一种光伏阵列跨板清洗方法和装置与流程

文档序号:11137977阅读:601来源:国知局
一种光伏阵列跨板清洗方法和装置与制造工艺

本发明涉及太阳能光伏板技术领域,更具体地说,涉及一种光伏阵列跨板清洗方法及装置。



背景技术:

随着环保的要求和可持续能源需求的提升,清洁能源的比重占总能源的比例逐年提升,光伏板阵列的清洗需求在目前市场上正在逐步升温。

光伏阵列需要清洗的原因主要有两个:一、污垢会导致光伏板表面产生导热差异,最终造成“热斑”,损坏光伏组件;二、污垢导致光伏板表面透射率降低,从而影响光伏板组件阵列的光热转化率,即降低发电效率。因此为了保证发电效率不下降,避免光伏组件损坏,光伏板清洗是必须的。

目前,现有的光伏阵列清洗方法包括几种典型类别:第一、用高压水车冲洗,第二、用干刷清洗器在光伏板板上清洗,第三、用地面运动底盘机械臂滚刷清洗车。但上述方式都存在问题:第一种方式中,高压水冲洗方案极其耗水;第二个方案中,光伏板板上干刷方案的单位清洗面积需要投入的设备数量多,且清洗效果不理想;第三个方案中,地面运动底盘机械臂滚刷清洗车的可靠性低,操作难度大,还容易损坏光伏板,易造成浪费资源、损坏清洗对象问题。

综上所述,如何提供一种效率高、智能化的清洗技术,是目前本领域技术人员亟待解决的问题。



技术实现要素:

有鉴于此,本发明的目的是提供一种光伏阵列跨板清洗方法,该方法能够使光伏阵列的清洗更加简便、高效,且智能化操作更加合理和稳定。

本发明的另一目的是提供一种用于实现上述光伏阵列跨板清洗方法的光伏阵列跨板清洗装置,该装置用于将上述方法实现,能够使得光伏板的清洗工作更简便,并实现自动化清洗。

为了实现上述目的,本发明提供如下技术方案:

一种光伏阵列跨板清洗方法,适用于具有搬运器、板上清洗机、移动器和控制系统的清洗装置,该方法包括:

S1:所述控制系统控制所述搬运器调整姿态与所述板上清洗机连接,并控制所述搬运器带动所述板上清洗机离开光伏板;

S2:所述控制系统控制所述移动器带动搬运器运动,并在所述移动器运动至目标光伏板的区域时,控制所述移动器采取相应动作;

S3:所述控制系统调整所述搬运器与所述目标光伏板的相对位置,并控制所述搬运器将所述板上清洗机放置在所述目标光伏板上;

S4:所述控制系统控制所述板上清洗机在所述目标光伏板上进行移动清洗。

优选地,方法还包括:

当包含一个所述板上清洗机时,所述控制系统控制所述板上清洗机在所述目标光伏板上进行移动清洗时,所述控制系统控制所述移动器跟随所述板上清洗机进行移动,当清洗完成后,所述控制系统控制所述移动器和所述板上清洗机采取相应动作,并返回执行所述S1;

当包含多个所述板上清洗机时,所述控制系统控制所述板上清洗机启动时,所述控制系统控制所述搬运器与所述板上清洗机解除连接,所述控制系统控制所述移动器向任一完成对应的所述目标光伏板清洗的所述板上清洗机移动,或者控制所述移动器向初始位置移动,并返回执行所述S1。

优选地,所述S1包括:

所述控制系统控制所述搬运器获取所述板上清洗机的位置信息,并将所述位置信息发送至所述控制系统;

所述控制系统基于所述位置信息进行计算,获取所述搬运器搬运所述板上清洗机的搬运信息;

所述控制系统基于所述搬运信息控制所述搬运器调整姿态,并与所述板上清洗机连接;

所述控制系统控制所述搬运器启动对所述板上清洗机的抓取操作,使所述板上清洗机离开光伏板。

优选地,所述S2包括:

所述控制系统控制所述移动器带动所述搬运器运动时,所述控制系统获取与所述目标光伏板的到位标志的距离信息;

当所述距离信息小于或等于预设距离信息时,所述控制系统控制所述移动器调整与所述边缘的位置关系,当所述位置关系满足预设位置关系时,所述移动器采取相应动作。

优选地,所述S3包括:

S31:所述控制系统控制所述搬运器获取所述目标光伏板的位置信息,所述控制系统控制所述搬运器根据所述目标光伏板的位置信息调整搬运器抓取着的板上清洗机的姿态或调整所述板上清洗机的姿态后,所述控制系统控制所述搬运器将所述板上清洗机放置在所述目标光伏板上;

S32:所述控制系统检测所述板上清洗机与所述目标光伏板的位置关系是否到位;若为是,则继续执行S4,若为否,则返回执行S31。

优选地,所述S4包括:

所述控制系统控制所述板上清洗机在所述目标光伏板上进行移动清洗的同时,所述控制系统检测所述板上清洗机距所述目标光伏板的到位标志的距离,当检测到所述距离小于或等于预设最小距离时,所述控制系统向所述移动器发送清洗完成的信号。

一种光伏阵列跨板清洗装置,包括:

用于在光伏板上移动清洗所述光伏板的板上清洗机;

用于带动搬运器运动、且移动至目标光伏板区域后采取相应动作的移动器;

用于调整姿态与所述板上清洗机连接,带动所述板上清洗机离开光伏板并将所述板上清洗机放置在所述目标光伏板上的搬运器;

分别与所述板上清洗机、所述移动器及所述搬运器连接,用于控制和检测所述板上清洗机、所述移动器及所述搬运器进行对应操作的控制系统。

优选地,所述控制系统包括:

控制系统本体,用于对所述搬运器、所述板上清洗机和所述移动器进行运算和控制,所述控制系统本体控制连接所述搬运器、所述板上清洗机和所述移动器;

用于检测对象位置的位置检测传感器,所述位置检测传感器设置于所述搬运器上,并与所述控制系统本体连接;

和/或用于获取与所述目标光伏板的到位标志的距离传感器,所述传感器设置于所述移动器或所述搬运器上,并与所述控制系统本体连接;

和/或用于感应所述板上清洗机是否放置在所述目标光伏板上的到位传感器,所述到位传感器设置于所述板上清洗机上,并与所述控制系统本体连接;

和/或用于当所述板上清洗机清洗所述目标光伏板时、检测所述板上清洗机与所述目标光伏板的到位标志的测距传感器,所述清洗传感器设置于所述板上清洗机上,并与所述控制系统本体连接。

优选地,所述板上清洗机包括板上清洗机主体和设置于所述板上清洗机主体上的板上清洗装置,所述板上清洗机材包括刷辊、和/或液压喷头、和/或刮板刮条、和/或吸尘器;

和/或所述搬运器包括机械臂或具有多自由度的机械臂;

和/或所述移动器包括移动部件和设置于所述移动部件上的导航系统,所述导航系统包括GPS导航器、激光导航器、二维码扫描导航器或磁条导航器。

优选地,所述移动器控制连接至少两个所述板上清洗机;或所述控制系统连接至少两个所述移动器,至少两个所述移动器交叉控制连接多个所述板上清洗机。

本发明所提供的光伏阵列跨板清洗方法中,由板上清洗机、搬运器、移动器三个功能装置完成对光伏板的移动清洗,通过控制系统对上述三个装置的操作执行控制,实现了对光伏板的清洗操作,并且实现了板上清洗机在不同的光伏板之间的移动和转换。智能控制的光伏阵列跨板清洗方法,能够极大地降低人工驾驶类清洁设备清洗光伏板的复杂度,可以提升清洗效率,并延长光伏板的使用寿命。采用上述装置进行清洗,相比起现有技术中的清洁设备而言,成本投入较低,并能够延长清洗设备的使用时间,对光伏板的发电效率和利用率的提升方面均具有较高的贡献。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1为本发明所提供的光伏阵列跨板清洗方法的流程图;

图2为本发明所提供的光伏阵列跨板清洗装置具体实施例一的示意图;

图3为本发明所提供的光伏阵列跨板清洗装置具体实施例二的示意图;

图4为本发明所提供的光伏阵列跨板清洗装置具体实施例三的示意图;

图5为本发明所提供的光伏阵列跨板清洗装置具体实施例四的示意图。

上图1-5中:

1为板上清洗机、2为搬运器、3为移动器、4为光伏板。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的核心是提供一种光伏阵列跨板清洗方法,该方法能够使光伏阵列板的清洗更加简便、高效,且智能化操作更加合理和稳定。

本发明的另一核心是提供一种用于实现上述光伏阵列跨板清洗方法的光伏阵列跨板清洗装置,该装置用于将上述方法实现,能够使得光伏板的清洗工作更简便,并实现自动化清洗。

请参考图1至图5,图1为本发明所提供的光伏阵列跨板清洗方法的流程图;图2至图5分别为本发明所提供的光伏阵列跨板清洗装置具体实施例一至具体实施例四的示意图。

本发明所提供的一种光伏阵列跨板清洗方法,主要用于对光伏板串之间和光伏板行之间进行光伏板的清洗,主要适用于具有搬运器、板上清洗机、移动器和控制系统的清洗装置,该方法具体包括以下步骤:

步骤S1:控制系统控制搬运器调整姿态与板上清洗机连接,并控制搬运器带动板上清洗机离开光伏板。

步骤S2:控制系统控制移动器带动搬运器运动,并在移动器运动至目标光伏板的区域时,控制移动器采取相应动作。

步骤S3:控制系统调整搬运器与目标光伏板的相对位置,并控制搬运器将板上清洗机放置在目标光伏板上。

步骤S4:控制系统控制板上清洗机在目标光伏板上进行移动清洗。

需要说明的是,上述步骤S1中搬运器调整姿态用于适应与板上清洗机的连接,板上清洗机通常设置在初始位置,初始位置通常为设置在光伏板上,搬运器在连接板上清洗机之前,需要调整与板上清洗机的连接姿态,以便可以对板上清洗机进行拾取。搬运器与板上清洗机的连接可以理解为搬运器与板上清洗机进行了刚性或者柔性的连接,以便搬运器通过自身移动带动板上清洗机移动。以搬运器为机械臂为例,搬运器与板上清洗机的连接即为机械臂对板上清洗机的掌控:对板上清洗机的拾取、夹取、吸附、托载、吊装等。控制系统控制搬运器带动板上清洗机离开光伏板,指的是搬运器在控制系统的控制下进行移动,以带动板上清洗机离开初始位置或离开所在的光伏板。在步骤S1中,并不限定搬运器带动板上清洗机移动到何处,在实际使用时,通常为搬运器将板上清洗机拾起或挪开,使得板上清洗机与原位置脱离。上述搬运器可以为具有机械臂的夹取工装,或者为其他用于控制板上清洗机移动的工装。本步骤完成了搬运器对板上清洗机的拾取,以便后续操作中搬运器带动板上清洗机的移动。

上述步骤S2中,控制系统为执行操作的主体,控制系统控制移动器移动,由于搬运器与移动器连接,所以移动器的移动带动搬运器移动。该移动过程是不断向目标光伏板的区域进行的。当移动器运动至目标光伏板区域时,控制系统控制移动器采取相应动作。一个较为可靠的实施例中,控制系统向移动器发出移动指令,移动指令可以包含目标光伏板区域的位置信息,移动器可以通过内置的导航设备向目标光伏板区域移动。可选的,上述采取相应动作可以为停止移动。

上述步骤S3中,控制系统为执行操作的主体,控制系统调整搬运器的位置,以便调整搬运器与目标光伏板的相对位置,由于搬运器与板上清洗机为连接状态,调节搬运器与目标光伏板的相对位置,可以调整板上清洗机与目标光伏板的相对位置,使得板上清洗机与目标光伏板的相对位置更便于板上清洗机的放置。控制系统控制搬运器将板上清洗机放置在目标光伏板上,指的是将板上清洗机放置在目标光伏板上,且板上清洗机通过自调整的方式能够到达的即将开始的移动并清洗的预备位置。

上述步骤S4中,控制系统为执行操作的主体,控制系统控制板上清洗机启动,板上清洗机是可以在光伏板上移动并对光伏板进行清洗的装置,所以当启动后,板上清洗机会在光伏板上进行移动清洗。

本发明所提供的光伏阵列跨板清洗方法中,由板上清洗机、搬运器、移动器三个功能装置完成对光伏板的移动清洗,通过控制系统对上述三个装置的操作执行控制,实现了对光伏板的清洗操作,并且实现了板上清洗机在不同的光伏板之间的移动和转换。智能控制的光伏阵列跨板清洗方法,极大地降低人工驾驶类清洁设备清洗光伏板的复杂度,可以提升清洗效率,并延长光伏板的使用寿命。采用上述装置进行清洗,相比起现有技术中的清洁设备而言,成本投入较低,并能够延长清洗设备的使用时间,对光伏板的发电效率和利用率的提升方面均具有较高的贡献。

在上述实施例的基础之上,针对步骤S4中,控制系统控制板上清洗机在目标光伏板上进行移动清洗的步骤,本实施例所提供的方案中还包括以下步骤:

当包含一个板上清洗机时,控制系统控制板上清洗机在目标光伏板上进行移动清洗时,控制系统控制移动器跟随板上清洗机进行移动,当清洗完成后,控制系统控制移动器和板上清洗机采取相应动作,并返回执行S1。可选的,上述采取相应动作可以为停止移动。

当包含多个板上清洗机时,控制系统控制板上清洗机启动时,控制系统控制搬运器与板上清洗机解除连接,控制系统控制移动器向任一完成对应的目标光伏板清洗的板上清洗机移动,或者控制移动器向初始位置移动,并返回执行S1。

需要说明的是,包含板上清洗机的个数表示的是移动器与板上清洗机的配合关系,上述两种情况分别说明的是移动器与板上清洗机为1对1和1对多的情况。

1对1的情况中,控制系统控制移动器跟随板上清洗机进行移动,移动器可以通过板上清洗机反馈的移动速度、以及自身对板上清洗机的位置检测调整自身移动的速度,并使得自身速度与板上清洗机的速度相匹配。而当1对多的情况中,移动器将不再跟随板上清洗机的移动,板上清洗机的清洗过程中,移动器可以在与其他板上清洗机结合进行换板操作,或者回到初始位置待命,等待接收换板指令。

在上述任意一个实施例的基础之上,上述步骤S1可以具体包括:

控制系统控制搬运器获取板上清洗机的位置信息,并将位置信息发送至控制系统。

控制系统基于位置信息进行计算,获取搬运器搬运板上清洗机的搬运信息。

控制系统基于搬运信息控制搬运器调整姿态与板上清洗机连接。

控制系统控制搬运器启动对板上清洗机的抓取操作,使板上清洗机离开光伏板。

需要说明的是,上述步骤中搬运器获取的板上清洗机的位置信息为板上清洗机的位置。控制系统基于位置进行的计算主要是对搬运器到达合适的抓取板上清洗机的位置的计算,因此搬运信息即为计算的到的结果。

需要说明的是,本发明中所有用于获取位置、获取位置信息、获取相对位置关系的操作均可以由传感器、监测器等装置完成,而这些装置均属于控制系统,可以与控制系统本体进行数据的交互和控制操作的传递。由于传感器、监测器等的使用特点和需要,需要将其安装在对应的部件上,例如对应安装在搬运器或板上清洗机上,但它们仍应当是控制系统结构上的一部分。

具体地,在一个具体实施例中,上述过程中搬运器通过传感器检测光伏板上板上清洗机的位置,并且根据板上清洗机的位置,经控制系统内部系统计算,调整搬运器的姿态与之匹配。当匹配上以后,搬运器或板上清洗机上有相应的传感器反馈到位信号,如果接收不到到位信号,搬运器就继续检测、调整姿态,直至调整至能够接收到到位信号。

可选的,还有一种调整方式中,采用的是控制系统控制搬运器的姿态与放置板上清洗机的光伏板姿态相匹配。上述控制系统控制搬运器启动对板上清洗机的抓取操作,在宏观上的状态是板上清洗机在搬运器的带动下离开了原光伏板或离开了原设置位置,这种分离方式可以是搬运器通过吸附、抓取、夹持等机械方式实现板上清洗机空间位置的改变。当然,也可以是搬运器作为桥梁式作用的结构存在,板上清洗机主动移动到搬运器上,在空间允许的情况下,可以利用搬运器搭起的空中桥梁或轨道,板上清洗机直接完成相邻光伏板串间的跨越。如果空间不够,板上清洗机就停留在搬运器上,将搬运器作为一个类似渡船一样的中间过渡性质的平台。搬运器调整到位后,搬运器上的传感器同样反馈到位信号,这种调整方式主要应对当采用桥梁式、轨道式或渡船式搬运器,具体请参考图5。

在上述任意一个实施例的基础之上,上述步骤S2可以具体包括:

控制系统控制移动器带动搬运器运动时,控制系统获取与目标光伏板的到位标志的距离信息。当距离信息小于或等于预设距离信息时,控制系统控制移动器减速并调整与到位标志的位置关系,当位置关系满足预设位置关系时,移动器采取相应动作。可选的,上述采取相应动作可以为停止移动等。

需要说明的是,控制系统控制移动器带动搬运器运动就是控制移动器向目标位置、目标光伏板移动。

具体地,板上清洗机在搬运器上就位以后,控制系统收到传感器的到位反馈,控制系统控制移动器开始移动,移动的方向由移动器内部的导航系统提供。需要说明的是,移动器内部的导航系统在逻辑上可以理解为控制系统的一部分,也可以理解为使移动器的一部分,也就是说,移动器的移动可以是控制系统控制得到的,也可以通过其自身完成。

在移动器的移动过程中,搬运器上的传感器能够检查到下一个光伏板串的到位标志,一旦检测到这个到位标志,移动器开始减速并调整自身相对于该到位标志的位置关系,这一过程中,搬运器上的传感器一直在反馈移动器与光伏板到位标志的位置关系,直到移动器调整到系统设定的位置,并采取相应动作。当然,这个检测对象位置的传感器也可以安装在移动器上,不影响整个清洗工艺以及板上清洗机转移的实现,区别只在于系统内部计算时的参考系不同。需要说明的是,上述传感器等均需要与控制系统本体连接,将感应到的位置信息等发送给控制系统。可选的,上述采取相应动作可以为停止移动等。

在上述任意一个实施例的基础之上,上述步骤S3可以具体包括:

步骤S31:控制系统控制搬运器获取目标光伏板的位置信息,控制系统控制搬运器根据目标光伏板的位置信息调整自身的姿态或调整板上清洗机的姿态后,控制系统控制搬运器将板上清洗机放置在目标光伏板上。

步骤S32:控制系统检测板上清洗机与目标光伏板的位置关系是否到位;若为是,则继续执行下一步骤,若为否,则返回执行S31。

需要说明的是,上述步骤S2中移动器到位停止后,控制系统控制搬运器检测目标光伏板位置,并调整板上清洗机姿态,将板上清洗机放置在目标光伏板上。在前序步骤的搬运器带动板上清洗机离开光伏板后,搬运器相对于移动器的姿态是不变化的、锁定的,如果地面没有地形变化,光伏板组件没有变化,那么板上清洗机相对于目标光伏板的位置与前序步骤中应当时没有变化的。所以,板上清洗机可以直接放置到目标光伏板上,但为了避免误差或特殊情况的发生,在上述方法中设置了应对特殊情况的操作,即步骤S31,板上清洗机的姿态此时与搬运器关联,调整完毕后,则继续执行下一步,或者通过传感器反馈到位信号。

可选的,如果板上清洗机的转移方式不同,如通过桥梁式的搬运器进行转移,则上述步骤中调整的应该是搬运器的姿态与光伏板匹配,同样匹配成功后传感器反馈到位信号。

步骤S31中到位检测完成,确定到位后,板上清洗机由搬运器控制进行放置。步骤S32中板上清洗机上的传感器进行到位检测,确认到位后反馈信号,否则继续姿态调整,直到收到板上清洗机的到位信号。

在上述任意一个实施例的基础之上,步骤S4可以具体包括:控制系统控制板上清洗机在目标光伏板上进行移动清洗的同时,控制系统检测板上清洗机距目标光伏板的到位标志的距离,当检测到距离小于或等于预设最小距离时,控制系统向移动器发送清洗完成的信号。

具体地,清洗机到位后,传感器反馈到位信号,搬运器收到该信号后解除与板上清洗机之间的刚性连接。解除完毕后搬运器反馈信号给板上清洗机和移动器,板上清洗机和移动器收到该信号,各自启动。板上清洗机启动清洗程序,并且开始在光伏板面移动;同一时间移动器开始移动,保持对板上清洗机的位置跟踪和速度跟踪。这两者数据都有相应的传感器采集反馈给控制系统。在之后的移动过程中,对板上清洗机和移动器的速度和位置的检测一直进行,并且反馈给系统做实时的调整。

另外,还有对光伏板的到位标志检测也是随着移动器和板上清洗机的移动同步进行中的。检测到光伏板的到位标志后,移动器和板上清洗机停止,可选的,可以开启下一次的换板清洗方法。

有关移动器和板上清洗机的1对1和1对多的具体说明如下:“1对多”的模式特点是一台移动器服务多台板上清洗机,辅助这些板上清洗机的换板操作。N的数量受移动器、板上清洗机的移动速度,光伏板串长度影响。,

“1对多”模式与“1对1”模式有所区别:移动器与板上清洗机彻底分离,断开了所有的机械连接。传感器反馈搬运器脱开动作完成后,板上清洗机启动,开始清洗并沿光伏板板面,自主独立地移动。在移动过程中,板上清洗机上的传感器一直保持对光伏板到位标志的检测,直到清洗移动到光伏板串清洗任务结束位置,传感器检测到该位置,于是板上清洗机采取相应动作,此时板上清洗机通过无线通讯,向移动器发送换板辅助指令,召唤移动器向自己靠拢。需要说明的是,上述控制过程的控制主体均为控制系统。可选的,上述采取相应动作可以为停止移动等。

除了上述实施例所提供的光伏阵列跨板清洗方法,本发明还提供一种用于实现上述光伏阵列跨板清洗方法的光伏阵列跨板清洗装置。该装置包括:

用于在光伏板4上移动清洗光伏板4的板上清洗机1;

用于带动搬运器2运动、且移动至目标光伏板4区域后采取相应动作的移动器3;

用于调整姿态与板上清洗机1连接,带动板上清洗机1离开光伏板并将板上清洗机1放置在目标光伏板4上的搬运器2;

分别与板上清洗机1、移动器3及搬运器2连接,用于检测和控制板上清洗机1、移动器3及搬运器2进行对应操作的控制系统。

需要说明的是,本发明中的板上清洗机1的特征是一个能在光伏板4表面移动,在移动的过程中对光伏板4面进行清洗的装置。板上清洗机1的结构特征是带有清洗机构和移动机构,以及用于检测光伏板4到位标志的传感器。搬运器2的特征是一个在转移板上清洗机1时与板上清洗机1存在机械上的直接连接,这种连接可以是柔性的也可以是刚性的;这个连接可以一直保持,也可以在转移板上清洗机1的操作完成后解除的装置。该装置还配有用于检测板上清洗机1及其他装置位置的传感器。移动器3的特征是自身具备主动移动能力,并与搬运器2存在机械上的直接连接关系,而且这种连接在整个光伏板4清洗过程中都不解除。在板上清洗机1跨越相邻光伏板4串或光伏板4行时,必然是在移动器3的搬运/牵引/承载等操作的协助之下完成。该装置带有导航系统及其他判断到位情况的传感器。

需要说明的是,在板上清洗机1与移动器3的关系为一对一的实施例中,板上清洗机1是可以在光伏表面移动的清洗装置,搬运器2与移动器3跟随板上清洗机1在其附近移动,板上清洗机1与搬运器2、移动器3之间存在有线连接,这种连接既可以是柔性的,也可以是刚性的。一台移动器3只服务一台板上清洗机1。在板上清洗机1与移动器3的关系为多对一的实施例中,板上清洗机1在光伏板4面自主移动,板上清洗机1与搬运器2、与移动器3之间无连接。一台移动器3可以服务几台板上清洗机1。

可选的,板上清洗机1与移动器3之间的连接可以有以下多种情况:

请参考图2,图2中的板上清洗机1与移动器3之间有机械连接,这个连接装置就是搬运器2,可以是柔性的,也可以是刚性的。移动器3可以是在地面行走的移动装备。

请参考图3,图3中的板上清洗机1与移动器3之间有机械连接,这个连接装置就是搬运器2,可以是柔性的,也可以是刚性的。移动器3是在空中飞行的飞行装备。

请参考图4,图4中的板上清洗机1与移动器3之间有机械连接,这个连接装置就是搬运器2,可以是柔性的,也可以是刚性的。移动器3是在空中飞行的,而且移动器3配置了地面移动辅助装置。

请参考图5,图5中的板上清洗机1与移动器3之间没有机械连接,搬运器2可以是柔性的,也可以是刚性的,类似桥梁、轨道的形式。移动器3是在地面行走的移动装备。

本发明所提供的光伏阵列跨板清洗装置的使用方法可以参见上述光伏阵列跨板清洗方法。

在上述实施例的基础之上,控制系统包括:

控制系统本体;

用于检测对象位置的位置检测传感器,位置检测传感器设置于搬运器2上,并与控制系统本体连接;

和/或用于获取与目标光伏板4边缘距离的距离传感器,传感器设置于移动器3或搬运器2上,并与控制系统本体连接;

和/或用于感应板上清洗机1是否放置在目标光伏板4上的到位传感器,到位传感器设置于板上清洗机1上,并与控制系统本体连接;

和/或用于当板上清洗机1清洗目标光伏板4时、检测板上清洗机1与目标光伏板4的到位标志的距离的清洗传感器,清洗传感器设置于板上清洗机1上,并与控制系统本体连接。

上述各个传感器的使用方式和信号传递方式可以参见说明书中对于光伏阵列跨板清洗方法的介绍。

在上述任意一个实施例的基础之上,板上清洗机1包括板上清洗机主体和设置于板上清洗机主体上的板上清洗装置,板上清洗装置包括刷辊、和/或液压喷头、和/或刮板刮条、和/或吸尘器。可以是上述任意一个板上清洗装置,或者为上述任意两个或者多个板上清洗装置的组合。

可选的,搬运器2的种类可有多种选择,可以为机械臂或具有多自由度的机械臂、连杆机构,采用机械臂作为搬运器2可以使得板上清洗机1的搬运过程更方便,控制更多样化。

可选的,移动器3包括移动部件、驱动系统、导航系统、供给系统等多个模块组成的移动设备,其中导航系统包括GPS导航器、激光导航器、二维码扫描导航器或磁条导航器。可选的,移动器3可以为上述任意一个导航器,或者为上述若干个导航器的组合。

本发明提供了关于移动器和板上清洗机的对应方式,包括1对1和1对多,本实施例中将提供相应的1对多的装置。本发明所提供的一个具体实施例中,基于上述任意一个实施例,移动器3可以控制连接至少两个板上清洗机1。也就是说,当由移动器3控制连接至少两个板上清洗机时,即为1对多的控制。需要说明的是,上述控制连接指的是移动器可选择的、可通断的对至少两个板上清洗机的控制连接。对当前不进行控制的板上清洗机而言,移动器需要与其断开连接。

或者,在1对多的基础之上,还可以进行多对多的控制系统连接至少两个移动器3,至少两个移动器3交叉控制连接多个板上清洗机1。

针对1对多的使用方式可以参见上述光伏阵列跨板清洗方法,进一步地,控制系统连接至少两个移动器3,至少两个移动器3交叉控制连接多个板上清洗机的设置方式使针对N对N的控制方式的,这种控制方式可以由1对N的方式进行推导。

需要说明的是,本发明所提供的控制系统包括作为控制中枢的控制系统本体和用于设置在功能部件上的传感装置。控制系统连接两个移动器3说明的是控制系统与移动器3连接关系,是控制系统本体以及传感器均与移动器相连,有关设置在功能部件上的传感器也属于控制系统的说明,请参考上文。

除了上述实施例所提供的光伏阵列跨板清洗装置的主要部分,该的其他各部分的结构请参考现有技术,本文不再赘述。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。

以上对本发明所提供的光伏阵列跨板清洗方法及装置进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1