一种固定频率、固定脉宽、输入调幅控制的高压直流电源电路的制作方法

文档序号:11137871阅读:438来源:国知局
一种固定频率、固定脉宽、输入调幅控制的高压直流电源电路的制造方法与工艺

本发明涉及一种应用于环保、科研、军工等领域中的固定频率、固定脉宽、输入调幅控制的高压直流电源电路。



背景技术:

市场上有很多种调频或调宽控制的高压电源,由于受其工作机理的限制,普遍存在高压输出纹波大,功率转换效率低,对外干扰大,抗干扰能力较差等缺陷。高压电源通常作为用户整个设备仪器中的一部分,其性能的优劣,直接影响用户整体仪器设备的检测使用精度,乃至使用的可靠性等。随着电子科技的发展,对高压电源产品有了更高的要求,市场对功率转换效率高,输出纹波小,并满足EMC的高压电源产品需求越来越大。



技术实现要素:

鉴于目前市场的需求情况,本发明提供一种开关损耗低,高压输出纹波小的固定频率、固定脉宽、输入调幅控制的高压直流电源电路。

本发明为了实现上述目的,所采取的技术方案是:一种固定频率、固定脉宽、输入调幅控制的高压直流电源电路,包括高压输出整流滤波电路,其特征在于:还包括功率驱动电路、PWM控制及过压保护电路、电压反馈电路和过流保护电路,所述功率驱动电路分别与高压输出整流滤波电路、电压反馈电路、过流保护电路和PWM控制及过压保护电路连接,所述高压输出整流滤波电路分别与电压反馈电路、PWM控制及过压保护电路及过流保护电路连接,所述过流保护电路与电压反馈电路连接;

所述PWM控制及过压保护电路中,供电输入+Vin通过电阻R1分别与电容C1的正极和稳压二极管D1的负极连接,并作为内部供电端Vcc,电容C1的负极与稳压二极管D1的正极连接后接输入地GND,主控芯片U1的偏置电源接入端15脚与输出级偏置电压接入端13脚连接,并接内部供电端Vcc,电容C3与电阻R6并联,主控芯片U1的基准电源输出端16脚与误差放大器同相输入端2脚相连后接电容C3的一端,并作为内部基准端Vref,电容C3的另一端接输入地GND,主控芯片U1的振荡器外接同步信号输入端3脚分别与外部关断信号输入端10脚及信号地12脚相连后接输入地GND,主控芯片U1的振荡器定时电阻接入端6脚通过电阻R7与输入地GND连接,主控芯片U1的振荡器定时电容接入端5脚通过电容C4与输入地GND连接,主控芯片U1的放电端7脚通过电阻R8与主控芯片U1的振荡器定时电容接入端5脚连接,主控芯片U1的软启动电容接入端8脚通过电容C5与输入地GND连接,主控芯片U1的误差放大器反相输入端1脚分别与电阻R9及电阻R10的一端相连,电阻R9的另一端通过电容C6接主控芯片U1的比较器补偿信号输入端9脚;

所述电压反馈电路中,电阻R26与电容C22并联,电阻R26一端与高压输出整流滤波电路中电阻R24和电阻R25连接处相连,二极管D13和电容C23并联,电阻R26另一端通过电阻R27分别与二极管D13负极、电阻R16的一端连接,并作为输出电压反馈端V.F与PWM控制及过压保护电路中电阻R10的另一端相连,二极管D13的正极与高压输出地HGND连接,电阻R16的另一端分别与电阻R15的一端、放大器U2A的反相输入端2脚及电容C8的一端连接,电阻R15的另一端接输入地GND,电阻R13和电容C9并联,放大器U2A的同相输入端3脚分别与电阻R13一端和电阻R14的一端连接,电阻R13的另一端接输入地GND,电阻R14的另一端与内部基准端Vref连接,放大器U2A的输出端1脚分别与电容C8的另一端和电阻R12的一端相连,电阻R11和电容C7并联,电阻R12的另一端分别接三极管T4的基极及电阻R11的一端,电阻R11的另一端与三极管T4发射极连接后接输入地GND,放大器U2A的供电端8脚与内部供电端Vcc连接,放大器U2A的接地端4脚与输入地GND连接,三极管T4的集电极通过电阻R2与三极管T1的基极连接,三极管T1的发射极与供电输入+Vin连接;

所述功率驱动电路中,电感L1的一端接电压反馈电路中三极管T1的集电极,电感L1的另一端分别接变压器TRF1初级绕组的中心抽头a端、电容C2的正极,电容C2的负极接输入地GND,电阻R3与二极管D2并联,电阻R4与二极管D3并联,二极管D2和D3的负极分别接PWM控制及过压保护电路中主控芯片U1的输出端11脚及14脚,二极管D2和D3的正极分别接MOS三极管T1和T2的栅极,MOS三极管T1和T2的源极相连后通过电阻R5接输入地GND,MOS三极管T1的漏极接变压器初级绕组Lp1的b端,MOS三极管T2的漏极接变压器初级绕组Lp2的c端;

所述过流保护电路中,电阻R23与电容C12、二极管D4并联,二极管D4的正极接输入地GND,二极管D4的负极分别与电阻R19一端及高压输出整流滤波电路中变压器TRF1的2端连接,电阻R19的另一端分别与电阻R20一端、电容C10的一端、放大器U2B的反相输入端6脚连接,电阻R20的另一端接内部基准端Vref,电容C10的另一端分别接放大器U2B的输出端7脚及电阻R18的一端,电阻R18的另一端分别与电阻R17的一端、三极管T5的基极连接,电阻R17的另一端与三极管T5的发射极相连后接输入地GND,三极管T5的集电极接电压反馈电路中三极管T4的基极,电阻R21与电容C11并联,电阻R22的一端分别与放大器U2B的同相输入端5脚、电阻R21的一端相连,电阻R21的另一端接输入地GND,电阻R22的另一端与功率驱动电路中MOS管T2的源极相连。

本发明的有益效果是:由于采用固定频率、固定脉宽的驱动信号,以及输入调幅控制,一方面使输出高压的谐波噪声电压降低,输出高压纹波减小,减小了高压电源对设备内部的其它部分的干扰,有益于整个设备工作的稳定性及检测精度的提高;另一方面使功率开关损耗降低,功率转换效率提高。

图1为本发明的电路连接框图;

图2为本发明的电路原理图。

具体实施方式

如图1、图2所示,一种固定频率、固定脉宽、输入调幅控制的高压直流电源电路,包括高压输出整流滤波电路,还包括功率驱动电路、PWM控制及过压保护电路、电压反馈电路和过流保护电路。

功率驱动电路分别与高压输出整流滤波电路、电压反馈电路、过流保护电路和PWM控制及过压保护电路连接,高压输出整流滤波电路分别与电压反馈电路、PWM控制及过压保护电路及过流保护电路连接,过流保护电路与电压反馈电路连接。

上述PWM控制及过压保护电路中,供电输入+Vin通过电阻R1分别与电容C1的正极和稳压二极管D1的负极连接,并作为内部供电端Vcc,电容C1的负极与稳压二极管D1的正极连接后接输入地GND,主控芯片U1的偏置电源接入端15脚与输出级偏置电压接入端13脚连接,并接内部供电端Vcc,电容C3与电阻R6并联,主控芯片U1的基准电源输出端16脚与误差放大器同相输入端2脚相连后接电容C3的一端,并作为内部基准端Vref,电容C3的另一端接输入地GND,主控芯片U1的振荡器外接同步信号输入端3脚分别与外部关断信号输入端10脚及信号地12脚相连后接输入地GND,主控芯片U1的振荡器定时电阻接入端6脚通过电阻R7与输入地GND连接,主控芯片U1的振荡器定时电容接入端5脚通过电容C4与输入地GND连接,主控芯片U1的放电端7脚通过电阻R8与主控芯片U1的振荡器定时电容接入端5脚连接,主控芯片U1的软启动电容接入端8脚通过电容C5与输入地GND连接,主控芯片U1的误差放大器反相输入端1脚分别与电阻R9及电阻R10的一端相连,电阻R9的另一端通过电容C6接主控芯片U1的比较器补偿信号输入端9脚。

主控芯片U1的型号为:SG1525。

上述电压反馈电路中,电阻R26与电容C22并联,电阻R26一端与高压输出整流滤波电路中电阻R24和电阻R25连接处相连,二极管D13和电容C23并联,电阻R26另一端通过电阻R27分别与二极管D13负极、电阻R16的一端连接,并作为输出电压反馈端V.F与PWM控制及过压保护电路中电阻R10的另一端相连,二极管D13的正极与高压输出地HGND连接,电阻R16的另一端分别与电阻R15的一端、放大器U2A的反相输入端2脚及电容C8的一端连接,电阻R15的另一端接输入地GND,电阻R13和电容C9并联,放大器U2A的同相输入端3脚分别与电阻R13一端和电阻R14的一端连接,电阻R13的另一端接输入地GND,电阻R14的另一端与内部基准端Vref连接,放大器U2A的输出端1脚分别与电容C8的另一端和电阻R12的一端相连,电阻R11和电容C7并联,电阻R12的另一端分别接三极管T4的基极及电阻R11的一端,电阻R11的另一端与三极管T4发射极连接后接输入地GND,放大器U2A的供电端8脚与内部供电端Vcc连接,放大器U2A的接地端4脚与输入地GND连接,三极管T4的集电极通过电阻R2与三极管T1的基极连接,三极管T1的发射极与供电输入+Vin连接。

上述功率驱动电路中,电感L1的一端接电压反馈电路中三极管T1的集电极,电感L1的另一端分别接变压器TRF1初级绕组的中心抽头a端、电容C2的正极,电容C2的负极接输入地GND,电阻R3与二极管D2并联,电阻R4与二极管D3并联,二极管D2和D3的负极分别接PWM控制及过压保护电路中主控芯片U1的输出端11脚及14脚,二极管D2和D3的正极分别接MOS三极管T1和T2的栅极,MOS三极管T1和T2的源极相连后通过电阻R5接输入地GND,MOS三极管T1的漏极接变压器初级绕组Lp1的b端,MOS三极管T2的漏极接变压器初级绕组Lp2的c端。

上述过流保护电路中,电阻R23与电容C12、二极管D4并联,二极管D4的正极接输入地GND,二极管D4的负极分别与电阻R19一端及高压输出整流滤波电路中变压器TRF1的2端连接,电阻R19的另一端分别与电阻R20一端、电容C10的一端、放大器U2B的反相输入端6脚连接,电阻R20的另一端接内部基准端Vref,电容C10的另一端分别接放大器U2B的输出端7脚及电阻R18的一端,电阻R18的另一端分别与电阻R17的一端、三极管T5的基极连接,电阻R17的另一端与三极管T5的发射极相连后接输入地GND,三极管T5的集电极接电压反馈电路中三极管T4的基极,电阻R21与电容C11并联,电阻R22的一端分别与放大器U2B的同相输入端5脚、电阻R21的一端相连,电阻R21的另一端接输入地GND,电阻R22的另一端与功率驱动电路中MOS管T2的源极相连。

放大器U2A和放大器U2B的型号为:HA17358。

PWM控制电路中电阻R7、电阻R8、电容C4选用时应考虑精度要求,电阻R7和电容C4控制脉冲的频率,电阻R8控制脉冲的宽度,本发明中选用精度为0.05%,保证脉冲频率和宽度的一致性。

在其它元器件选择上,电阻R26选用时根据输出电压值,应考虑耐压以及功率要求;二极管D13起到输出瞬间短路保护作用,短路瞬间,二极管正向通过电流较大,选用时应考虑其正向电流容量;电阻R23为输出电流取样电阻,当输出负载过流或短路时,该电阻瞬间功率较大,选用时应考虑功率和可靠性要求,本发明中选用功率为3W的线绕电阻,保证电路工作的可靠性;根据实际输出功率,选择功率开关管和变压器TRF1,当输出功率较大时,功率三极管T1、T2、T3需考虑散热问题。

本电路在PCB设计布局时,一方面需要考虑高压侧的绝缘耐压,另一方面采用多层板设计,高压端与低压端布线有严格的区域划分,减少相互干扰,以保证电路工作的可靠性。

工作原理

PWM控制及过压保护电路主控芯片U1采用PWM集成芯片SG3525(电路图中为SG1525型号,请确定),采用双端输出方式,输出固定频率、固定宽度和死区的控制脉冲,通过改变电阻R7、电阻R8和电容C4的值,确定控制脉冲的频率和脉宽,输出脉冲宽度最大可设置到开关周期的49%,脉冲频率最高可达100KHz;另外该控制芯片还通过对输出电压的采样,实现输出过压保护功能。

在高压整流滤波电路中,耦合到变压器次级的高频脉冲电压,经过多级倍压、整流以及滤波后,得到直流输出高压。

输出高压HV通过输出电压采样电路获得反馈电压信号,通过误差放大器U2A,控制三极管T4的工作状态,并通过三极管T1的控制,调整功率驱动电路供电电压的大小,进而调节驱动脉冲幅值,最终达到稳定输出电压的目的。

功率驱动采用双管推挽方式,两个驱动开关管T2和T3交替导通或截止,形成的定频定宽高频脉冲信号,驱动高频变压器TRF1,并通过变压器TRF1隔离耦合到次级,获得高频高压脉冲,再经过输出倍压整流滤波电路,输出直流高压HV。

高压输出电流经电阻R23得到负极性电流采样信号,并通过电平位移电路送到误差放大器U2B的反相输入端,输入工作电流在电阻R5上取得的输入电流采样信号,送到误差放大器U2B的同相输入端,上述两个电流采样信号同时控制U2B的输出端,进而控制三极管T4、T5的工作状态,通过双重保护最终达到限制输出电流的目的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1