电源装置的制作方法

文档序号:11236738阅读:762来源:国知局
电源装置的制造方法

本发明涉及一种电源装置,特别是涉及一种从高电压的电池向低电压的电池以及负载转变并供给电力的电源装置。



背景技术:

近年来,因为地球环境保护意识的提高,所以期待电动汽车或插电式混合动力汽车的普及。在这些汽车中,装载了在行驶时向电动机供给电力的主电池。在从商用的交流电源对该主电池进行充电时,为了以更少的电力安全地进行充电,需要具备将商用电源与主电池进行绝缘的功能的电源装置。对于该电源装置谋求高变换效率。

在电动汽车中装载了在行驶过程中从高电压的主电池向电子部件的辅机系统的负载供给电力的绝缘型dc-dc变换器。由于主电池的电压在从最大的满充电时到最小的全放电时的期间变动幅度大,因此谋求绝缘型dc-dc变换器在宽的动作电压范围内高效率地进行动作。但是在针对绝缘型dc-dc变换器的输入电压的宽度宽时,需要根据条件缩减开关电源的控制占空比,因此变换效率有可能降低。

在专利文献1中公开了如下结构,以高效率地进行电力变换为目的,将dc-dc变换器与绝缘型dc-dc变换器串联连接,将绝缘型dc-dc变换器的变换比设为固定倍率,将第一(非绝缘型)dc-dc变换器设为可变倍率,从而提高变换器整体的变换效率。

现有技术文献

专利文献

专利文献1:日本特开2013-099069号公报



技术实现要素:

发明所要解决的课题

一般的绝缘型dc-dc变换器在扩大输入电压范围时效率容易降低。但是,由于充放电主电池的电压必然发生大的变动,因此难以使绝缘型dc-dc变换器高效化。在专利文献1公开的使用了两个dc-dc变换器的结构中,通过将变压器的匝数比对输入输出电压比产生影响的绝缘型变换器的变换倍率设为固定,来谋求提高变换器整体的效率。作为假定的控制,考虑通过非固定倍率的非绝缘型dc-dc变换器将大的输入电压范围的变动幅度变换为恒定的中间输出电压,通过固定倍率的绝缘型变换器得到最终输出。

但是,由于与辅机系统的负载还连接了低电压的电池,因此实际上输出侧的电压也发生变动。针对通常12v的输出,电压变动幅度的值例如为10.5v~15.5v左右,虽然比100v以上的主电池的变动幅度小,但是如果看作相对的电压变动比则具有大的变动幅度。在专利文献1中没有公开与这样的电压变动相对应的控制的详细内容。另外,假设在与输出相匹配地实施固定倍率的变换时,通过非绝缘型的dc-dc变换器输出的中间输出电压发生大的变动,因此难以实现当初的目的,即实现对于大的输入电压范围高效率的变换器。

本发明的目的在于提供一种从高电压的主电池向辅机系统的连接了低电压电池的负载变换并供给电力的效率高的电源装置的控制方法。

解决课题的手段

为了达成上述目的,本发明的电源装置具备:dc-dc变换器,其向低压线供给电力,斩波器,其输入高电压电池的电压输出要向所述dc-dc变换器输入的链路电压,根据所述低压线的电压来使所述链路电压变化。

发明的效果

通过本发明,能够提供一种输入主电池的电压向副电池以及负载供给电力的效率高的电源装置。

附图说明

图1是实施例1的电源装置1和采用了该电源装置1的电动汽车100的电源系统的概要结构图。

图2说明实施例1的充电时的电源装置1和电动汽车100的潮流。

图3说明实施例1的行驶时的电源装置1和电动汽车100的潮流。

图4是实施例1的电源装置1a的电路结构图。

图5是实施例1的双向dc-dc变换器的控制框图以及绝缘型dc-dc变换器的控制框图。

图6是实施例2的链路电压的目标值与输出电压的关系图。

图7是实施例3的双向dc-dc变换器3b的电路结构图。

图8是实施例3的双向dc-dc变换器3c的电路结构图。

具体实施方式

以下,一边参照附图一边详细说明本发明的实施方式。

实施例1

图1是本实施方式的电源装置1和采用了该电源装置1的电动汽车100的电源系统的概要结构图。电源装置1具备输入主电池5的电压输出直流的链路电压vlink的双向dc-dc变换器3、输入链路电压vlink向负载供给电力的绝缘型dc-dc变换器4。

在被施加链路电压vlink的配线上连接用于输出与交流电源10绝缘的直流电压的绝缘型ac-dc变换器2。另外,如上所述,在双向dc-dc变换器3的输出端子连接主电池5。并且,绝缘型dc-dc变换器4的输出侧与辅机系统的连接了低电压电池6的负载7相连接。充电连接器101将交流电源10与电动汽车100连接。

使用图2来说明充电时的电源装置1和电动汽车100的潮流(powerflow)。在充电时,绝缘型ac-dc变换器2输入交流电源10的电力并输出链路电压vlink,双向dc-dc变换器3输入链路电压vlink来对主电池5进行充电。另外,在负载7消耗电力时,使绝缘型dc-dc变换器4进行动作从而从链路电压vlink向负载7供给电力。如此在充电时,使用交流电源10的电力来进行主电池5的充电和向负载7的电力供给。

使用图3来说明行驶时的电源装置1和电动汽车100的潮流。在行驶时,从主电池5经由变换器102和逆变器103向动力用电动机104供给电力。双向dc-dc变换器3输入主电池5的电压来输出链路电压vlink,使绝缘型dc-dc变换器4进行动作来从链路电压vlink向负载7供给电力。如此在行驶时,使用主电池5的电力来向负载7进行电力供给。

图4是本实施方式的电源装置1a的电路结构图。绝缘型ac-dc变换器2a输入交流电源10的电力,向节点nd1与节点nd2之间输出与交流电源10绝缘的链路电压vlink。电源装置1a与该绝缘型ac-dc变换器2a连接。

双向dc-dc变换器3a在充电时输入节点nd1与节点nd2之间的链路电压vlink来对主电池5充电,在行驶时从主电池5输出链路电压vlink。绝缘型dc-dc变换器4a输入链路电压vlink来向负载7供给电力。控制单元11控制双向dc-dc变换器3a以及绝缘型dc-dc变换器4a。双向dc-dc变换器3a作为输入高电压的主电池5的电压输出链路电压vlink的斩波器发挥功能。

双向dc-dc变换器3a具备在端子tm1与端子tm2之间连接的平滑电容c3、在端子tm1与端子tm2之间串联连接的开关元件q1以及开关元件q2、在该开关元件q2的两端之间串联连接的平滑电感器l2以及平滑电容器c4。平滑电容器c4连接在端子tm3与端子tm4之间。

在端子tm1与端子tm2之间连接了链路电压vlink,在端子tm3与端子tm4之间连接了主电池5。在开关元件q1和q2上分别连接了二极管d1和d2。

绝缘型dc-dc变换器4a在节点nd1与节点nd2之间连接的平滑电容器c5的两端之间输入链路电压vlink,向连接在平滑电容c6的两端之间的负载7供给电力。

另外,绝缘型dc-dc变换器4a具备谐振电感器lr10、与该谐振电感器lr10串联连接的匝线n10、将匝线n11以及匝线n12磁耦合的变压器t10。在此,也有通过变压器t10的漏电感或配线电感来省略谐振电感器lr10的情况。

全电桥连接的开关元件h1~h4使用平滑电容器c5的电压向匝线n10施加电压。经由匝线n10以及变压器t10在匝线n11以及匝线n12中产生的电压经由二极管ds1以及二极管ds2施加给平滑电感器l3。通过施加给平滑电感器l3的电压,在平滑电感器l3中流动电流,通过平滑电容器c6使电压平滑,然后将该电压输出给负载7。此外,与开关元件h1~h4分别并联连接二极管dh1~dh4。

在使用了mosfet来作为分别与二极管ds1以及二极管ds2逆并联连接的开关元件s1和开关元件s2时,在二极管ds1以及二极管ds2导通的期间使开关元件s1和开关元件s2成为接通状态,由此能够执行将二极管ds1以及二极管ds2的电流分流到开关元件s1和开关元件s2来降低损失的同步整流。

与开关元件q1~q2、开关元件h1~h4、开关元件s1以及开关元件s2分别逆并联连接了二极管d1~d2、二极管dh1~dh4、二极管ds1、二极管ds2。在这里,当使用了mosfet来作为开关元件q1~q2、开关元件h1~h4、开关元件s1和开关元件s2时,能够利用mosfet的寄生二极管来作为二极管d1~d2、二极管dh1~dh4、二极管ds1和二极管ds2。另外,具有能够将并联连接的平滑电容器c2、平滑电容器c3、平滑电容器c5中的两个省略的情况。

开关元件q1~q2、开关元件h1~h4、开关元件s1和开关元件s2通过控制单元11来控制。在控制单元11上连接了检测链路电压vlink的电压传感器23、检测平滑电容器c4的电压即主电池5的电压的电压传感器24、检测绝缘型dc-dc变换器4a的输出电压的电压传感器25、检测平滑电感器l2的电流即主电池5的电流的电流传感器33、检测绝缘型dc-dc变换器4a的输出电流的电流传感器34。

另外,绝缘型dc-dc变换器4a通过使开关元件h1(h2)与开关元件h4(h3)都成为接通状态的期间的时间比例(以下称为占空比)变化,来调整向匝线10施加电压的时间比例从而控制输出。越增加占空比输出功率变得越大。如果使开关元件h1(h2)与开关元件h4(h3)同时接通断开,则占空比为最大。

在绝缘型dc-dc变换器4a的输入电压降低时,能够通过增加占空比来抑制输出功率的降低。然而,当绝缘型dc-dc变换器4a的输入电压进一步降低时,即使将占空比设为最大也无法获得期望的输出功率。为了在绝缘型dc-dc变换器4a的输入电压低的条件下也获得期望的输出功率,将变压器t10的匝数比(匝线n11的匝数/匝线n10的匝数、匝线n12的匝数/匝线n10的匝数)增大即可。如果将变压器t10的匝数比增大,则在绝缘型dc-dc变换器4a的输入电压低时也在匝线n11以及匝线n12中产生高电压,因此能够容易获得大的输出功率。

然而,如果这样增大变压器t10的匝数比,则在绝缘型dc-dc变换器4a的输入电压变高时,在匝线n11以及匝线n12中产生更高的电压。例如,当绝缘型dc-dc变换器4a的输入电压为450v时,如果使匝线n10的匝数:匝线n11的匝数:匝线n12的匝数=22:1:1(以下称为情况a),则在次级侧施加的电压约为41v。

另一方面,将绝缘型dc-dc变换器4a的输入电压范围设为170v~450v,为了在最小的170v时获得相同程度的施加电压,通过增大匝数比为匝线n10的匝数:匝线n11的匝数:匝线n12的匝数=9:1:1(以下称为情况b),相对于变压器t10的初级侧的电压为170v,在变压器t10的次级侧获得37.8v的施加电压。但是以该匝数比,相对于变压器t10的初级侧的电压450v,变压器t10的次级侧电压大幅上升为100v。因此,对开关元件s1以及开关元件s2、二极管ds1、二极管ds2施加的电压也增高,作为开关元件s1以及开关元件s2、二极管ds1以及二极管ds2需要高耐压的元件。一般来说,开关元件或二极管的耐压增高时损失也增大。因此,绝缘型dc-dc变换器4a在增大其输入电压范围时,损失增加从而效率容易降低

另外,在情况a时,最大负载时的与变压器t10的初级侧相连接的开关元件的占空比能够使用70~85%左右的高数值,在情况b时针对170v的输入电压使用高的占空比,但是在450v的输入时对次级侧施加相对高的电压,因此只能通过30~40%左右的低占空比来动作,存在峰值电流以及实效电流值上升,开关时的效率降低这样的问题。

在这里,本实施方式的电源装置1a具备双向dc-dc变换器3a,能够与主电池5的电压范围相比缩小链路电压vlink的电压范围。

双向dc-dc变换器3a在从交流电源10对主电池5进行充电时使开关元件q1进行开关动作从而将从端子tm1与端子tm2之间输入的电力输出到端子tm3与端子tm4之间。另外,在从主电池5向负载7供给电力时,使开关元件q2进行开关动作从而将从端子tm3与端子tm4之间输入的电力输出到端子tm1与端子tm2之间。此时,通过控制开关元件q1以及开关元件q2的接通时间比例,能够将链路电压vlink维持为在主电池5的电压以上的范围内自由的电压值,例如大体恒定的电压。

另外,如果分别将开关元件q1固定在接通状态,将开关元件q2固定在断开状态则成为直通动作,能够在端子tm1-端子tm2之间和端子tm3-端子tm4之间经由平滑电感器l2实质性地短路。当执行该直通动作时,由于不使开关元件q1以及开关元件q2进行开关动作,因此能够抑制开关损失和平滑电感器l2的铁芯损耗,同时将链路电压vlink维持在与主电池5的电压大致相等的电压值。

通过该双向dc-dc变换器3a,能够相比于主电池5的电压范围缩小链路电压vlink的电压范围,因此在从交流电源10对主电池5充电时能够相对地缩小绝缘型ac-dc变换器2a的输出电压范围,因此能够抑制效率降低。另外,在从主电池5向负载7供给电力时能够相对地缩小绝缘型dc-dc变换器4a的输入电压范围缩,因此能够抑制效率降低。因此,本实施方式的电源装置1a能够高效率地从交流电源10对主电池5进行充电,另外能够高效率地从主电池5向负载7供给电力。

使用图5对双向dc-dc变换器3a以及绝缘型dc-dc变换器4a各自用于控制电流、电压以及功率的基本控制块的动作进行说明。

绝缘型dc-dc变换器4a的控制块13针对作为目标的输出电压vref2,通过由电压传感器25检测出的低压线的电压vout进行pi反馈控制。并且,控制块13针对通过pi反馈控制获得的控制电流iref2,还通过由电流传感器34检测出的电流idc2进行pi反馈控制。并且,控制块13使用通过pi反馈控制获得的控制值即占空比2,通过开关信号生成块输出各开关元件的控制脉冲。

同样地,双向dc-dc变换器3a的控制块12针对作为目标的输出电压vref1,通过由电压传感器23检测出的电压vlink进行一般的pi反馈控制。并且,控制块12针对通过pi反馈控制获得的控制电流iref1,还通过由电流传感器33检测出的电流idc1进行pi反馈控制。并且控制块12使用通过pi反馈控制获得的控制值即占空比1,通过开关信号生成块输出各开关元件的控制脉冲。

控制块12还具备目标电压设定块14。目标电压设定块14对于作为目标的目标输出电压vref1,针对绝缘型dc-dc变换器4a的输出电压vout运算根据变压器t10的匝数比而设想的输入电压vref1′,并与通过电压传感器24检测出的主电池5的电池电压vb1进行比较,当vref1′>vb1时,将目标电压vref1′设定为输入电压vref的电压值。由此,在双向变换器3a进行升压动作时,通过对后级的绝缘型dc-dc变换器4a的输入运算以及设定最佳的链路电压vlink,能够抑制升压比来谋求高效化。

另一方面,当vref1′<vb1时,双向dc-dc变换器3a不对应于降压模式的动作,因此基于目标电压设定块14内的选择器的结果,进行使开关元件q1为接通状态,使开关元件q2为断开状态的直通动作。如上所述当执行直通动作时,由于不使开关元件q1以及开关元件q2进行开关动作,因此能够抑制开关损失和平滑电感器l2的铁芯损耗,同时能够将链路电压vlink维持在与主电池5的电压大致相等的电压值。

在此,在控制块12和控制块13中分别输入绝缘型dc-dc变换器4a的输出电压vout来作为控制变量。绝缘型dc-dc变换器4a进行反馈控制,使得相对于作为输入电压的链路电压vlink输出电压vout成为恒定,双向dc-dc变换器3a对链路电压vlink进行反馈控制使其与根据输出电压vout设定的输入电压vref1′一致。

在双向dc-dc变换器3a和双向dc-dc变换器4a的控制响应速度接近的情况下,针对输出电压vout的变动的双向dc-dc变换器3a和绝缘型dc-dc变换器4a的响应使输出不稳定,根据条件双向dc-dc变换器3a和绝缘型dc-dc变换器4a的输出有可能会振荡,因此通过将根据输出电压vout决定目标输出电压vref1′的应答速度延迟,使得控制更加稳定。

作为具体的例子,运算一定期间的输出电压vout的平均,并输入到控制块14,由此能够抑制负载的急剧变化等导致的输出电压vout的变动,同时能够设定最佳的链路电压vlink。

如上所述,通过如本实施方式的电源装置1a那样导入高电压的链路电压vlink,并且该链路电压vlink根据后级的绝缘型dc-dc变换器4a的输出进行变动,能够在大的输入范围内提高变换器整体的效率。特别是在前级的变换器通过升压模式输出链路电压时,能够获得降低升压变换器的损耗的效果。

实施例2

第二实施方式的电源装置的基本结构与图1至图5所说明的第一实施例相同,在图5中的反映输出电压vout的值来控制链路电压vlink的控制块14的部分,如图6所示,对于从输出电压vout导出的输入电压vref1′的值设定下限值。即,在输出电压vout成为阈值vth以下时,进行将链路电压vlink的输入电压vref1′的值固定为下限链路电压vlinkl从而不会成为其以下的控制。通过设定高电压的链路电压vlink,可通过缩小绝缘型dc-dc变换器4a的输入电压范围而获得效率提高的效果,在将输出电压vout与输入电压vref1′的相关设为单纯的比例关系时,输出电压vout的变动幅度大,在该电压降低时输入电压vref1′的值也降低。

在对链路电压vlink的目标值采用降低后的输入电压vref1′时,向绝缘型dc-dc变换器4a的变压器t10的次级侧的施加电压降低,对于要求的输出功率输出电流相对增大,因此有可能峰值电流以及实效电流值上升使得开关时的效率降低。因此,根据要求的输出功率与电流之间的关系,在需要抑制绝缘型dc-dc变换器4a的电流时,如图6所示对输入电压vref1′设定下限值是有效的。

此外,将达到下限值之前的输出电压vout与输入电压vref1′之间的关系设为比例关系,但并非必须是线性的关系。根据负载的响应特性,即便使电压降低时和电压增加时的值具有宽度,即赋予迟滞特性的情况,对于谋求变换器的效率提高和动作稳定也是有效的。

实施例3

图7是在图4所示的本实施方式的电源装置1a中,将相当于双向dc-dc变换器3a的部分置换为与双向的升降压对应的电路而得到的双向dc-dc变换器3b的电路图。

双向dc-dc变换器3b具备连接在端子tm1与端子tm2之间的平滑电容c3、在端子tm1与端子tm2之间串联连接的开关元件q5以及开关元件q6、在该开关元件q6的两端间串联连接的平滑电感器l21以及开关元件q8、在该开关元件q8的两端间串联连接的开关元件q7以及平滑电容c4。

在平滑电容器c4的两端间连接端子tm3与端子tm4。在端子tm1与端子tm2之间连接了链路电压vlink,在端子tm3与端子tm4之间连接主电池5。

该双向dc-dc变换器3b构成h电桥电路,不依靠链路电压vlink与主电池5的电压的大小关系,能够将链路电压vlink控制为自由的电压值。当然,如果分别将开关元件q5以及开关元件q7固定为接通状态,将开关元件q6以及开关元件q8固定为断开状态,则能够与实施例2的双向dc-dc变换器3a同样地实施直通动作。与开关元件q5~q8分别逆并联连接了二极管d1~d4。

此外,在主电池5的电压始终高于链路电压vlink时,能够将双向dc-dc变换器3b替换为图8所示的双向dc-dc变换器3c。双向dc-dc变换器3c具备连接在端子tm1与端子tm2之间的平滑电容器c3、在端子tm1与端子tm2之间串联连接的平滑电感器l22以及开关元件q8、在该开关元件q8的两端间串联连接的开关元件q7以及平滑电容器c4。平滑电容器c4的两端间连接在端子tm3-tm4之间。

该双向dc-dc变换器3c能够比双向dc-dc变换器3b简化,同时能够应对高的主电池5的电压。当然,如果分别将开关元件q7固定为接通状态,将开关元件q8固定为断开状态,则能够实施直通动作。

在使用了双向dc-dc变换器3b和双向dc-dc变换器3c中的任意一个时,根据最恰当地反映了绝缘型dc-dc变换器4a的输出电压vout的链路电压vlink来进行控制,能够降低各变换器的损耗,提高整体的效率。

以上,如通过实施例1~3进行说明的那样,各个实施方式的电源装置在根据输出电压控制的直流的链路电压与主电池之间具备双向dc-dc变换器,在从主电池向负载供给电力时,生成与主电池相比电压范围窄的链路电压来提供给绝缘型dc-dc变换器。此时,本实施方式的电源装置也可以具备绝缘型ac-dc变换器而没有充电功能。例如,在本实施方式的电源装置中,双向dc-dc变换器可以是仅与主电池的放电对应的单向的dc-dc变换器。

另外,在图4中作为绝缘型dc-dc变换器4a而表示的电路只是用于说明基本的动作,并非限于此。例如,即使应用为了降低损失在次级侧追加了钳位电路的电路或其他电路方式,也可得到通过应用本发明的控制而获得的效果,自不必说在本发明中包含这样的例子。

符号的说明

1:电源装置、1a:电源装置、2:绝缘型ac-dc变换器、2a:绝缘型ac-dc变换器、3:双向dc-dc变换器、3a:双向dc-dc变换器、3b:双向dc-dc变换器、3c:双向dc-dc变换器、4:绝缘型dc-dc变换器、4a:绝缘型dc-dc变换器、5:主电池、6:低电压电池、7:负载、10:交流电源、11:控制单元、12:变换器控制块、13:控制块、14:目标电压设定块、23:电压传感器、24:电压传感器、25:电压传感器、31:电流传感器、32:电流传感器、33:电流传感器、34:电流传感器、100:电动汽车、101:充电连接器、102:变换器、103:逆变器、104:动力用电动机、q1~q8:开关元件、h1~h4:开关元件、s1:开关元件、s2:开关元件、d1~d4:二极管、ds1:二极管、ds2:二极管、c1~c6:平滑电容器、l1~l3:平滑电感器、l21:平滑电感器、l22:平滑电感器、lr10:谐振电感器、t10:变压器、n10~n13:匝线、tm1~tm4:端子、nd1:节点、nd2:节点、vb1:电池电压、vlink:链路电压、vlinkl:下限链路电压、vout:输出电压、vref1:目标输出电压、vref1′:输入电压。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1