基于无线物联网的太阳能光伏组件阵列数据采集方法与流程

文档序号:11412707阅读:356来源:国知局
基于无线物联网的太阳能光伏组件阵列数据采集方法与流程
本发明属于太阳能光伏组件检测技术领域,具体涉及一种基于无线物联网的太阳能光伏组件阵列数据采集方法。

背景技术:
目前太阳能光伏发电系统的工作数据(包括光伏组件工作数据、逆变器工作数据、输变电设备工作数据)分别是由各离散设备采集产生并向上层计算机系统提交。因各设备种类不同、生产厂家不同,其数据规格、物理接口也不一样,造成上层计算机系统软硬件接口不统一,软件开发及维护工作量大,对既有设备做型号替换升级时还需修改上层应用软件,经济成本较大且对于正在运营的电站系统而言实施安全风险大、可行性不高。同时,目前采集太阳能光伏电池板阵列各节点工作数据时,普遍采用ZigBee无线网络,ZigBee无线网络的缺点是速度慢,实时性不高,存在“数据汇集—中继—节点”三层结构,汇集装置的节点接入数量有限。

技术实现要素:
本发明的目的就是为了解决上述

背景技术:
存在的不足,提供一种结构简单、成本低的基于无线物联网的太阳能光伏组件阵列数据采集方法。本发明采用的技术方案是:一种基于无线物联网的太阳能光伏组件阵列数据采集方法,包括以下步骤:步骤1,在太阳能光伏组件阵列中心安装汇集装置,汇集装置通过标准网口和/或WiFi接口与上层应用管理系统连接;步骤2,在太阳能光伏组件阵列的每个太阳能光伏组件上安装监测装置,所有监测装置分别通过通讯组件与汇集装置连接;步骤3,汇集装置通过通讯组件从各个监测装置内获取汇集装置信号覆盖范围内所有太阳能光伏组件的设备编号,采用信标定位方式确定每个太阳能光伏组件的行列位置,并与其设备编号一一对应,将不同设备编号太阳能光伏组件对应的行列位置发送给上层应用管理系统;步骤4,监测装置采集并监测太阳能光伏组件的工作数据,根据接收的指令向汇集装置发送工作数据,所述工作数据包括工作电压、工作电流和工作温度;步骤5,汇集装置接收到监测装置发送的工作数据后,根据工作数据进行积分发电量的计算和隐患判断,并将太阳能光伏组件的工作数据、积分发电量和隐患判断结果传递给上层应用管理系统,实现太阳能光伏组件阵列的数据采集。进一步地,所述汇集装置采用信标定位方式确定每个太阳能光伏组件的行列位置的方法为:测算太阳能光伏组件阵列中相邻两个太阳能光伏组件之间的信号衰减值作为标尺单位,选取太阳能光伏组件阵列中已知固定行列位置的至少三个监测装置作为信标向周围发送无线信号,其余监测装置接收不同信标发送的信号,在汇集装置中将每个监测装置所接收到的来自于不同信标的强弱不同的信号与标尺单位进行比对,得出每个监控装置相对于几个信标的相对位置,根据几个信标的已知行列位置即可得出每一个监测装置的行列位置,从而获得与之对应的每个太阳能光伏组件的行列位置。进一步地,所述汇集装置通过组间错频、跳频扫描、相邻分时、信道监测、功率可调中的一种或多种方式组合使用防止监测装置所发送信号互相干扰,保证任意时刻网络中只有一个“汇集装置-监测装置对”交互应答。进一步地,所述汇集装置接收到的太阳能光伏组件工作数据中,出现电压波动超过安全阈值、电流波动超过安全阈值、温度值超过安全阈值中的任意一种或多种时,则判断太阳能光伏组件存在隐患。进一步地,所述汇集装置在判断太阳能光伏组件存在隐患时,控制太阳能光伏组件所对应的自动保护切换电路接通,直至太阳能光伏组件故障排除后再度控制自动保护切换电路断开。进一步地,所述积分发电量的计算包括:所述汇集装置根据接收的太阳能光伏组件工作数据中的工作电压和工作电流分别计算每个组串内的所有太阳能光伏组件的积分发电量,然后将每个组串内的所有太阳能光伏组件的积分发电量进行求和得到整个组串的积分发电量。更进一步地,所述汇集装置通过有线物联网接口获取逆变器、输变电设备以及其它外设的工作数据,根据工作数据进行逆变器、输变电设备以及其它外设的隐患判断,并提交该工作数据和隐患判断结果至上层应用管理系统。本发明采用低成本低功耗的433Mhz无线物联网组件作为物联通信基础,以嵌入式MCU核心组件小系统实现物联组网、数据采集、分布式计算、分组通信、防交叠冲突、接入互联网等功能,从而构成一个功能完整、可配置剪裁、可靠性强的数据采集系统实现太阳能光伏组件阵列数据采集。解决光伏阵列中各光伏组件数据采集需要敷设通信电缆,解决现有ZigBee无线数据采集方案成本高、网络结构复杂、无线电波衍射能力弱,通信质量易受地形及建筑物影响,实际组网难度大的问题。具有以下优点:1、本发明采用有线(CAN总线、RS485总线、电力线载波通信)及无线(ISM-433Mhz,2.4Ghz)物联网组网功能,硬件成本低工程适用面广。2、本发明无线网络结构简单,易于组网。3、本发明无线网络容纳性强,不限制下位节点接入数量(汇集装置信号覆盖范围内的所有节点均可接入)。4、本发明采用组间错频、跳频扫描、相邻分时、信道监测、功率可调等方式避免互相干扰,具备无线网络交叠防冲突机制,适应信号交叠式组网架构。5、本发明ISM-433Mhz通信组件无线电波衍射性优越,通信可适应复杂地形,可穿透建筑物。6、本发明可接入Internet网络,具备跨地域远程采集控制功能。7、本发明具备分布式计算功能,适用于大规模光伏组件阵列数据采集。8、本发明数据采集系统可随意剪裁配置,既适用于大规模集中式光伏发电站,也适用于屋顶分布式光伏发电站。附图说明图1为本发明的采集网络构架图。图2为本发明太阳能光伏组件阵列示意图。图3为本发明确定太阳能光伏组件行列位置的原理图;具体实施方式下面结合附图和具体实施例对本发明作进一步的详细说明,便于清楚地了解本发明,但它们不对本发明构成限定。如图1、图2所示,本发明基于无线物联网的太阳能光伏组件阵列数据采集方法主要过程分为两步,分别为设备安装连接和数据采集。设备安装包括汇集装置的安装和监测装置的安装,以汇集装置为主,各监测装置为从,以433Mhz无线数传模块为媒介,构成一主多从的两级结构无线数据采集网络,免除中继转发或路由节点。汇集装置负责监听并记录新加入本网络的监测装置,为其分配通信地址后纳入本网络;同样,也可根据上位计算机的指令从本网络内剔除某个“监测装置”的地址信息,实现网络节点的配置剪裁功能。监测装置需执行入网登记与汇集装置建立绑定关系后才可提交光伏组件的工作数据,并且只向与其绑定的汇集装置发送数据,实现网络分组与归属功能。汇集装置所能容纳的监测装置无线接入数量仅受其无线信号覆盖范围限制,标准设计为1个汇集装置允许接入512个监测装置,数量可扩充、可剪裁。汇集装置的安装:在太阳能光伏组件阵列中心安装汇集装置,其信号覆盖范围能囊括太阳能光伏阵列中的所有太阳能光伏组件,然后将汇集装置通过标准网口和/或WiFi接口与上层应用管理系统连接,实现汇集装置入网,汇集装置首先向其默认的配置工作站(IP地址固定)发连接请求,用户通过配置工作站向已连接的汇集装置写各项配置数据,并统一汇集装置内应用软件版本,装载新的配置参数,进入数据汇集状态,可与上层应用管理系统互联实现数据交互与控制指令响应。监测装置的安装:在太阳能光伏组件阵列的每个太阳能光伏组件上安装监测装置,所有监测装置分别通过通讯组件与汇集装置连接,通讯组件可以为ISM-433Mhz/2.4Ghz无线通讯模块、RS485通信模块、CAN通信模块、电力线载波通信模块中的一种或多种,连接好后进行监测装置入网操作,从而确定与之对应的每个太阳能光伏组件的行列位置,监测装置入网有两种方法分别为:1、人工入网登记:借助维护工具,在监测装置安装时即设置其行列信息、分组编号,此信息经维护工具通过网络或移动式存储媒介提交到配置工作站上,在配置工作站上为其绑定汇集装置,完成入网登记工作。2、自动化入网登记:本发明采用两种模式完成自动化入网工作逐一登记模式:此模式不需要人工操作维护工具,只是在安装监测装置时按固定顺序采用逐一上电的模式,由监测装置收取汇集装置定时发送的入网登记码并做出应答,双方经二次确认后,完成入网登记工作。信标定位模式:此模式不对安装做任何要求,进一步简化了人工操作,在阵列内所有监测装置安装完毕后,汇集装置通过通讯组件从各个监测装置内获取汇集装置信号覆盖范围内所有太阳能光伏组件的设备编号,各监测装置均可得到阵列内不同固定位置的信标(最少3个)发出的信号强度(即RSSI值),分别是Rssi1~n,距离越...
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1