聚光光伏电池阵列的制作方法

文档序号:7350367阅读:235来源:国知局
聚光光伏电池阵列的制作方法
【专利摘要】用于光伏聚光器模块的工业布线和最终测试的装置,其包括模块框架、透镜盘、传感器承载盘和布线配置,包括以下特征:a)激光接触形成装置,用于各个传感器(11)之间的连接线、连接元件(17)和共用接触板(19)的非接触连接,其中,作为基本结构,在传感器承载盘(13)上的布线配置使每种情况下5个CPV传感器并联连接,并且这些并联电路串联连接;b)一种用于测试电性能的装置,其中将预定电压施加到CPV传感器(11)本身,并检测和评估经由透镜(15)由这些CPV传感器发射的光,c)一种用于测试成品聚光器模块的气密性的装置(5),其中将压缩空气施加到所述模块的内部并且检查压缩空气的排放。
【专利说明】聚光光伏电池阵列
[0001] 在光伏中,与聚焦的太阳辐射打交道的方法已经存在多年。在这种情况下,来自 太阳的辐射借助反射镜和/或透镜来聚焦并被引导到特定的聚光太阳能电池。聚光光伏 (CPV)的相应系统目前正在卡斯蒂利亚地区的普埃托利亚诺市的西班牙太阳能研究所聚光 光伏系统研究所(ISF0C)中进行测试。在阳光冲击小型太阳能电池之前,使用透镜或反射 镜聚焦阳光到四百至千倍强度,这是比传统的硅太阳能电池显著地更加高效。
[0002] 在这方面,以下的现有技术是从专利文献中引用的。
[0003] US4 834 805A公开了一种光伏电源模块,大体上包括下列特征。
[0004] 光伏半导体晶体电池的布置,分布在层状基板中各个电池位置中,其中这些是由 两个导电层包围并借助绝缘层隔离。此外,该模块由包括透镜的光传输层构成,其设置为与 所述层状基板相隔一段距离,其中入射辐射借助于透镜聚焦到光传输层的基板上,并且其 中透镜层、基板层和它们之间间距的总厚度大约为2英寸。
[0005] DE10 2006 007 472A1公开了一种光伏聚光器模块,其包括太阳能电池容纳在其 上的透镜板和底板、以及框架,其中,连接透镜板和所述底板的框架沿透镜板和底板的边缘 在周向上设置。
[0006] 这种已知聚光器模块的目的是进行改善以达到这样的效果:它可以低成本地生 产,具有长的寿命,并且允许不能容纳或只能非常困难地容纳在透镜板或底板上的附加组 件的简单灵活的集成。此外,其目的是研究出一种方法,该方法使得生产这样的聚光模块成 为可能。
[0007] 这里所说的问题通过以下来解决:沿着透镜板和框架之间的和/或底板与框架之 间的框架,沿周向在该框架的长度的至少一部分上首先布置至少一种第一密封剂和/或粘 合剂,其次布置至少一种第二密封剂,其中这两种密封剂和/或粘合剂在固化时间和/或透 气性方面存在差异。
[0008] 其权利要求57要求保护用于生产根据前述任何一个权利要求的光伏聚光器模块 的方法,其特征在于以下特征。
[0009] 即,连接透镜板和底板的一个框架沿所述透镜板和所述底板的边缘布置,并且该 框架在所述框架和所述透镜板之间和/或所述框架和所述底板之间,在周向上沿框架在其 长度的至少一部分上,首先引入至少一种第一密封剂和/或粘合剂,其次引入至少一种第 二密封剂,其中这两种密封剂和/或粘合剂在其固化时间和/或透气性方面存在差异。
[0010] 这里不能推测出所述粘合剂中的一种借助于UV光在生产过程中被用来固定板。
[0011] DE10 2010 016 675A1描述了一种光伏模块,一种用于电连接多个光伏电池的方 法和一种用于电连接多个光伏电池的装置。
[0012] 按照其权利要求11,要求保护一种用于电连接多个光伏电池的方法,其中所述方 法包括以下特征:
[0013] 1)将多个第一接触导线应用在第一光伏电池的前侧,
[0014] 2)将多个第二接触导线应用在所述第一光伏电池的后侧,
[0015] 3)将所述多个第一接触导线应用在第二光伏电池的后侧,并且
[0016] 4)将所述多个第二接触导线应用在所述第二光伏电池的前侧,其中,
[0017] 5)将所述多个第一接触导线和所述多个第二接触导线以相对于彼此偏移的方式 布置。
[0018] 作为与所述问题类似的指示,可以从所述文件推断出本发明是要创造一种改进的 光伏模块,也就是说,所述光伏电池的接触结构和接触带(接触导线)的数量和尺寸被综合 优化。
[0019] 根据本发明的CPV太阳能电池阵列解决了优化太阳能电池组件(SCA)之间的电连 接的问题。
[0020] 这个问题用根据第一方面的CPV电池阵列和根据第七方面的CPV太阳能电池模块 来实现。进一步的有利实施例在其他方面中描述。
[0021] 根据本发明用在CPV电池阵列中建立的电连接,可以减少必要连接的数量,并且 它们各自的长度被优化以减少SCA之间的电连接中的功率损耗。
[0022] 根据本发明的装置在下文中更详细地描述。在这种情况下,在附图中具体为:
[0023] 图1在平面图中示出了用于制造聚光器模块的设施;
[0024] 图2示出了穿过聚光器模块的剖面图;
[0025] 图3a示出了传感器承载盘的部分区域;
[0026] 图3b更详细地示出了传感器承载盘的部分区域;
[0027] 图3c更详细地示出了图3b中的部分区域;
[0028] 图4示出了聚光器模块的传感器承载盘的全部区域;
[0029] 图5示出了图4的局部方面的图;
[0030] 图6示出了穿过使用激光接触形成装置的剖面。
[0031] 图1在平面图中示出了用于制造聚光器模块的设施,这些聚光器模块如在图2的 剖面图中所示。
[0032] 但是,在这里将仅考虑整个制造设施的标有附图标记的那部分。布线聚光器模块 之前的制造过程不是本发明的一部分。
[0033] 在布线这样一个模块的时候,传感器承载盘13已经连接到模块的框架并且在布 线之后的下一个处理步骤中,进行与透镜盘16的连接,透镜盘16与所述传感器承载盘13 对置并且与其平行。携带激光头1的激光器龙门2位于图1所示的接触形成站3。借助于 所述龙门2,激光头1可以到达模块框架的要产生接触的任何位置。
[0034] 气密性试验的测试站5和最终电测试的测试站6将在后面描述。
[0035] 堆垛站4使得能根据质量等级进行分类,所述质量等级大体上由气密性试验的测 试站5和最终电测试的测试站6的结果确定。
[0036] 图2示出了穿过一个聚光器模块的剖面图。
[0037] 所述剖面图以放大图以截面揭示了 一种聚光器模块及其承载模块框架。在这里可 以分别识别出顶侧上的具有透镜15的透镜盘16和在下侧的传感器承载盘13。在这种情况 下,模块框架以在两侧中断其横向延伸的方式示出,以便能够以真实的尺寸关系示出细节。 在透镜盘16,在右侧标出了所使用的菲涅耳透镜15,且在传感器承载盘13中存在CPV传感 器11的相应接触点14以及与冷却接触板10相关联的接触点12。另外,在此区域也能够 辨别出在右侧示出的CPV传感器的接触点14与一接触点12之间的连接线(由双刻划线分 隔),该接触点12位于第一个传感器左侧的另一个传感器11的冷却和接触板10上。不用 说,这两个CPV传感器在实践中不直接彼此连接,因为它们被双刻划线分隔开。具有负极性 的共用线8和具有正极性的共用线9在所示的聚光器模块的中央腹板7区域中示出。
[0038] 图3a示出了传感器承载盘13的12个部分区域中的一个,例如在图4中可以看到 其整体。
[0039] 在示出的最上排的19个CPV传感器11中,以示例方式单独标出了从上方看时的 冷却和接触板10、在这样的接触板10上的接触点12和在传感器承载盘13上的CPV传感器 的接触点14。在传感器承载盘13的右手侧上,可识别出具有正极性的共用接触板19在顶 部并且具有负极性的共用接触板在底部。为了获得电流,作为基本结构,在每种情况下5个 CPV传感器并联连接并且这些并联电路依次串联连接,使得这些并联电路的电压累加。在图 3a所示的图中,以这种方式,19个在每种情况下由5个CPV传感器形成的并联电路串联连 接,并且这些并联电路在这个部分区域的纵向侧上延伸。然而,由于在所示的部分区域上, 具有相同数目的并联电路的另外5个CPV传感器位于宽度侧,其电压在这里也累加。因此, 在每种情况下5个CPV传感器的2乘19个各自并联布置的总和得到在图3a中所示的部分 区域的总和电压。以这种方式,通过2乘6个部分区域的互连产生高达1000伏的总电压。
[0040] 图3b更详细地示出如图3a中描述的部分区域12。图3a的部分区域12表示包 括CPV电池33 (在图3a的描述中也被称为CPV传感器)(吸收器)的CPV传感器阵列31 或CPV电池阵列31。每一个CPV电池33被定位在其各自的冷却和接触板10上并与其电接 触。CPV电池33与其冷却和接触板10 -起形成所谓的太阳能电池组件(SCA) 35。每个CPV 电池阵列中的在这里总计190个SCA设置在玻璃板上,该玻璃板也称为图2中的聚光器模 块的传感器承载盘13。
[0041] 这些SCA35以并联和串联方式彼此互连。图3c示出了更详细的互连。图3c显示 六个SCA35_1到35_6。CPV电池33_5利用其第一电极37_5 (在这里为负极)经由与冷却和 接触板1〇_5电绝缘的接触盘39_5以及相邻SCA35_6的具有相反极性(在这里为正极)的 第二电极的连接44_5而被连接。连接44_5终止于SCA35_6的冷却和接触板10_6, SCA35_6 与CPV电池33_6的极性相反的第二电极电接触。因此存在至SCA35_6的串联连接。此串 联连接已关于图2描述过。
[0042] 向SCA35_3的并联连接通过将冷却和接触板10_5和10_3的相互连接并因此利用 连接43_5的极性相反的电极(在该实施方式中为正极)建立。根据本发明,CPV电池33_5 和33_3的第一极性(这里为负极)的第一电极37_5和37_3之间的连接不经由直接连接来 实现,而是经由使用相邻SCA35_4和35_6 (尤其是冷却和接触板10_4和10_6)的连接来实 现。经由第一电极37_5与冷却和接触板10_6的电连接44_5、冷却和接触板10_6和10_4 之间的电连接44_6以及冷却和接触板10_4和CPV电池33_3的第一电极37_3之间的电连 接43_3实现第一电极37_5和37_3的电连接。
[0043] 如上面所描述的连接模式像这样为大多数SCA而重复。如上面已经描述的,布置 190个SCA使得5个SCA并联连接从而形成2乘19个系列每个系列5个并联连接的SCA。
[0044] 在本实施例中,每个系列的并联连接的SCA包括一个具有旁路二极管的SCA以在 一个SCA或一系列并联连接的SCA故障的情况下防止太阳能电池单元损坏。在图3c中, SCA35_1和35_2分别包括旁路二极管45_1和45_2。旁路二极管45_1和45_2与CPV电 池33_1和33_3并联连接,使得当CPV电池33_1和33_3正向偏置时它们反向偏置。在替 代实施例中,一个以上旁路二极管可用于每个系列的并联连接的SCA中,甚至每个SCA可以 包括旁路二极管。此外,一个旁路二极管可以并联连接到一个以上串联连接的SCA,例如, SCA35_1和35_2用一个旁路二极管。
[0045] 2乘19个并联连接SCA系列被连接成使得相反极性19_1和19_2的共用接触板 19设置在一侧,这里为矩形形状的CPV阵列31的短边47。因此,在另一侧(在这里是CPV 阵列的另一条短边53)的两个平行连接的系列49和51被串联连接。考虑到增大的电流, 连接55_1、55_2、55_3、55_5还有57_5、57_4、57_3、57_2、57_1变得越来越厚,这通过增加连 接数量或通过使用不同导体直径或不同的材料来实现。
[0046] 使用并联和串联连接的结合,尤其经由相邻SCA的冷却和接触盘的并联连接,电 连接数量量可以减少,同时SCA之间的连接可以保持较短。因此,可以降低功率损耗,并且 实现更具成本效益的设计。
[0047] 图4示出聚光器模块的传感器承载盘13。在传感器承载盘13的中心,所示聚光器 模块的中央腹板7(所述腹板在图2中以剖面示出)从上方可以辨别出在整个长度上。同 样,聚光模块的始于左侧的总共5个第二横向腹板由附图标记18表示。具有负极性的共用 线8以及相应的具有正极性的共用线9如从图2的剖面图中也可以汇拢的,将由聚光模块 总体供应的电流从传感器承载盘的大致几何中心至边缘输送到连接元件的区域中。该连接 元件不单独描述。在所示的传感器承载盘13的横向侧的右手边缘处,以附图标记19标出 了另外的共用接触板19。在图5中放大示出了圈起传感器承载盘13的位于右侧的4个部 分区域的4个角点的圆。
[0048] 在图4的聚光器CPV模块中,12个CPV太阳能阵列互连,使得两组2乘3个 模块连接。6个CPV太阳能阵列61至66串联,它们各自的接触板19_61_1、19_61_2、 19_62_1、......、19_66_2都面对着中央腹板7。第二组的CPV太阳能阵列71至76也串 联,它们的接触板19_71_1、19_71_2、19_72_1、......、19_76_2也都面对着中央腹板7。
[0049] 使得在第一组的CPV太阳能阵列61至66的端点处的端子19_61_1和19_66_2与 接线盒77接触,所述接线盒77作为朝CPV模块外部的连接器。如从图4可看出的,第二组 的6个CPV电池阵列并联互连。所述接线盒77布置在中央腹板7的一个末端。
[0050] 同样使在第二组的CPV太阳能阵列71至76的端点处的端子19_71_1和19_76_2 经由共用线8和9与接线盒77接触。共用线8和9从端子19_71_1和19_76_2收集基本 上来自模块的中心的电流。
[0051] 图5示出从图4中看到的识别圆,作为图4的局部方面的视图。所述标识圆在中 心显不来自图4的聚光器模块的横向延伸的中央腹板7。从上方同样可见,横向支架18垂 直于中央腹板7延伸。相应的连接元件17在中央腹板7上方和下方延伸,平行于中央腹板 7,并分别从根据图3的部分区域的一个共用接触板19引到另一个共用接触板19。这些共 用接触板19分别输送传感器承载盘的所示12个部分区域中的一个部分区域的全体电流, 并且因此就其输送能力相应地设计。在图4中描绘了全部的连接元件17,确保所有12个部 分区域的电串联连接。
[0052] 在图5的下半部分以剖面A-A示出了在看到识别圆中所示的横向支架18的位置 处横向于中央腹板7的剖面。这里,除了传感器承载盘13和中央腹板7以外还示出了横向 支架18中的分别在中央腹板7的左侧和右侧的圆形开口,在每种情况下连接元件17引导 穿过所述开口。
[0053] 在下方所示的剖面B-B相应地揭示了具有桥形路线的连接元件17,其在剖面图中 旋转90度。
[0054] 图6示出穿过所用的激光接触形成装置的剖面。所述激光接触形成装置确保无接 触、快速而安全地形成接触作为两个电导体的电连接。在此区域中激光的使用确保了两个 待连接的导体不被连接工具碰触,并且仅被很简单地加热,并且它们因此几乎不变形且因 此可以通过自动调整装置处理。激光接触形成装置被龙门托架头的接收轴22来引导和控 制。在所示的例子中,连接元件借助于夹持器20和激光器21导电地连接到相应的共用接 触板19。
[0055] 为了安装待由激光接触形成装置连接的接触形成元件或接触形成配对件,提供了 对应的保持装置,这些保持装置以激光受控方式被定向到聚光器模块的特定标记。它们的 使用不单独说明。
[0056] 在所有必需的电气连接已经接触并且透镜盘16已经应用之后,将如此制造的聚 光器模块馈送至用于测试电性能的装置,其中将特定电压施加到CPV传感器11本身中并且 通过透镜15由它们发射的光被检测和评价。如果在这个区域中发现了制造缺陷,可以手动 或自动执行维修。
[0057] 在聚光器模块最终完成后,聚光器模块被馈送至用于测试气密性的装置5,其中向 聚光器模块内部供应压缩空气并且检查压缩空气的排放。
[0058] 复杂的运动过程的控制和使用的传感器的信号处理需要预定的闭环控制。
[0059] 附图标记列表
[0060] 1激光头
[0061] 2激光器龙门
[0062] 3接触形成站
[0063] 4堆垛站
[0064] 5测试站(气密性测试)
[0065] 6测试站(电气测试)
[0066] 7聚光器模块的中央腹板
[0067] 8共用线(负极)
[0068] 9共用线(正极)
[0069] 10冷却和接触板 [0070] 11 CPV传感器(吸收器)
[0071] 12板10的接触点
[0072] 13聚光器模块的传感器承载盘
[0073] 14 CPV传感器(吸收器)的接触点
[0074] 15 透镜
[0075] 16透镜盘
[0076] 17连接元件(带或线缆)
[0077] 18横向支架
[0078] 19共用接触板
[0079] 20夹持器
[0080] 21激光器
[0081] 22龙门托架头的接收轴
【权利要求】
1. 一种聚光光伏(CPV)电池阵列,其包括多个太阳能电池组件(SCA),每一个太阳能电 池组件包括至少一个与接触板(10)电接触的太阳能电池(11),尤其是190个太阳能电池 (11),其中所述太阳能电池组件彼此互连而形成并联和串联连接的组合,其特征在于,两个 太阳能电池组件的相同极性的第一接触电极(14)之间的并联连接经由两个相邻太阳能电 池组件的第一电极(14)至相反极性的第二电极(12)之间的串联连接和所述两个相邻太阳 能电池组件的所述第二电极的电连接来实现。
2. 根据权利要求1的聚光光伏电池阵列,其特征在于,所述两个相邻太阳能电池组件 的所述第二电极的所述电连接是相应接触板(10)之间的连接。
3. 根据权利要求1或2的聚光光伏电池阵列,其中每一系列的并联连接的太阳能电池 组件设置有至少一个旁路二极管,尤其是只有一个旁路二极管。
4. 根据权利要求1至3之一的聚光光伏电池阵列,其中5个太阳能电池组件并联连接。
5. 根据权利要求1至4之一的聚光光伏电池阵列,其中38个并联连接的太阳能电池组 件系列串联连接。
6. 根据权利要求5的聚光光伏电池阵列,其中两个系列的19个并联连接的太阳能电池 组件系列彼此相邻地定位并在所述太阳能电池阵列的一侧串联连接,使得所述太阳能电池 阵列的第一极性和第二极性的共用接触板(19)设置在所述太阳能电池阵列的另一侧,充 当朝向所述太阳能电池阵列的外部的端子。
7. -种聚光光伏(CPV)电池模块,其包括12个根据权利要求1至6中任一项的聚光 光伏电池阵列,其特征在于,所述12个聚光光伏电池阵列设置为两排,每排6个,并且第一 相邻6个模块设置为两排,每排3个,并且串联连接,第二相邻6个模块设置为两排,每排3 个,并且串联连接。
8. 根据权利要求7所述的聚光光伏电池模块,其中所述聚光光伏电池阵列的端子全部 面向中央腹板(7)。
9. 根据权利要求8所述的聚光光伏电池模块,其中朝向所述聚光太阳能电池模块的外 部的端子设置在所述聚光太阳能电池模块的一侧,并位于所述中央腹板(7)的末端处。
10. 根据权利要求9所述的聚光光伏电池模块,其中共用线(8,9)将所述第二6个模块 的第一极性和第二极性的共用端子(19)和所述聚光太阳能电池模块的所述端子连接,并 且其中所述共用线基本上从所述聚光太阳能电池模块的几何中心传输从所述第二6个模 块供应的电流。
【文档编号】H02S40/22GK104106212SQ201280060521
【公开日】2014年10月15日 申请日期:2012年12月7日 优先权日:2011年12月8日
【发明者】E·格斯特 申请人:索泰克太阳能公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1