谐振电路中存储的多余的能量馈送回供应源。谐振模式功率供应进一步包括电流监控电路CMC,该电流监控电路CMC适用于监控谐振电路能量再循环电路ERC1中的再循环电路llim,并且通过控制器C,以实现开关组件K1、K2、K3、K4的开关频率中的变化,从而在能量再循环电路ERC1中电流llim超过阈值时减小供应到谐振电路的功率。优选地,电流监控电路CMC即使在谐振电路自振荡的单个周期中也能够快速地进行操作并且响应。开关组件Kl、K2、K3、K4中的开关频率的变化可以包括增加开关频率或窃取谐振电路自振荡的一定数量的周期,即关断开关组件以限制在电路中出现的过电压和过电流。
[0027]因此谐振模式功率供应控制系统被提供有至少两个反馈环(feedback loop)。第一个环(其是输出电压和/或电流监控电路SMC,稳定输出电压或电流或输出功率)是慢响应环,并且其截止频率低(例如几百个赫兹)。第二个环是快响应环,其是能量再循环电路ERC1中的电流监控电路CMC,其在电流llim超过所指定的阈值的情况下,实现开关组件控制,从而快速地减小供应到谐振电路的功率。
[0028]优选地使得输出变压器作为多绕组电感器,其磁电路包括空气隙(air gap),并且主绕组漏电感是串行谐振电路等同电感的实质部分,而磁耦合系数k采用小于0.98的值。多绕组电感DL1还提供与输出电路隔离的逆变器,并且能量被以大约96%的非常高的效率从逆变器传送到负载。负载的这种连接使得即使在无负载的状况下也以所需要的电平维持谐振电路电流,并且因此使得能够改善对快速负载变化的动态响应。
[0029]在第一示例性实施例中,主谐振电容被划分为两个串联的电容器C1和C2,而能量再循环电路ERC1并行连接到电容器C2。
[0030]优选地,开关K1、K2、K3、K4中的每一个分别并行连接到电容器C4、C5、C6、C7,这
意味着系统在级别DE中进彳丁丨呆作。
[0031]用使得与负载无关地维持串行谐振电路中的电流连续性的这样的方式,选择组件值,从而在实质上改善谐振模式功率供应的动态性能。图1中所示的谐振模式功率供应的实施例的示例性参数如下:输出功率=5kW,供应电压Usup=420V,输出电压Uout=28VDC,Cl=C2=110nF,C4=C5=C6=C7=lnF,Ll=50uH,L4=10uH,L6=L7=800uH,它们之间的耦合系数k=0.99,L2=300uH, L3=l.8uH,它们之间的耦合系数 k=0.95。[0032]图5中示出了在全负载以及标称输出电压和电流的情况下的谐振模式功率供应的第一实施例中的示例性电流和电压波形,而图6示出了用于短路输出和标称输出电流的波形,并且图7示出了以2%的标称负载和标称输出电压的情况下的波形。如下所示根据附图,即使在最差的情形下,也维持在谐振电路主电感器LI中流动的电流,因此通过对负载变化的非常快的时间响应来表征根据本发明的结构。上部的图表示以虚线示出的低侧晶体管K2的栅驱动电压、以及以实线示出的高侧晶体管Kl的栅驱动电压。来自顶部的第二图表表示以虚线示出的低侧晶体管K2的漏电流和以实线示出的高侧晶体管Kl的漏电流。底部图表示出了电感器LI中的电流。为了针对在谐振能量变换系统中可能出现的过电流和过电压而保护系统,将再循环电路ERCl电流Ilim的阈值设置为5A。
[0033]图2中示出了谐振模式功率供应的第二示例性实施例。其与第一示例性实施例类似,不同之处在于质量因数限制器ERCl利用多绕组电感器DL2,其中磁电路包括空气隙,并且次绕组通过电感器和二极管整流器与主绕组隔离。本实施例相较于图1中所示的实施例的优势在于较小数量的电感元件,这是因为质量因数限制器ERCl利用了谐振电路的主电感器LI,在所述主电感器LI上,缠绕了额外的电感器L5的绕组并且将两个电感器的绕组强耦合。
[0034]图3中示出了作为半桥谐振变换器的谐振模式功率供应的第三示例性实施例,其中所述半桥谐振变换器具有多绕组电感器,并且所述半桥谐振变换器具有集成了谐振分离电容的质量因数限制器。谐振模式功率供应包括在半桥配置中连接的电流开关组件K1、K2。在半桥中,对角连接串行谐振电路,该串行谐振电路的一部分是多绕组电感器DL1,通过所述多绕组电感器DL1,负载连接到所述谐振模式功率供应。所述谐振模式功率供应还包括控制器C,所述控制器C通过响应于输出电压和/或电流监控电路SMC的指示控制开关组件K1、K2的开关频率,稳定输出电压或电流。串行谐振电路包括电抗元件L1、Cl和C2=C2A+C2B,而电容Cl和C2=C2A+C2B的连接节点通过电感器L4和二极管整流器DR2连接到功率供应源,并且因此构成能量再循环电路ERCl。因此,通过选择电容Cl和C2=C2A+C2B和电感L4的电感值来确定谐振电路质量因数。ERCl电路针对过电压和过电流提供谐振模式功率供应保护,这是因为在短暂状态中,其允许将在谐振电路中存储的额外的能量馈送回供应源。谐振模式功率供应还包括电流监控电路CMC,该电流监控电路CMC适用于监控谐振电路能量再循环电路ERCl中的再循环电路电流11 im,并且通过控制器C,来实现开关组件K1、K2的开关频率中的变化,从而在能量再循环电路ERCl中的电流Ilim超过阈值时,减小供应到谐振电路的功率。优选地,即使在谐振电路振荡的单个周期期间,电流监控电路CMC也快速地进行操作并且响应。开关组件Κ1、Κ2中的开关频率的变化可以包括增加开关频率或窃取谐振电路振荡的一定数量的周期,即关断开关组件,以限制在电路中出现的过电压和过电流。
[0035]图4中示出了谐振模式功率供应的第四示例性实施例。其与第三实施例相似,不同之处在于质量因数限制器ERCl利用多绕组电感器DL2,其中磁电路包括空气隙,并且与主绕组隔离的次绕组将多余的能量通过电感器L4和二极管整流器DR2从主谐振电路馈送回供应源。该实施例相较于图3中所示的实施例的优势在于,其减少了用于系统构造所需的功率电抗元件的数量。
[0036]优选地,主谐振电路的电感元件(即第一和第三示例性实施例中的L1、L2和L3或第二和第四实施例中的L1、L2、L3和L5)具有集成电感元件的形式。因此,由于磁流量的适当整形,可以减小功率损耗,并且减小需要的电感元件的质量和尺寸。
[0037]通过开关组件Kl、K2、K3、K4的开关频率的慢响应控制和补充的快响应环CMC,实现在负载改变的宽范围上的全桥和半桥配置两者的输出电流或电压的稳定性,所述补充的快响应环CMC即便在谐振电流振荡的单个周期期间也改变开关频率,并且其控制输入是再循环电路电流Him幅度,从而有效限制谐振电路中的过电压和过电流。这种方法确保再循环电路并不传输大功率,并且在此电路中的相当大的电流仅出现在短暂状态中以及在干扰出现期间。此外,为了改善动态响应以加载变化,优选地在轻负载下针对全桥配置采用开关的补充相位控制,而且优选地在轻负载下针对半桥配置采用具有谐振电路自振荡周期的周期窃取的补充控制。
【权利要求】
1.一种谐振模式功率供应,包括以桥或半桥配置连接的开关组件、以桥或半桥对角连接的串行谐振电路以及控制器,通过多绕组电感器形成串行谐振电路的一部分,通过所述多绕组电感器连接负载,并且所述控制器被配置为通过控制所述开关组件的开关频率来稳定输出电压或电流,其特征在于,所述串行谐振电路包括能量再循环电路(ERCl)和电流监控电路(CMC),所述能量再循环电路用于限制谐振电路质量因数并通过二极管整流器(DR2)连接到供应电压节点,并且所述电流监控电路被配置为监控所述再循环电路电流(Ilim),并且通过所述控制器(C),改变所述开关组件(Kl、K2、K3、K4)的开关频率,以便在所述能量自循环电路(ERCl)中的所述电流(Ilim)超过阈值时,减小供应到所述谐振电路的功率。
2.如权利要求1所述的谐振模式功率供应,其特征在于,多绕组电感器(DLl)漏电感构成20%到80%的串行谐振电路电感。
3.如权利要求1-2中的任一项所述的谐振模式功率供应,其特征在于,所述电流监控电路(CMC)被配置为,即使在所述谐振电路振荡的单个周期期间,也通过所述控制器(C)实现所述开关组件(Kl、K2、K3、K4)的开关频率中的变化。
4.如权利要求1-3中的任一项所述的谐振模式功率供应,其特征在于,所述电流监控电路(CMC)被配置为,通过所述控制器(C)实现所述开关组件(Kl、K2、K3、K4)的开关频率中的增加。
5.如权利要求1-4中的任一项所述的谐振模式功率供应,其特征在于,所述电流监控电路(CMC)适用于通过所述控制器(C)关断所述开关组件(Kl、K2、K3、K4)。
6.如权利要求1-5中的任一项所述的谐振模式功率供应,其特征在于,所述能量再循环电路(ERCl)与谐振电路电容器(C2)并行连接。
7.如权利要求6所述的谐振模式功率供应,其特征在于,主谐振电路的电感元件(L1、L2和L3)具有集成电感器的形式。
8.如权利要求1-5中的任一项所述的谐振模式功率供应,其特征在于,所述能量再循环电路(ERCl)通过多绕组电感器(DL2)以强磁耦合连接到谐振电路的电感元件(LI)。
9.如权利要求8所述的谐振模式功率供应,其特征在于,主谐振电路的电感元件(L1、L2、L3和L5)具有所述集成电感器的形式。
10.如权利要求1-9中的任一项所述的谐振模式功率供应,其特征在于,电容器(C4、C5、C6、C7)与所述开关(1(1、1(2、1(3、1(4)中的每一个分别并行连接。
【文档编号】H02M3/335GK103703663SQ201280028696
【公开日】2014年4月2日 申请日期:2012年7月23日 优先权日:2011年8月2日
【发明者】切扎里·沃雷克 申请人:克拉科夫大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1