一种66kV变电站设备状态物联网智能预知系统的制作方法

文档序号:14686071发布日期:2018-06-14 23:01阅读:201来源:国知局

本发明涉及66kV变电站智能预测领域,特别涉及一种66kV变电站设备状态物联网智能预知系统与实现方法。



背景技术:

66kV变电站是输配电的系统中的重要环节,一般由110kV转换为66kV,再由66kV转换为10kV,作为工厂级用电,供电面积较大,在电力输送过程中发挥着重要作用,决定着社会生产生活工作能否正常安全的使用电力能源。一旦出现安全事故,将会造成巨大影响。所以保障66kV变电站的安全运行是至关重要的,必须对其运行状态进行实时监测。

66kV变电站现有的状态监测形式基本上为综合数字化管理和保护,其维修方式多数为定期检测维修,而随着科技的发展,现有的设备日益复杂化、高性能化、精密化,同时对设备维护工作也提出更高的要求。

但是现有的监测存在一定的问题,如:温度传感器在超高压环境下测温精度不高、抗干扰能力低;信号采集连线过多,占用空间过大;采用的有线传输成本较高,可靠性较低。



技术实现要素:

为克服现有技术的不足,本发明的目的是提供一种66kV变电站设备状态物联网智能预知系统,实现超高压测温,并通过有线或无线方式传送到互联网的指定IP地址,电力系统的多个相关部门可通过指定的IP地址实时了解和掌握变电站的运行状态,并对设备的运行状态作出预知维修的决策,降低维护成本。

为实现上述目的,本发明通过以下技术方案实现:

一种66kV变电站设备状态物联网智能预知系统,采用压电感应无线传感器对66kV变电站设备进行无线测温,采用智能电量计量装置对变电站设备进行检测,通过多路信号采集器采集,并利用物联网实现远程监控;具体包括测温系统、转发器、控制机、GPRS无线物联网,测温系统通过转发器、GPRS无线物联网与远程监控中心相通讯;测温系统通过电力光纤和现场总线与带有显示屏的控制机相连接;

测温系统包括压电感应无线传感器、多路信号采集器、433发送器、收发器,每个多路信号采集器均与8路压电感应无线传感器相通讯,多路信号采集器与433发送器相连接,收发器设置在多路信号采集器上,收发器向压电感应无线传感器发射无线射频信号,压电感应无线传感器激发后感测与之接触的设备温度,同时发射出与所感测的温度相对应的温度信号,返回给收发器,收发器接收到该返回的温度信号后,由多路信号采集器采集该温度信号,通过433发送器将温度信号发射到转发器;

所述的转发器包括GPRS收发器、控制器,控制器与GPRS收发器相连接,GPRS收发器接收由测温系统的433发送器发来的温度信号,经控制器处理,由GPRS收发器发送到GPRS无线物联网,远程监控中心通过IP地址获取温度信息。

所述的压电感应无线传感器通过接触片固定在变电站设备的母线排上。

还包括直流电源,直流电源为测温系统和转发器供电,包括锂电池、电池均衡调节驱动器、多路数据采集器、均衡器,每个锂电池上设有一个均衡器,每个电池均衡调节驱动器驱动8个均衡器,电池均衡调节驱动器与转发器的控制器进行通讯,通过电池均衡调节驱动器实现各组锂电池之间的电压的自动均衡。

还包括直流电源,直流电源为测温系统和转发器供电,包括锂电池、电池均衡调节驱动器、多路数据采集器、均衡器、温度检测单元,每个锂电池上设有一个均衡器,每个电池均衡调节驱动器驱动8个均衡器,电池均衡调节驱动器与转发器的控制器进行通讯,通过电池均衡调节驱动器实现各组锂电池之间的电压的自动均衡;温度检测单元检测锂电池的工作温度,温度检测单元包括温度变送器T1-T8、蓝牙无线测温模块,温度变送器T1-T8固定在8个锂电池上,三个接线端伸到锂电池外部,温度变送器T1-T8与蓝牙无线测温模块相连接,所述的温度变送器T1-T8经上拉电阻Rd接一线总线数据线CD上,电源Vd经上拉电阻Rd接一线总线数据线CD上;温度变送器T1-T8由电源Vd供电;所述的蓝牙无线测温模块包括蓝牙接收器、嵌入式微电脑,嵌入式微电脑通过蓝牙接收器接收由温度变送器T1-T8的一线总线数据线CD发送的温度数据,并进行汇总、处理,将温度数据发送转发器,嵌入式微电脑由电源Vd供电。

还包括智能电量计量装置,智能电量计量装置用于实时检测变电站设备的电压,电流,有功、无功功率,视在功率,功率因数、频率、环境温度、时间参数,不正常状态下报警,并传输给66kV直挂SVC装置,进行电能质量调节,对供电网络末端实时监测压降,并及时调整末端电压;具体结构包括微电脑89C58,微电脑89C58与ASLC电量测量芯片ATT7026A、LCD显示屏、时钟电路、看门狗电路、测温原件DS18B20、键盘、报警电路连接,微电脑89C58设有RS-485MAX485通讯接口,开关量输入端口,开关量输出端口及USB通信接口;三相电流输入部分CT和三相电压输入部分PT与ASLC电量测量芯片ATT7026A连接。

与现有技术相比,本发明的有益效果是:

将设备的关键部位安设相应的传感器,通过传感器采集处理,并通过有线或无线方式传送到互联网的指定IP地址,电力系统的多个相关部门可通过指定的IP地址实时了解和掌握变电站的运行状态,并对设备的运行状态作出维修的决策,及时维修,这样可以最好的保证设备的安全运行,提高设备寿命,降低维护成本:

1)采用压电感应无线传感器实现对66KV高压开关母排等关键部位的无线测温,解决了超高压测温难题。

2)变电站重要设备采用多路智能信号采集器,提高了测量精度和抗干扰能力,减少了连线,节约成本和空间;

3)采用电力光纤和现场总线的数据传输形式,提高了数据传输的速度和可靠性;

4)压电感应传感器采用蓝牙、433、GPRS等无线传输技术,传输方式灵活方便,尤其是采用带固定IP地址的GPRS无线传输技术,实现了变电站物联网功能;

5)采用智能电量计量装置,实时计量变电站电量参数,并提供给66kV直挂(LTT-光控晶闸管)SVC装置,进行电能质量调节,对供电网络末端实时监测压降,并及时调整末端电压。

附图说明

图1是66kV变电站设备状态物联网智能预知系统功能图。

图2是66kV变电站设备状态物联网智能预知系统图。

图3是66kV变电站设备状态物联网智能预知系统原理图。

图4是多路信号采集器原理图。

图5是直流电源电池一线总线制测温接线图。

图6是蓝牙无线测温模块示意图。

图7是锂电池均衡调节和测温的电路原理图。

图8是智能电量计量装置原理图。

图9是高压开关母线测温压电感应无线传感器安装布置图。

图10是压电感应无线传感器结构示意图。

图11是66kV变电站检测示意图。

图12是GPRS收发器原理图。

图9、10中:1-母线排2-接触片3-传感器外壳4-传感器5-固定螺钉。

具体实施方式

下面结合说明书附图对本发明进行详细地描述,但是应该指出本发明的实施不限于以下的实施方式。

见图1-图11,一种66kV变电站设备状态物联网智能预知系统,主要监控变压器、高压开关、电能质量、电量计量、环境调控、直流电源,并为消防系统、监控系统提供信息,实现变电站环境监测和综合测控。本系统采用压电感应无线传感器对66kV变电站设备进行无线测温,采用智能电量计量装置对变电站设备进行检测,通过多路信号采集器采集,并利用物联网实现远程监控;具体包括测温系统、转发器、控制机、GPRS无线物联网,测温系统通过转发器、GPRS无线物联网与远程监控中心相通讯;测温系统通过电力光纤和现场总线与带有显示屏的控制机相连接;

见图2-图4,测温系统包括压电感应无线传感器、多路信号采集器、433发送器、收发器,每个多路信号采集器均与8路压电感应无线传感器相通讯,多路信号采集器与433发送器相连接,收发器设置在多路信号采集器上,收发器向压电感应无线传感器发射无线射频信号,压电感应无线传感器激发后感测与之接触的设备温度,同时发射出与所感测的温度相对应的温度信号,返回给收发器,收发器接收到该返回的温度信号后,由多路信号采集器采集该温度信号,通过433发送器将温度信号发射到转发器;

转发器包括GPRS收发器、控制器,控制器与GPRS收发器相连接,GPRS收发器接收由测温系统的433发送器发来的温度信号,经控制器处理,由GPRS收发器发送到GPRS无线物联网,远程监控中心通过IP地址获取温度信息。GPRS收发器原理见图12。

见图9、图10,压电感应无线传感器通过接触片2固定在变电站设备的母线排1上,传感器4设置在传感器外壳3内,并通过螺栓与接触片2固定,固定螺钉5将接触片2固定在母线排1上,实现压电感应无线传感器的准确测温。

见图5-图7,直流电源,直流电源为测温系统和转发器供电,包括锂电池、电池均衡调节驱动器、多路数据采集器、均衡器、温度检测单元,每个锂电池上设有一个均衡器,每个电池均衡调节驱动器驱动8个均衡器,电池均衡调节驱动器与转发器的控制器进行通讯,通过电池均衡调节驱动器实现各组锂电池之间的电压的自动均衡;温度检测单元检测锂电池的工作温度,温度检测单元包括温度变送器T1-T8、蓝牙无线测温模块,温度变送器T1-T8固定在8个锂电池上,三个接线端伸到锂电池外部,温度变送器T1-T8与蓝牙无线测温模块相连接,所述的温度变送器T1-T8经上拉电阻Rd接一线总线数据线CD上,电源Vd经上拉电阻Rd接一线总线数据线CD上;温度变送器T1-T8由电源Vd供电;所述的蓝牙无线测温模块包括蓝牙接收器、嵌入式微电脑,嵌入式微电脑通过蓝牙接收器接收由温度变送器T1-T8的一线总线数据线CD发送的温度数据,并进行汇总、处理,将温度数据发送转发器,嵌入式微电脑由电源Vd供电。

8个锂电池内的温度变送器T1-T8相互连接,其中各个一线总线数据线CD相连接,各电源端Vd相连接(+5V),各接地端相连接,8个温度变送器T1-T8相连接后再与蓝牙无线测温模块相连接。温度变送器T1-T8为DS18B20一线总线式温度变送器,能够实现8个锂电池的温度自动检测,避免电池的不正常温升。

见图8,智能电量计量装置,智能电量计量装置用于实时检测变电站设备的电压,电流,有功、无功功率,视在功率,功率因数、频率、环境温度、时间参数,不正常状态下报警,并传输给66kV直挂SVC装置,进行电能质量调节,对供电网络末端实时监测压降,并及时调整末端电压;具体结构包括微电脑89C58,微电脑89C58与ASLC电量测量芯片ATT7026A、LCD显示屏、时钟电路、看门狗电路、测温原件DS18B20、键盘、报警电路连接,微电脑89C58设有RS-485MAX485通讯接口,开关量输入端口,开关量输出端口及USB通信接口;三相电流输入部分CT和三相电压输入部分PT与ASLC电量测量芯片ATT7026A连接。

在设备的关键部位安设相应的传感器,通过传感器采集处理,并通过有线或无线方式传送到互联网的指定IP地址,电力系统的多个相关部门可通过指定的IP地址实时了解和掌握变电站的运行状态,并对设备的运行状态作出维修的决策,及时维修,这样可以最好的保证设备的安全运行,提高设备寿命,降低维护成本:

1)采用压电感应无线传感器实现对66KV高压开关母排等关键部位的无线测温,解决了超高压测温难题。

2)变电站重要设备采用多路智能信号采集器,提高了测量精度和抗干扰能力,减少了连线,节约成本和空间;

3)采用电力光纤和现场总线的数据传输形式,提高了数据传输的速度和可靠性;

4)压电感应传感器采用蓝牙、433、GPRS等无线传输技术,传输方式灵活方便,尤其是采用带固定IP地址的GPRS无线传输技术,实现了变电站物联网功能;

5)采用智能电量计量装置,实时计量变电站电量参数,并提供给66kV直挂(LTT-光控晶闸管)SVC装置,进行电能质量调节,对供电网络末端实时监测压降,并及时调整末端电压。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1