动能发电装置和无线发射器及其制造方法和应用与流程

文档序号:12289463阅读:343来源:国知局
动能发电装置和无线发射器及其制造方法和应用与流程

本发明属于电子设备领域,更具体而言,本发明涉及一种动能发电装置、一动能发电方法及一利用该动能发电装置的无线发射器。



背景技术:

无线控制器已经非常普遍地被使用于不同的电子控制设备中。例如,对于常用的家用或办公用的电器经常会配备有无线控制器,传统的无线控制器必须使用电池作为电源驱动。因此,在电池的使用周期结束后,使用者必须频繁地用新电池替换旧电池。

大部分家用或办公用的电器还是采用有线开关,其并不方便布线。而采用无线开关时,依然采用电池驱动。使用者必须在电池的使用周期结束后频繁地更换电池。特别是,使用者必须从墙体上分离无线开关,并拆开所述无线开关的外壳去清洁和替换电池。否则,电池中的电池酸液将会漏出,污染环境以及缩短电池的使用期限。因此,无线开关或其他小型的电子设备都需要更清洁可靠的电源。



技术实现要素:

本发明的一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,所述动能发电装置能够实现自供电。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述动能发电装置是通过将机械能变成电能从而实现自供电。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述动能发电装置中包括一线圈和具有一磁隙,通过使所述线圈在所述磁隙中进行往复运动从而使所述动能发电装置进行发电。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述动能发电装置还包括一驱动装置,所述驱动装置能够驱动线圈或者驱动磁路系统使所述线圈能够与所述磁隙产生相对运动,优选地,所述线圈在所述驱动装置的驱动下在所述磁隙中进行往复运动从而进行发电。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述驱动装置通过上下运动带动所述线圈在所述磁性中进行往复运动从而进行发电。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述驱动装置通过圆周运动带动所述线圈在所述磁隙中进行往复运动从而进行发电。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述驱动装置能够驱动一个或交替地驱动多个所述线圈产生感应电流而进行发电。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述无线发射器是通过将所述动能发电装置产生的感应电流驱动一电路板进行相应的发射工作。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述无线发射器中包括一高频无线发射电路板,从而将所述动能发电装置中产生的感应电流驱动所述高频无线发射电路板进行相应的发射工作。

本发明的另一个目的在于提供一种动能发电装置和无线发射器及其制造方法和应用,其中所述无线发电方法操作步骤简单,发电高效快捷。

为达上述目的,本发明主要提供一动能发电装置,其包括:

至少一线圈;

至少一磁路系统,其具有一环形的磁隙;以及

至少一驱动装置,其中在所述驱动装置的作用下,所述线圈能够与所述磁隙产生相对位移以使所述线圈被所述磁路系统的磁感线切割从而产生一感应电流。

在一个实施例中,所述驱动装置用于驱动所述磁路系统,以使所述磁路系统的所述磁隙与所述线圈产生往复的相对位移从而使所述线圈产生所述感应电流。

在一个实施例中,所述驱动装置包括一驱动器,所述驱动器用于驱动线圈,以使所述线圈与所述磁路系统的所述磁隙产生往复的相对位移从而使所述线圈产生所述感应电流。

在一个实施例中,所述磁路系统包括一纵切面为U型的底导磁板、一永磁体以及一顶导磁板,其中所述永磁体和所述顶导磁板设置于所述底导磁板内,以形成环形的所述磁隙。

在一个实施例中,所述驱动器包括一导磁体,其中所述线圈固定于所述导磁体,所述导磁体能够通过所述磁路系统的磁性吸力自动复位从而驱动所述线圈自动复位。

在一个实施例中,所述驱动器包括一弹片,其中所述线圈固定于所述弹片,并且所述弹片能够通过其自身的弹性恢复性能自动复位从而驱动所述线圈自动复位。

在一个实施例中,其还包括一底座和一个或多个弹片固定座,其中所述底导磁板和所述弹片固定座固定于所述底座,所述弹片的一端连接于所述线圈,另一端固定于所述弹片固定座。

在一个实施例中,所述驱动器包括通过凸齿能够互相啮合和分离的一上凸轮和一下凸轮,其中所述下凸轮与所述磁路系统固定,所述上凸轮能够相对于所述下凸轮进行圆周旋转运动以驱动所述线圈在所述磁隙中进行往复运动。

在一个实施例中,在上述利用凸轮的示例中,所述驱动器还包括一导磁体,其中所述导磁体能够通过与所述磁路系统的磁性吸力使所述上凸轮和所述下凸轮从分离状态自动复位至相啮合状态。

在一个实施例中,所述动能发电装置包括两个所述线圈和两个所述磁路系统,以形成两个动能发电单元,其中所述驱动装置包括一跷板和一支点部,其中所述支点部支撑所述跷板,并且所述跷板两端分别固定两个所述线圈,两个所述线圈分别位于所述支点部的两侧,其中一个所述线圈插入对应的一个所述磁路系统的所述磁隙时,另一个所述线圈离开对应的另一个所述磁路系统的所述磁隙,从而两个所述线圈被对应的两个所述磁路系统的磁感线切割而分别产生所述感应电流。

在一个实施例中,上述的两个所述线圈串联或并联。所述跷板的两端进一步地配置为能够通过磁性力与对应的两个所述磁路系统相吸合。

在一个实施例中,其还包括一电路板,其中所述线圈电性连接于所述电路板,并且所述线圈中产生的所述感应电流供给所述电路板。

在一个实施例中,在上述利用导磁体与磁路系统的磁性吸力自动复位的示例中,其还包括一电路板,其中所述线圈电性连接于所述电路板,并且所述线圈中产生的所述感应电流以供给所述电路板,其中所述电路板固定于所述导磁体的顶侧,所述线圈固定于所述导磁体的底侧。

在一个实施例中,在上述利用弹片的弹片恢复性能自动复位的示例中,其还包括一电路板,其中所述线圈电性连接于所述电路板,并且所述线圈中产生的所述感应电流以供给所述电路板,其中所述电路板固定于所述弹片的顶侧,所述线圈固定于所述弹片的底侧。

在一个实施例中,在上述利用凸轮转动而复位的示例中,其还包括一电路板,其中所述线圈电性连接于所述电路板,并且所述线圈中产生的所述感应电流以供给所述电路板,其中所述线圈固定于所述电路板底侧,所述电路板与所述上凸轮相连接,从而所述上凸轮运动时,驱动所述电路板运动以进一步地驱动所述线圈运动。优选地,所述导磁体设置于所述电路板顶侧、底侧或与所述电路板一体成形。

在一个实施例中,在上述利用跷板复位的示例中,其还包括一电路板,其中所述线圈电性连接于所述电路板,并且所述线圈中产生的所述感应电流以供给所述电路板,其中所述电路板固定于所述跷板的顶侧。

在一个实施例中,在上述利用凸轮转动而复位的示例中,其还包括一电路板,其中所述磁隙的宽度在0.5mm-10mm之间,所述线圈的匝数在50-800圈之间,所述线圈的线径在0.06mm-0.5mm之间。可以理解的是,上述具体数值只作为举例而并不限制本发明。

根据本发明的另外一方面,本发明还提供一无线发射器,其包括上述的动能发电装置以及一高频无线发射电路板,所述高频无线发射电路板中包括一射频模块,所述高频无线发射电路板与所述动能发电装置中的所述线圈电性连接。

根据本发明的另外一方面,本发明提供一动能发电方法,其中所述动能发电方法包括以下步骤:

在一驱动装置的作用下,一线圈与一磁路系统的一环形的磁隙中产生相对位移使所述线圈被所述磁路系统的磁感线切割产生一感应电流。

在一个实施例中,其中所述动能发电方法进一步包括一如下步骤:

所述驱动装置驱动所述线圈相对于所述磁隙中进行往复运动以使所述线圈被所述磁路系统的磁感线切割产生所述感应电流。

在一个实施例中,其中包括步骤:

回应于外力作用于所述驱动装置的一导磁体,所述导磁体驱动所述线圈离开所述磁隙:以及

回应于所述外力突然消失,所述导磁体和所述磁路系统的磁性吸力使所述导磁体自动复位以驱动所述线圈进入所述磁隙。

在一个实施例中,其中包括步骤:

回应于外力作用于所述驱动装置的一弹片,所述弹片驱动所述线圈离开所述磁隙并积累弹性势能:以及

回应于所述外力突然消失,所述弹性的弹性恢复性能使所述弹片自动复位以驱动所述线圈进入所述磁隙。

在一个实施例中,其中包括步骤:

回应于外力作用于所述驱动装置的一弹片,所述弹片驱动所述线圈进入所述磁隙并积累弹性势能:以及

回应于所述外力突然消失,所述弹性的弹性恢复性能使所述弹片自动复位以驱动所述线圈离开所述磁隙。

在一个实施例中,其中包括步骤:

回应于外力作用于所述驱动装置的一上凸轮,所述上凸轮和一下凸轮分离并且所述上凸轮的移动导致所述线圈离开所述磁隙:以及

当所述上凸轮继续被转动时,所述上凸轮和所述下凸轮重新啮合并导致所述线圈进入所述磁隙。

在一个实施例中,其中包括步骤:

当所述上凸轮继续被转动时,在一导磁体和所述磁路系统的磁性吸力作用下,所述上凸轮和所述下凸轮重新啮合并导致所述线圈进入所述磁隙。

在一个实施例中,其中所述上凸轮与一电路板相连接,所述下凸轮与所述磁路系统的一底导磁板相固定,所述导磁体设置于所述电路板。

在一个实施例中,其中包括步骤:

回应于所述驱动装置的支撑于一支点部的一跷板的第一端被按压,一第一线圈进入对应的一第一磁隙,同时一第二线圈离开对应的一第二磁隙;以及

回应于所述跷板的相反的第二端被按压,所述第二线圈进入对应的所述第二磁隙,同时所述第一线圈离开对应的所述第一磁隙。

在一个实施例中,其中还包括步骤:

在对应在所述线圈进入所述磁隙时,所述跷板对应的那一端还配置为通过磁吸力与对应的所述磁路系统相吸合。

在一个实施例中,其中所述磁隙是通过以下步骤形成:

设置一纵切面为U型的柱形底导磁板;

设置一永磁体和一顶导磁板,其中所述永磁体和所述顶导磁板的外径小于所述底导磁板的内径;以及

将所述永磁体和所述顶导磁板依次设置于所述底导磁板内,以形成所述磁隙

综上所述,本发明所述的动能发电装置结构简单、成本低廉,而且在发电过程中安全可靠,对环境也无污染,能够最大程度地实现发电要求和环境要求。而本发明所述的动能发电方法操作过程简单方便,非常有利于实现普通电子设备的电流需求。本发明所述的无线发射器结构简单、性能可靠,成本低廉。

附图说明

图1本发明所述的动能发电装置和无线发射器的第一个实施例的主视结构示意图。

图2为本发明所述的动能发电装置的第一个实施例中的所述磁路系统的立体结构示意图。

图3为图2中所述的磁路系统的爆炸结构示意图。

图4至图6为本发明所述的动能发电装置的运动过程示意图。

图7为本发明所述的动能发电装置和无线发射器的第二个实施例的爆炸结构示意图。

图8至图10为本发明所述的动能发电装置和无线发射器的第二个第一个实施例的工作过程原理示意图。

图11为本发明所述的动能发电装置和无线发射器的第三个实施例的主视结构示意图。

图12为本发明所述的动能发电装置和无线发射器的第三个实施例的立体结构示意图。

图13为本发明所述的动能发电装置和无线发射器的第三个实施例的爆炸结构示意图。

图14至图16为本发明所述的动能发电装置和无线发射器的第三个实施例的工作过程原理示意图。

图17为本发明所述的动能发电装置和无线发射器的第四个实施例的立体结构示意图。

图18为本发明所述的动能发电装置和无线发射器的第四个实施例的爆炸结构示意图。

图19为图17中所述的无线发射器中的驱动装置的运动方向示意图。

图20至图21本发明所述的动能发电装置和无线发射器的第四个实施例的工作过程原理示意图。

具体实施方式

以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。

本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。

本发明主要提供一种动能发电装置,所述动能发电装置提供一磁隙和一线圈,通过所述线圈在所述磁隙中进行往复运动而产生一感应电流,从而使本发明所述的动能发电装置达到发电的效果。

如图1至图6所示,在本发明所述的动能发电装置的第一个实施例中,所述动能发电装置包括一磁路系统10、一驱动装置20以及一线圈30,所述磁隙14形成于所述磁路系统10,所述线圈30固定设置于所述驱动装置20,并且能够在所述驱动装置20的驱动下在所述磁隙14中进行往复运动而产生一感应电流,从而使本发明所述的动能发电装置达到发电的效果。

如图中所示,所述磁路系统10形成一环形的磁隙14,所述线圈30与所述磁隙14能够产生相对位移,从而使所述线圈产生感应电流,从而执行发电操作。具体地,可以是所述磁隙14位置固定不动,而所述线圈30移动,或者是所述线圈30位置固定不动,而所述磁隙14的位置变化,从而使所述线圈30和所述磁隙14之间产生相对位移。更具体地,可以是所述磁路系统10固定不动,而所述驱动装置20用于驱动所述线圈30运动,或者所述线圈30固定不动,而所述驱动装置20用于驱动所述磁路系统10运动,从而使所述线圈30和所述磁路系统10产生相对位移,并且所述线圈30快速地在所述磁隙14中往复移动,导致所述线圈30被所述磁路系统10的磁感线快速切割,从而基于电磁感应原理,在所述线圈30中产生感应电流。在本发明的这个优选实施例中,以所述驱动装置20用于驱动所述线圈30从而产生感应电流为例。

具体地,如图2及图3所示,在本发明的第一个实施例中,所述磁路系统10包括一顶导磁板13、一永磁体12以及一底导磁板11,所述底导磁板11具有一凹槽111,所述永磁体12设置于所述底导磁板11的所述凹槽111中且与所述底导磁板11的四周侧壁之间具有一间隙,所述顶导磁板13贴合于所述永磁体12的顶表面,从而使所述顶导磁板13及所述永磁体12在所述底导磁板11内形成磁感线密布的环形的所述磁隙14。

更进一步地,在本发明的第一个实施例中,所述底导磁板11为一纵切面为U型的圆柱形导磁板,因此所述凹槽111也为圆柱形,所述永磁体12为圆柱形,位于所述圆柱形底导磁板11的所述凹槽111里且所述永磁体12的外径小于所述凹槽111的直径,所述顶导磁板13也为圆柱形且其外径与所述永磁体12的外径相同,因此,在所述顶导磁板13和所述底导磁板11之间能够形成磁感线密布的所述磁隙14。

作为本发明的第一个实施例的一种变形,所述顶导磁板13和所述底导磁板11也可以采用其他形状或结构形式,比如所述底导磁板11为纵切面为U型的中空长方体等,只要所述顶导磁板13和所述永磁体12在所述底导磁板11内能形成所述磁感线密布的磁隙14即可。本发明的具体实施方式不以此为限,只要采用了与本发明相同或相似的技术手段,并且达到了与本发明相同或相似的技术特征,均属于本发明的保护范围之内。

另外,本领域技术人员也可以根据实际情况对所述磁隙14的形成方式进行确定,只要能产生所述磁隙14,就属于本发明所述的动能发电装置的保护范围之内,本发明的具体实施方式不以此为限。

如图1和图4所示,在本发明所述的动能发电装置的第一个实施例中,所述驱动装置20包括一驱动器,在这个实施例中,其实施为一导磁体21,其是由磁吸性的导磁材料制成。可以理解的是,所述驱动器也可以是在非导磁材料表面包覆导磁材料而形成,本发明在这方面并不受到限制。在这个优选实施例中,所述驱动器具体实施为一铁板。所述线圈30的横断面为O型且固定于所述导磁体21的底表面,当所述导磁体21放置于所述顶导磁板13的顶表面时,所述线圈30能够插入所述磁隙14。由于所述导磁体21的导磁性,当所述导磁体21被放置于所述顶导磁板13的表面时会由于所述顶导磁板13下方的永磁体12的吸力而被紧紧吸附于所述顶导磁板13的顶表面,而所述线圈30也会相应地位于所述磁隙14中,而且在所述线圈30离开所述磁隙14而仍然位于所述磁路系统10的磁性吸附场的范围内时,所述线圈30能够在所述磁路系统10的磁性吸引力的作用下重新快速移动返回至与所述顶导磁板13相吸合。

如图4至图6所示,为本发明所述的动能发电装置的第一个实施例的工作过程示意图。

如图4所示,当所述导磁体21在所述永磁体12的吸力下与所述顶导磁板13的顶表面吸附在一起时,所述线圈30位于所述磁隙14中,所述动能发电装置为静止状态。

如图5所示,当所述导磁体21被一外力驱动F向上运动时,所述线圈30跟随所述导磁体21向上运动,进而离开所述磁隙14一定的间距。同时,由于所述导磁体21会受到所述永磁体12向下的拉力,当所述外力F企图向上使其与所述顶导磁板13分离时,必将会因为所述永磁体12的强大磁吸力而保持势能,从而使所述线圈30具有了势能。

如图6所示,当所述外力F突然消失,所述导磁体21会在所述永磁体12的磁吸力作用下向下快速移动复位,直至与所述顶导磁板13的表面重新贴附。同时,与所述导磁体21固定设置的所述线圈30也会在所述导磁体21的带动下快速向下运动,进而插入所述磁隙14中。而所述线圈30在所述磁隙14中的快速移动会导致所述线圈30被所述磁隙中密布的磁感线快速切割,从而会在所述线圈30中产生所述感应电流。所述感应电流可以被用于驱动相应的设备进行工作。

具体地,在本发明的第一个实施例中,所述导磁体21为一铁板,作为选择,本领域技术人员可根据实际情况对所述导磁体21的类型做出改变,比如选用钴、镍及其合金等。此外,本领域技术人员可以根据本发明所揭露的内容对具体的技术方案进行更改,比如设置所述线圈30不动,而将所述磁路系统10运动,那么也是可以通过所述磁路系统10中的磁感线切割所述线圈而产生电流的,换句话说,只要是通过所述磁路系统10中的磁感线切割所述线圈30即可产生电流,因此只要采用了与本发明相同或相似的技术方案,并且达到了与本发明相同或相似的技术效果,都属于本发明保护的范围,本发明的具体实施方式不以此为限。

在本发明所述的动能发电装置的第一个实施例中,所述磁隙14的宽度在0.5mm-10mm之间,所述线圈30的匝数在50-800圈之间,所述线圈30的线径在0.06mm-0.5mm之间均可,本领域技术人员可以根据对于电能大小的需求确定磁隙14的宽度和所述线圈30的匝数以及所述线圈30的线径,只要采用了与本发明相同或近似的技术方案,并且达到了与本发明相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式不以此为限。

值得注意的是,本领域技术人员可以采用任何方式驱动所述线圈30在所述磁隙14中进行往复运动,以产生所述感应电流。比如采用电动力驱动、机械动力驱动等,只要与本发明所述的动能发电装置采用了相同或相似的技术方案,解决了相同或近似的技术问题,并且达到了与本发明相同或相似的技术效果,都属于本发明所述的动能发电装置的保护范围之内。

此外,在所述驱动装置20驱动所述线圈30在所述磁隙14中进行往复运动的过程中,可以通过吸力实现所述线圈30在所述磁隙14中的返回运动,也可以通过弹力实现所述线圈30在所述磁隙14中的往复运动,或者是通过惯性力、外力等实现所述线圈30在所述磁隙14中的往复运动,本领域技术人员可以根据具体情况进行确定,本发明所述的动能发电装置的具体实施方式不以此为限。

需要强调的是,当在本发明所述的动能发电装置上电性连接一电路板22并能够通过所述动能发电装置产生的感应电流驱动所述电路板22开始相应的工作时,该带有电路板22的动能发电装置就成了一无线发射器。

具体地,所述线圈30电性连接于所述电路板22,所述电路板22可以集成一系列电路元器件221,所述电路板22可以固定在实施为铁板的所述导磁体21的顶侧,即位于所述磁路系统10的顶侧,从而形成一紧凑结构,如图4中所示,当然本领域技术人员可以理解的是,其也可能是所述磁路系统10的周侧,只要与所述线圈30电性连接即可。

所述线圈30产生的感应电流将通过所述电路板22中的一个电压变换器转换成使用电力,从而为所述电路板的主控制模块提供电力供应。同时,当所述电路板22一体地集成高频无线射频电路时,所述主控制模块也能生成一个控制指令,所述控制指令通过所述高频无线射频电路发送到各种电子设备,从而操控所述电子设备。例如当所述控制指令发送至一电子控制系统,并且所述电子控制系统能够作为智能家居控制系统,其可工作地通过一个中央控制单元连接至不同的电子器件,比如照明器、窗帘操控单元空调控制单元和智能指示单元等。

例如,在一个典型的应用中,本发明的动能发电装置可以应用于一自发电无线开关,其中所述自发电无线开关适用于连接任何电子设备。配置有本发明的所述动能发电装置的所述自发电无线开关是一个以开关方式控制所述电子设备的自发电装置。比如,根据优选实施例所述的自发电无线开关被用于以开关方式控制一个照明器。应领会的是,所述自发电无线开关能够启动和关闭其他电子设备,比如电视、冰箱以及电扇等家用或办公电器。

在本发明的这个实施例中,其提供一动能发电方法,应用于为小型电子设备提供电源,例如典型的是应用于一无线开关,从而形成一无线自发电开关,该方法包括如下步骤:导磁体21在外力作用下移动,驱动与其相连接的线圈30离开磁路系统10的环形的磁隙14预定距离;以及

在所述外力作用消失时,所述导磁体21在所述磁路系统10磁性吸收力作用下重新与所述磁路系统10相吸合,同时所述线圈30回到所述磁隙14,导致所述线圈30被所述磁路系统10的磁感线切割并产生感应电流以用于发电。

在上述方法中,当使用外力如图中所示向上抬起实施为铁板的导磁体21时,使所述线圈30离开所述磁隙14预定间距时,铁板会受到磁铁向下的拉力,从而使所述线圈30具有势能,由于铁板平时是被磁铁吸附的,当外力企图向上使其与磁铁分离时,必将受到磁铁的强大吸引力而保持势能。当外力突然消失,铁板会在磁铁的吸引力的作用下,向下快速移动,直至与磁铁重新吸合。同时,与铁板相联的线圈也快速向下插入所述磁隙14中,线圈的快速移动,导致所述线圈30被磁感线快速切割,根据电磁感应的原理,会在所述线圈30当中产生感应电流。

例如,具体在应用于无线开关或其他小型电子设备中时,可以是使用者按压、拨动、推动、拉动等操作的外力作用下,导致作为所述驱动器的所述导磁体21移动并离开所述磁隙14,并且使用者施加的外力突然消失时,所述导磁体21会在所述磁路系统10的磁性吸力的作用下自动回到初始的相吸合位置,从而所述线圈30重新进入所述磁隙14中,这样离开和进入所述磁隙14的快速往复运动导致其被所述磁路系统10的磁感线快速切割而使其产生感应电流。

可以理解的是,在这个方法中,所述导磁体21因为所述磁路系统10的磁性作用下而自动复位,这样结构更简单。在另外的实施例中,所述导磁体21也可能进一步地通过其他方式自动复位,例如通过弹性形变恢复性能而驱使所述导磁体21复位,即例如所述导磁体21连接至一弹簧,所述线圈30离开所述磁隙14时,所述弹簧被拉伸或压缩,而外力消失时,所述弹簧恢复初始状态以驱使所述导磁体21复位,使所述线圈30回到所述磁隙14中,从而完成快速的往复移动。

基于上述发明构思,在初始状态时,所述线圈30是位于所述磁隙14中,在一次发电操作中,所述线圈30从位于所述磁隙14中,至离开所述磁隙14,然后返回所述磁隙14。在其他实施例中,也可能是在初始状态时,所述线圈30位于所述磁隙14外,在一次发电操作中,所述线圈30从位于所述磁隙14外,至进入所述磁隙14,然后再离开所述磁隙14。总之,使所述线圈30快速地进入和离开所述磁隙14,从而使所述线圈30中产生感生电流。

如图7至图10所示,为本发明所述的无线发射器的第二个实施例的一具体应用示例,在这个实施例中,类似地,所述无线发射器包括一磁路系统10A、一驱动装置20A以及一线圈30A,所述磁路系统10A包括一顶导磁板13A、一永磁体12A以及一底导磁板11A,所述永磁体12A设置于所述底导磁板11A的凹槽中且与所述底导磁板11A的四周侧壁之间具有一间隙,所述顶导磁板13A贴合于所述永磁体12A的顶表面,从而使所述顶导磁板13A及所述永磁体12A在所述底导磁板11A内形成磁感线密布的环形的所述磁隙14A。在这个实施例中,所述无线发射器是利用一弹片21A带动所述线圈30A在所述磁隙14A中进行往复运动从而产生所述感应电流,并通过所述感应电流驱动一电路板22A进行发射的。

图7为本发明的第一个实施例的爆炸结构示意图。如图7所示,在本实施例中,所述电路板22A电性连接所述动能发电装置的所述线圈30,其中所述动能发电装置中的所述驱动装置20A包括一驱动器,其被具体实施为一弹片21A,所述线圈30A被固定设置于所述弹片21A的底表面,所述弹片21A的顶表面固定设置有所述电路板22A,所述电路板22A与所述线圈30A电性连接,所述线圈30A在所述弹片21A的弹力带动下而在所述磁隙14A中进行往复运动,从而实现所述动能发电装置的发电效果。可以理解的是,所述电路板22A也可以不需要固定在所述弹片21A顶表面,而是固定在整个发电系统的其他位置。

在这个实施例中,所述弹片21A具有一第一端211A和一第二端212A,所述第一端211A具有一第一固定孔2111A和一第二固定孔2112A。本发明这个实施例中的所述的动能发电装置的进一步包括一底座40,所述底座40上固定设置有一第一固定座41和一第二固定座42,所述第一固定座41和所述第二固定座42的高度相同,所述弹片21A通过所述第一固定孔2111A和所述第二固定孔2112A分别固定于所述第一固定座41和所述第二固定座42,从而实现与所述底座40的固定。换言之,在所述第一固定座41和所述第二固定座42的支撑下,所述弹片21A不仅能够实现与所述底座40之间的相对固定,而且在没有外力作用的情况下还能保持水平位置,而在有外力作用的时候,所述弹片21A的所述第二端212A能够相对于所述弹片21A的所述第一端211A进行运动。

也就是说,所述弹片21A的近端通过一个或多个固定座41和42固定就位,而远端的底面固定所述线圈30A。所述弹片的所述远端即所述第二端212A能够以其近端即所述第一端211A为支点转动,从而能够自动复位。即不同于上述实施例中通过磁吸力使所述线圈30复位,在本发明的这个实施例中,通过所述弹片21A的弹性恢复性能使所述线圈30A自动复位。

所述磁路系统10A位于所述弹片21A的所述第二端212A的下方,而所述第一固定座41和所述第二固定座42的高度能够确保当所述弹片21A静止时正好带动所述线圈30A位于所述磁路系统10A形成的磁隙14A中。换句话说,当所述弹片21A在没有外力的作用下静止时,其高度大约与所述磁路系统10A的高度相同,从而确保当所述弹片21A上的外力消失时,所述线圈30A能够位于所述磁路系统10A形成的所述磁隙14A中,从而使本发明所述的动能发电装置具有发电功能。

此外,所述弹片21A的所述第二端212A的形状能够确保所述O型线圈30A固定于其底表面。优选地,所述弹片21A的所述第二端212A为一圆形,且所述圆形第二端212A为一扩大部,其外径大于所述线圈30A的外径,以使所述线圈30A能够被稳定地固定于所述弹片21A的所述第二端212A的底表面。所述弹片21A的第二端212A进一步具有一凸起2121A,所述凸起2121A位于所述弹片21A的所述第二端212A的侧边,以方便使用者的操作。本领域技术人员可以理解的是,上述形状只作为举例而并不限制本发明。

如图8至图10所示,为本发明这个实施例的所述的无线发射器的发电过程示意图。

如图8所示,当没有任何外力作用在所述弹片21A上时,所述弹片21A的所述第二端212A和所述线圈30A位于所述磁路系统10A的上方,同时,所述线圈30A位于所述磁路系统10A形成的所述磁隙14A中。此时,整个动能发电装置处于静止状态。

如图9所示,当利用一外力F1向上作用在所述弹片21A的所述第二端212A上的所述凸起2121A时,所述线圈30A随着所述弹片21A的所述第二端212A被作用至所述磁隙14A的上方。此时,由于所述弹片21A的所述第一端211A被固定于所述底座10上的所述第一固定座41和/或所述第二固定座42,因此当所述弹片21A的所述第二端212A被所述外力F1向上作用的同时,所述弹片21A的所述第二端212A会因为发生向上的形变而具有反向势能。

如图10所示,此时,若所述外力F1消失,所述弹片21A的所述第二端212A上的凸起2121A上的受力得到释放,致使所述弹片21A的所述第二端212A在弹力作用下快速向下运动。所述线圈30A也会随着所述弹片21A的第二端212A的快速向下运动而快速复位至所述磁隙14A内,当所述线圈30A快速复位至所述磁隙14A内的同时会被所述磁隙14A内密布的磁感线快速切割,最终产生所述感生电流,并传送至所述电路板22A,从而驱动所述电路板22A进行相应的无线发射工作。

作为本实施例的一种变形,本领域技术人员可以根据实际情况或具体需求对所述弹片21A的结构、形状以及所述弹片21A的材料进行相应的更改,只要与本发明所述的无线发射器采用了相同或近似的技术手段,解决了与本发明相同或近似的技术问题,并且与本发明达到了相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式不以此为限。

在本发明所述的无线发射器的中,所述电路板22A为一高频无线发射电路板,所述高频无线发射电路板中集成有一系列电路板元件221A及一射频模块(RF射频模块)(图中未示出,下同),即所述动能发电装置中的所述线圈30A与所述高频无线发射电路板电性连接。当所述动能发电装置中的所述线圈30A因被所述磁隙14A中密布的磁感线切割而产生感生电流时,所述感生电流驱动所述带有所述电路板元件221A和所述RF射频模块的高频无线发射电路板发出高频无线电波,从而控制电子设备进行工作。

本发明的这个实施例中作为驱动器的所述弹片21A以类似杠杆的方式撬动所述线圈30A产生快速往复位移,从而使所述线圈30产生感应电流。可以理解的是,在上述结构中,在初始状态,所述线圈30A位于所述磁隙14A中,当所述凸起2121A被向上抬起,以使弹片21A的所述第二端212A以所述第一端211A为支点向上转动时,所述线圈30A离开所述磁隙14A并且所述弹片21A积累势能,当外力消失时,所述弹片21A自动复位,从而驱动所述线圈30A再次进入所述磁隙14A,从而被所述磁路系统10A的磁感线快速切割而产生感应电流。可以理解的是,在另外的实施方式中,也可以是所述固定座41和42的高度大于所述磁路系统10A,以使在初始状态时,所述线圈30A位于所述磁隙14A之外,当所述凸起2121A被向下按压时,所述弹片21A的所述第二端212A以所述第一端211A为支点向下转动时,所述线圈30A进入所述磁隙14A并且所述弹片21A积累势能,当外力消失时,所述弹片21A自动向上转动复位,从而驱动所述线圈30A离开所述磁隙14A,从而因为所述线圈30A快速进入和离开所述磁隙14A,导致所述线圈30A被所述磁路系统10A的磁感线快速切割而产生感应电流。

相应地,在本发明的这个实施例中,其提供一动能发电方法,应用于为小型电子设备提供电源,例如典型的是应用于一无线开关,从而形成一无线自发电开关,该方法包括如下步骤:

弹片21A在外力作用下其第二端212A以第一端211A为支点进行杠杆运动并产生弹性形变,驱动与其相连接的线圈30离开磁路系统10A的环形的磁隙14A预定距离;以及

在所述外力作用消失时,所述弹片21A自动复位并驱动所述线圈30A自动复位,其中所述线圈30A被所述磁路系统10A的磁感线切割产生感应电流以用于发电。

或者该方法包括如下步骤:

弹片21A在外力作用下其第二端212A以第一端211A为支点进行杠杆运动并产生弹性形变,驱动与其相连接的线圈30A进入磁路系统10A的环形的磁隙14A;以及

在所述外力作用消失时,所述弹片21A自动复位并驱动所述线圈30A离开所述磁隙14A,其中所述线圈30A被所述磁路系统10A的磁感线切割产生感应电流以用于发电。

值得一提的是,所述弹片21A受到的外力作用可以是来自使用者的直接作用,也可以是其他间接作用,其只要是能够起到使所述弹片21A的远端产生位移,从而积累弹性势能即可。

可以理解的是,当所述线圈30A固定,而所述驱动装置的所述驱动器用来驱动所述磁路系统10A时,所述弹片21A的远端可以与所述磁路系统10A相固定,从而当所述弹片21A在外力作用下,其远端相对其近端,类似杠杆地转动时,所述线圈30A位置不变而所述磁路系统10A可以被驱动而移动,并且在外力突然消失时,所述弹片21A因为弹性恢复性能而自动复位,从而带动所述磁路系统10A自动复位,这样使所述磁路系统10A的所述磁隙14A和所述线圈30A产生相对的快速的往复位移,从而使所述线圈30A产生感应电流。类似地,所述弹片21A用来驱动所述磁路系统10A时,在初始状态,所述线圈30A可以位于所述磁隙14A中,也可以是位于所述磁隙14A外,在一个重复循环中,可以是所述磁路系统10A的移动使所述磁隙14A先离开所述线圈30A再快速返回,也可以是所述磁路系统10A的移动使所述磁隙14A先套在所述线圈30A周围再快速离开所述线圈30A。

如图11至图16所示,为本发明所述的无线发射器的第三个实施例,类似地,所述无线发射器包括一磁路系统10B、一驱动装置20B以及一线圈30B,所述磁路系统10B包括一顶导磁板13B、一永磁体12B以及一底导磁板11B,所述永磁体12B设置于所述底导磁板11B的凹槽中且与所述底导磁板11B的四周侧壁之间具有一间隙,所述顶导磁板13B贴合于所述永磁体12B的顶表面,从而使所述顶导磁板13B及所述永磁体12B在所述底导磁板11B内形成磁感线密布的环形的所述磁隙14B。

所述无线发射器的第三个实施例与第一个实施例的区别在于,在该第三个实施例中,是利用一凸轮的相对圆周旋转运动带动所述线圈30B在所述磁隙14B中进行上下往复运动,从而产生所述感应电流,并通过所述感应电流驱动所述电路板22B进行相应的发射工作。

详而言之,在本发明所述的无线发射器的第三个实施例中,所述驱动装置20B包括一驱动器,其包括一凸轮,所述凸轮为圆柱形,包括一上凸轮201B和一下凸轮202B,所述上凸轮201B具有一第一空间2011B,所述下凸轮202B具有一第二空间2021B。所述上凸轮201B的周缘上设置有数个连续第一凸齿2012B,每个所述第一凸齿2012B分别包括一第一上端20121B和一第一下端20122B。同样地,所述下凸轮202B的周缘上设置有数个分别与所述第一凸齿2012B相互啮合的第二凸齿2022B,每个所述第二凸齿2022B分别包括一第二上端20221B和一第二下端20222B。当每个所述第一凸齿2012B分别与所述第二凸齿2022B啮合时,所述第一凸齿2012B的第一上端20121B位于所述第二凸齿2022B的第二上端20221B,而所述第一凸齿2012B的第一下端20122B位于所述第二凸齿2022B的第二下端20222B;当所述上凸轮201B相对于所述下凸轮202B进行圆周旋转运动时,所述上凸轮201B上的所述第一凸齿2012B的所述第一上端20121B和第一下端20122B分别沿着所述下凸轮202B上的所述第二凸齿2022B的所述第二上端20221B和第二下端20222B进行滑动,从而使所述上凸轮201B相对于所述下凸轮202B进行往复的上下运动。

如图12和图13所示,所述无线发射器进一步包括一电路板22B,所述电路板22B固定设置于所述上凸轮201B。具体而言,所述上凸轮201B的周缘上设置有至少一个卡扣2013B,所述电路板22B的周缘上设置有与所述卡扣数量相同的卡孔222B,以便于通过所述卡扣2013B和所述卡孔222B的结合而使所述电路板22B固定于所述上凸轮201B。在本发明所述的无线发射器的这个实施例中,所述上凸轮201B的周缘上设置有三个所述卡扣2013B,所述电路板22B的相应位置也设置有三个所述卡孔222B,用于与所述卡扣2013B分别进行配合,从而使所述电路板22B与所述上凸轮201B固定在一起。可以理解的是,所述卡扣2013B也可以设置于所述电路板22B,而所述卡孔222B也可以设置于所述上凸轮201B。当然,也可以通过其他连接方式将所述电路板22B和所述上凸轮201B连接固定,本发明在这方面并不受到限制。

所述线圈30B固定于所述所述电路板22B的底表面且位于所述上凸轮201B的所述第一空间2011B内,所述电路板22B的顶表面进一步包括一导磁体21B,所述导磁体21B固定于所述电路板22B的顶表面,其可以是导磁材料制成如实施为一铁板,或者由非导磁材料包覆导磁材料而形成。同时,在本发明所述的无线发射器的该变形实施例中,所述磁路系统10B与上述动能发电装置的第一个实施例中的磁路系统10中的结构相同,所述磁路系统10B位于所述下凸轮的所述第二空间2021B内,当所述上凸轮201B和所述下凸轮202B啮合时,所述线圈30B位于所述磁路系统10B所形成的所述磁隙14B中。

可以理解的是,所述导磁体21B也可以位于所述电路板22B的底表面,或者一体地集成于所述电路板22B,其只要能与所述磁路系统10产生磁性吸力并使所述凸轮自动复位至相啮合状态即可。另外,也可能是所述导磁体21B与所述上凸轮201相固定,而所述电路板22B固定连接于所述导磁体21B。

如图14至图16所示,为本发明所述的无线发射器的第三个实施例的工作过程原理图。

如图14所示,在初始位置时,由于所述导磁体21B受到所述磁路系统10B中所述永磁体12B向下的吸力,同时,由于所述电路板22B与所述上凸轮201B固定在一起且所述电路板22B固定设置于所述导磁体21B,因此所述上凸轮201B在所述导磁体21B与所述永磁体12B的磁吸力作用下与所述下凸轮202B完全啮合。此时,所述线圈30B位于所述磁路系统中10B的所述磁隙14B中,为静止状态。

如图15所示,当所述下凸轮202B保持固定不动,而使用一外力F2圆周作用在所述上凸轮201B上时,所述上凸轮201B上的第一凸齿2012B沿着所述下凸轮202B上的第二凸齿2022B开始分离;当所述上凸轮201B上的所述第一凸齿2012B的所述第一上端20121B与所述下凸轮202B上的所述第二凸齿2022B的所述第二下端20222B相对应时,所述线圈30B脱离所述磁隙14B并且所述上凸轮201B与所述下凸轮202B之间的距离达到最大值。

如图16所示,过了齿的顶点后,所述导磁体21B受到所述磁路系统10B的磁力影响,继续快速旋转所述上凸轮201B时,致使所述上凸轮201B上的所述第一凸齿2012B和所述下凸轮202B上的所述第二凸齿2022B重新啮合,此时所述线圈30B会随着所述上凸轮201B的向下快速移动而重新落入所述磁隙14B中,并被所述磁隙14B中密布的磁感线进行快速切割。根据电磁感应原理,当所述上凸轮201B快速地向下移动而使所述线圈30B被所述磁隙14B中密布的磁感线快速切割时,会在所述线圈30B中产生一感应电流。所述感应电流能够驱动所述电路板22B进行相应的工作。

值得注意的是,在本发明所述的无线发射器的第三个实施例中,所述上凸轮201B和所述下凸轮202B的旋转方向可以根据实际情况进行调整,只要能使所述上凸轮201B和所述下凸轮202B沿着所述第一凸齿2012B和所述第二凸齿2022B进行圆周运动,进而带动所述线圈30B在所述磁隙14B中进行往复运动即可产生感应电流。

此外,在本发明所述的无线发射器的第三个实施例中,所述导磁体21B被具体实施为一铁板,本领域技术人员也可以根据实际情况确定所述导磁体21B的具体材料,比如也可以是和所述磁路系统10B磁极相反的磁性材料等,只要具备导磁的性能都属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。

本领域技术人员还可以根据客户需求或实际情况调整所述上凸轮201B和所述下凸轮202B之间的运动关系。换句话说,本领域技术人员可以设置所述上凸轮201B固定不动,所述下凸轮202B带着所述第二凸齿2022B沿着所述第一凸齿2012B相对于所述上凸轮201B进行圆周运动。也就是说,本领域技术人员可以将所述线圈30B设置为固定不动,所述磁路系统10B相对于所述线圈30B进行往复运动,进而产生所述感应电流。本发明所述的无线发射器的具体实施方式不以此为限,只要采用了与本发明相同或相似的技术方案,并且达到了与本发明相同或相似的技术效果,均属于本发明所述的无线发射器的保护范围之内。

在本发明所述的无线发射器的第三个实施例中,所述电路板22B为一高频无线发射电路板,所述高频无线发射电路板中电性连接有一电路板元件221B及一射频模块(RF射频模块)(图中未示出,下同),即所述动能发电装置中的所述线圈30B与所述高频无线发射电路板电性连接。当所述动能发电装置中的所述线圈30B因被所述磁隙14B中密布的磁感线切割而产生感应电流时,所述感应电流驱动所述带有所述电路板元件221B和所述RF射频模块的高频无线发射电路板发出高频无线电波,从而控制电子设备进行工作。

需要强调的是,在本发明所述的无线发射器的第三个实施例中,本领域技术人员可以根据实际情况对所述凸轮的形状和结构进行更改,比如椭圆形或环形等,只要能驱动所述线圈30B在所述磁隙14B中进行往复运动一产生所述感应电流,都属于本发明的保护范围之内,本发明的具体实施方式不以此为限。

相应地,在本发明的这个实施例中,其提供一动能发电方法,应用于为小型电子设备提供电源,例如典型的是应用于一无线开关,从而形成一无线自发电开关,该方法包括如下步骤:

所述上凸轮201B在外力作用下与所述下凸轮202B开始分离,驱动与其相连接的所述电路板22B移动,使组装于所述电路板22B的所述线圈30离开磁路系统10B的环形的所述磁隙14B预定距离;以及

在所述外力作用消失时,所述导磁体21B与所述磁路系统10B之间的磁性吸力使所述上凸轮201B和所述电路板22B自动复位并驱动所述线圈30B自动复位,其中所述线圈30B被所述磁路系统10B的磁感线切割产生感应电流以用于发电。

或者该方法包括如下步骤:

下凸轮202B在外力作用下与上凸轮201B开始分离,驱动与其相连接的磁路系统10B移动,使组装于所述电路板22B的线圈30B离开所述磁路系统10B的环形的磁隙14B预定距离;以及

在所述外力作用消失时,所述下凸轮202B自动复位以与所述上凸轮201B相啮合,并驱动所述磁路系统10B自动复位,使所述线圈30进入所述磁路系统10B的所述磁隙14B,其中所述线圈30A被所述磁路系统10B的磁感线切割产生感应电流以用于发电。

如图17至图21所示,为本发明所述的无线发射器的第四个实施例,本实施例与上述第一个实施例的区别在于,在本实施例中,所述无线发射器通过利用一跷板的上下运动带动所述线圈30C在所述磁路系统10C形成的所述磁隙14C中进行往复运动,从而产生感应电流,并通过所述感应电流带动所述电路板22C进行相应的发射工作。

具体地,如图17和图18所示,所述无线发射器包括一底板50、一动能发电装置和一电路板22C,所述动能发电装置固定于所述地板上并且能够产生一感应电流,所述电路板22C电性连接所述动能发电装置并且能够在所述感应电流的驱动下进行相应的发射工作。

详而言之,在本发明所述的无线发射器的第四个实施例中,所述驱动装置包括一驱动器,其在这个实施例中被具体实施为一跷板,所述跷板包括一第一端21C和一第二端21C’,所述底板50上固定设置有一支点503,所述支点503的两侧分别设置有两个安装座,以分别形成一第一凹槽501和一第二凹槽502,可以理解的是,所述凹槽501和凹槽502也可以凹设于所述底板50,本发明在这方面并不受到限制。在这个优选实施例中,所述无线发射器的所述动能发电装置包括一第一动能发电单元和一第二动能发电单元,所述第一动能发电单元和所述第二动能发电单元分别固定设置于所述支点503的两侧的所述第一凹槽501和所述第二凹槽502内。

所述第一动能发电单元包括一第一磁路系统10C、一第一线圈30C和一第一驱动装置20C,所述第一磁路系统10C具有一第一磁隙14C,所述第二动能发电单元包括一第二磁路系统10C’、一第二线圈30C’和一第二驱动装置20C’,所述第二磁路系统10C’具有一第二磁隙14C’,其中所述第一驱动装置20C能够带动所述第一线圈30C在所述第一磁路系统10C所形成的所述第一磁隙14C中进行往复运动,以产生一第一感应电流,所述第二驱动装置20C’能够带动所述第二线圈30C’在所述第二磁路系统10C’所形成的所述第二磁隙14C’中进行往复运动,以产生一第二感应电流。所述电路板22C电性连接所述第一线圈30C和所述第二线圈30C’,并通过所述第一感应电流和所述第二感应电流的驱动而进行相应的控制指令发射工作。可以理解的是,这个实施例中,两个所述驱动装置20C形成一个整体的驱动器结构,更具体地是以所述支点部503为支点运动的一跷板。两个所述动能发电单元可以对称地位于所述支点部503的两侧,也可以根据实际情况合理分配其位置,以达到相平衡的状态。例如,所述电路板22C固定于所述跷板左侧时,所述支点部503可能位置邻近左侧的所述第一动能发电单元。两个所述线圈30C和30C’的线圈数量和线径可以相同,也可能不同。

如图18所示,所述第一磁路系统10C包括一纵切面为U型的一圆柱形第一底导磁板11C、一第一永磁体12C和一第一顶导磁板13C,其中所述第一底导磁板11C固定设置与所述第一凹槽501内,所述第一永磁体12C和所述第一顶导磁板13C均为圆柱形且所述第一永磁体12C设置于所述第一底导磁板11C的内部,所述第一顶导磁13C板贴合于所述第一永磁体12C的顶表面,以使所述第一磁路系统10C中能形成磁感线密布的所述第一磁隙14C。相应地,所述第二磁路系统10C’包括一纵切面为U型的一圆柱形第二底导磁板11C’、一第二永磁体12C’和一第二顶导磁板13C’,其中所述第二底导磁板11C’固定设置于所述第二凹槽502内,所述第二永磁体12C’和所述第二顶导磁板13C’均为圆柱形且所述第二永磁体12C’设置于所述第二底导磁板11C’的内部,所述第二顶导磁板13C’贴合于所述第二永磁体12C’的顶表面,以使所述第二磁路系统10C’中能形成磁感线密布的所述的第二磁隙14C’。可以理解的是,上述磁隙14C和14C’为环形,上述导磁板的形状并不受限于上述圆柱形。

所述第一线圈30C为O型且固定设置于所述第一驱动装置20C的底表面,所述第一驱动装置20C能够带动所述第一线圈30C进入所述第一磁路系统10C所形成的所述第一磁隙14C中。相应地,所述第二线圈30C’为O型且固定设置于所述第二驱动装置20C’的底表面,所述第二驱动装置20C’能够带动所述第二线圈30C’进入所述第二磁路系统10C’所形成的所述第二磁隙14C’中。

换句话说,在本发明所述的无线发射器的第四个实施例中,所述第一驱动装置20C是通过所述跷板的所述第一端21C带动所述第一线圈30C在所述第一磁路系统10C所形成的所述第一磁隙14C中进行往复运动,所述第二驱动装置20C’是通过所述跷板的所述第二端21C’带动所述第二线圈30C’在所述第二磁路系统10C’所形成的所述第二磁隙14C’中进行往复运动。

如图17至图21所示,在本发明所述的无线发射器的第四个实施例中,所述电路板22C固定设置于所述第一驱动装置20C的顶表面。可以理解的是,所述电路板22C也可以位于所述第二驱动装置20C’的顶表面,或者是位于所述跷板的中间,或者可以是固定于所述底板50。所述第一驱动装置20C和所述第二驱动装置20C’相互连接形成所述跷板,所述支点部503位于所述跷板的底表面的中部,所述跷板的两端分别对称设置有一第一凸起211C和一第二凸起211C’,所述第一凸起211C位于所述第一驱动装置20C的左侧边,所述第二凸起211C’位于所述第二驱动装置20C’的右侧边,以使所述跷板的任一端采用相同的力度就能使另一端翘起来。可以理解的是,上述凸起211C和211C’的设置是方便操作,使用者也可能直接按压或抬起所述跷板的两端即可,本发明这方面并不受到限制。

如图19所示,当采用一外力按下所述跷板中的第一凸起211C时,所述第一驱动装置20C在所述外力F3的驱动下会向下运动,而所述第二驱动装置20C’在所述支点部503和所述外力F3的反作用下会翘起来。换句话说,所述第一驱动装置20C和所述第二驱动装置20C’能够以所述支点部503为中心,在外力F3的作用下沿图示箭头方向进行上下摆动。两个所述线圈30C和30C’的输出端都连接于所述电路板22C,并且两个所述线圈30C和30C’可以是串联,也可以是并联。

如图20和图21所示,为本发明所述的无线发射器的第四个实施例的工作过程原理图。图中箭头分别指示左侧的所述线圈30C向下运动时,右侧的所述线圈30C’向上运动;而右侧的所述线圈30C’向下运动时,左侧的所述线圈30C向上运动。

如图20所示,初始时,所述跷板一侧低一侧高,即所述第一驱动装置20C或所述第二驱动装置20C’中的任一端会与所述第一磁路系统10C或所述第二磁路系统10C’接触,并带动所述第一线圈30C进入所述第一磁路系统10C所形成的第一磁隙14C中或带动所述第二线圈30C’进入所述第二磁路系统10C’所形成的所述第二磁隙14C’中。在本发明的该工作过程原理图中,初始位置为第一驱动装置20C带动所述第一线圈30C进入第一磁路系统10C形成的所述第一磁隙14C中。

当对所述第二凸起211C’施加一向下的外力F3’时,所述第二动能发电单元中的所述第二驱动装置20C’在所述外力F3’的驱动下快速向下运动,同时所述第二驱动装置20C’带动所述第二线圈30C’快速向下运动,从而快速进入所述第二磁路系统10C’所形成的所述第二磁隙14C’中,并被所述第二磁隙14C’中密闭的磁感线进行快速切割,从而产生一第二感应电流。

如图21所示,与此同时,所述第一驱动装置20C在所述外力F3’和所述支点部503的共同作用下进行与所述第二驱动装置20C’方向相反的运动,即此时第一驱动装置20C向上运动,所述第一线圈30C在所述第一驱动装置20C的带动下离开所述第一磁路10C所形成的所述第一磁隙14C,从而所述第一线圈30C离开所述第一磁路系统10C中的所述第一磁隙14C时,势必被所述第一磁隙14C中密布的磁感线切割,因此产生一第一感应电流。

此时,在所述第一线圈30C离开所述磁隙14C的情况下,即图中左侧跷起状态下,再对所述第一凸起211C施加一向下外力F3,那么所述第一驱动装置20C在所述外力F3的驱动下会快速向下运动,同时带动所述第一线圈30C快速进入所述第一磁路系统10C中的所述第一磁隙14C中,从而导致所述第一线圈30C被所述第一磁隙14C中密布的磁感线快速切割,从而再次产生所述第一感生电流。

而所述第二驱动装置20C’在所述外力F3和所述支点部503的共同作用下,会快速向上运动,同时带动所述第二线圈30C’快速离开所述第二磁路系统10C’中的第二磁隙14C’,并被所述第二磁隙14C’中密布的磁感线快速切割,从而会再次产生所述第二感应电流。

如上所述,每按一次所述跷板的任一侧,都会产生一次电能,之后,如果再次按下所述跷板的相反一侧,则两个线圈又会产生一次电能,即所述跷板每被按下一次,本发明所述的无线发射器都能产生一次电能,通过所述第一驱动装置20C和所述第二驱动装置20C’如此往复的不断运动,从而不断产生所述第一感应电流和所述第二感应电流。由于所述电路板22C电性连接所述第一线圈30C和所述第二线圈30C’,因此所述第一感应电流和所述第二感应电流能够驱动所述电路板22C进行相应的无线发射工作。相应地,本领域技术人员可以设计所述电路板22C的电路模块,以将串联或并联的所述第一和第二线圈30C和30C’产生的所述感应电流用来供电。

值得注意的是,在本发明的第四个实施例中,所述电路板22C是设置于所述第一驱动装置20C的顶表面,并且所述第一线圈30C及所述第二线圈30C’均与所述电路板22C电性连接,从而为所述电路板22C提供电流驱动。本领域技术人员也可以根据实际情况将所述第一线圈30C和所述第二线圈30C’分别连接不同的电路板22C,从而将所述第一动能发电装置产生的感应电流和所述第二动能发电装置产生的感应电流分路输出,从而驱动不同的电路板进行相应的无线发射工作。只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。

在本发明所述的无线发射器的第四个实施例中,所述电路板22C为一高频无线发射电路板,所述高频无线发射电路板中电性连接有一电路板元件221C及一射频模块(RF射频模块)(图中未示出,下同),即所述动能发电装置中的所述第一线圈30C和所述第二线圈30C’分别与所述高频无线发射电路板电性连接。当所述动能发电装置中的所述第一线圈30C和所述第二线圈30C’因被所述第一磁隙14C和所述第二磁隙14C’中密布的磁感线切割而产生感生电流时,所述感生电流驱动所述带有所述电路板元件221C和所述RF射频模块的高频无线发射电路板发出高频无线电波,从而控制电子设备进行工作。

可以理解的是,在其他实施例中,也可能是两个所述线圈30C和30C’固定不动,而通过跷板使两个所述磁路系统10C和10C’运动,从而使两个所述线圈30C和30C’中产生感应电流。

另外,本发明的这个实施例中,所述跷板的两端也可能是由导磁性材料制成或者额外增加导磁体如铁板,从而在所述线圈30C和30C’移动过程中,所述磁路系统10C和10C’分别对所述跷板的两端具有磁性吸力,从而用于保持平衡,并且使所述跷板的两端分别会加速向下移动。

相应地,在本发明的这个实施例中,其提供一动能发电方法,应用于为小型电子设备提供电源,例如典型的是应用于一无线开关,从而形成一无线自发电开关,该方法包括如下步骤:

在初始状态,位于所述跷板一侧的所述第一线圈30C插入所述第一磁路系统10C的第一磁隙14C,而位于所述跷板相反的另一侧的所述第二线圈30C’位于所述第二磁路系统10C’的所述第二磁隙14C’之外;

当所述跷板另一侧被按压时,所述第二线圈30C’插入所述第二磁路系统10C’的所述第二磁隙14C’,所述跷板一侧的所述第一线圈30C离开所述第一磁路系统10C的所述第一磁隙14C,从而所述第一和第二线圈30C和30C’分别产生一次感应电流;以及

当所述跷板一侧被按压时,所述第一线圈30C重新插入所述第一磁路系统10C的所述第一磁隙14C时,所述跷板另一侧的所述第二线圈30C’离开所述第二磁路系统10C’的所述第二磁隙14C’,从而所述第一和第二线圈30C和30C’分别产生另一次感应电流。

此外在本发明所述的无线发射器的第四个实施例中,所述感应电动势与所述第一线圈30C以及所述第二线圈30C’的圈数、所述第一磁隙14C及所述第二磁隙14C’的磁场强度以及所述跷板左右两侧的按压速度有关,其计算公式分别为:

E=-n*ΔΦ/Δt

式中:

E:感应电动势

n:线圈的匝数

ΔΦ/Δt:磁通量的变化率

本领域技术人员可以根据需求对本发明所述的无线发射器的具体实施方式进行变形,只要是具备驱动所述线圈运动的机构,能使所述线圈在所述磁隙中进行往复运动的结构,或者是通过所述磁隙中的磁感线切割所述线圈而产生电流的机构,都属于本发明的保护范围,本发明的具体实施方式不以此为限。

作为本发明所述的动能发电装置的一种应用,本领域技术人员可以根据实际情况将所述动能发电装置应用于不同的场合,比如所述动能发电装置可以被用于一按压式无线自发电开关中,当其开关板被按压时,所述开关板的运动会带动所述动能发电装置将机械能转化为电能,以驱动一控制器进行工作,从而所述控制器进一步地以无线控制的方式去控制电子设备。

此外,本领域技术人员还可以根据实际需求开发所述动能发电装置的应用,比如将所述动能发电装置与一遥控器结合应用等,当所述遥控器上的按钮被按压时,该按压动作会带动所述动能发电装置将机械能转化为电能,以驱动所述遥控器进行工作。只要采用了与本发明所述的动能发电装置相同或相似的技术方案,并且达到了与本发明相同或相似的技术效果,均属于本发明的保护范围之内,本发明的具体应用方式不以此为限。

可以理解的是,根据上述这些优选实施例,本发明进一步包括一动能发电方法,所述动能发电方法包括以下步骤:

驱动一线圈在一环形的磁隙中进行往复运动从而因为切割磁感线而使所述线圈产生感应电流以用于发电。

优选地,在上述步骤中,所述线圈可以是通过磁吸力与外力的配合在所述磁隙中进行往复运动。

作为选择,在上述步骤中,所述线圈是通过弹力与外力的配合在所述磁隙中进行往复运动。

所述线圈在所述磁隙中的运动速度可以根据用户对于电能的需求量的大小来决定,本发明所述的动能发电方法的具体实施方式对此不限制,只要是采用与本发明相同或相似的技术手段,解决了与本发明相同或相似的技术问题,并且达到了与本发明相同或相似的技术效果,均属于本发明的保护范围之内。

作为优选,在本发明所述的动能发电方法的第一个实施例中,所述线圈是通过一驱动装置在所述磁隙中进行往复运动。所述驱动装置可以通过任何方式驱动所述线圈在所述磁隙中进行往复运动以产生电流,比如手动式驱动、机械外力驱动方式等,本领域技术人员可以根据客户要求或者实际情况对所述驱动装置驱动所述线圈的方法进行确定,本发明所述的动能发电方法的具体实施方式并不以此为限,只要与本发明采用了相同或近似的技术方案,并且达到了与本发明相同或相似的技术效果,均属于本发明的保护范围之内。

作为本发明更进一步的揭露,所述驱动装置可以通过上下运动或者圆周运动等方式,驱动所述线圈在所述磁隙中进行往复运动。比如通过弹片驱动、跷板驱动或者凸轮驱动等方式驱动所述线圈在所述磁隙中进行往复运动。

具体地,在通过所述弹片驱动所述线圈在所述磁隙中进行往复运动的方法中,是将所述线圈与所述弹片固定,然后利用所述弹片的弹力使所述线圈在所述磁隙中进行往复运动,以实现发电的目的。

而在通过所述跷板驱动所述线圈在所述磁隙中进行往复运动的方法中,是通过在所述跷板的中部设置一支点,所述跷板在所述支点的作用下双侧都会进行运动,再将所述线圈与所述跷板固定在一起,那么当所述跷板在外力作用下进行上下运动的时候,所述线圈也会在所述跷板的带动下在所述磁隙中进行往复运动,以实现发电的目的。

值得注意的是,由于所述跷板的特殊性,只要有外力作用在所述跷板的任一侧,所述跷板的双侧都会进行相应的运动,只是运动方向相反而已,因此当利用跷板驱动所述线圈在所述磁隙中进行运动时,可以在所述跷板的双侧都设置所述线圈和所述磁隙,那么所述跷板的往复运动能带动其两侧的线圈都能产生电流。换句话说,在利用所述跷板驱动所述线圈在所述磁隙中进行往复运动,从而产生感应电流的发电方法中,所述跷板能够产生双倍的感生电流,从而提高所述动能发电方法的发电效率。

在利用所述凸轮驱动所述线圈在所述磁隙中进行往复运动的方法中,是通过将所述凸轮设置成一对相互啮合的上凸轮和下凸轮,所述上凸轮上和所述下凸轮上分别设置有连续的凸齿,所述上凸轮和所述下凸轮是通过所述凸齿进行啮合的,且所述上凸轮和所述下凸轮之间能够沿着所述凸齿进行相对旋转。而所述线圈和所述磁隙分别与所述上凸轮和所述下凸轮固定,因此,随着所述上凸轮和所述下凸轮之间的相对圆周运动,会带动所述线圈随着所述凸齿的圆周旋转而进行上下运动,进而实现所述线圈在所述磁隙中的往复运动,以实现发电的目的。

本领域技术人员也可以根据客户需求或实际情况采用其他驱动方法,只要该方法能驱动所述线圈在所述磁隙中进行往复运动,并且该方法能实现与本发明相同或近似的技术效果,均属于本发明所述的动能发电方法的保护范围之内,本发明所述的动能发电方法的具体实施方式不以此为限。

此外,在本发明所述的动能发电方法中,所述磁隙是通过设置一磁路系统的方法获得,并且所述磁隙为圆环形。作为本发明所述的动能发电方法的一种变形,本领域技术人员也可以通过其他方式设置一磁隙,并且所述磁隙的形状和参数也可以根据实际要求进行确定,只要是采用了与本发明相同或相似的技术方案,并且达到了与本发明相同的技术效果,均属于本发明的保护范围之内。

值得注意的是,在本发明所述的动能发电方法中,所述线圈在所述磁隙中进行往复运动既包括设置线圈不动、磁隙运动的方法,也包括线圈运动、磁隙不动的方法,只要能让所述线圈在所述磁隙中进行相对的往复运动并产生感生电流即可,本领域技术人员可以根据实际情况所述线圈和所述磁隙的相对运动方法,只要采用了与本发明相同或近似的技术方案,并且达到了与本发明相同或近似的技术效果即可,都属于本发明的保护范围之内,本发明的具体实施方式不以此为限。

本发明进一步包括一动能发电装置的制造方法,所述动能发电装置的制造方法包括以下步骤:

设置一磁路系统,其具有环形的一磁隙;

设置一线圈,所述线圈能够被驱动在所述磁隙中进行往复运动。

进一步地,作为本发明的一种改进,本发明所述的动能发电装置的制造方法进一步包括一如下步骤:

设置一驱动装置,所述驱动装置驱动所述线圈在所述磁隙中进行往复运动。

优选地,在本发明所述的动能发电装置的制造方法中,设置所述驱动装置通过上下运动驱动所述线圈在所述磁隙中进行往复运动。

更进一步地,在本发明所述的动能发电装置的制造方法中,所述驱动装置中被设置一弹片,利用所述弹片驱动所述线圈在所述磁隙中进行往复运动。具体地,在本发明所述的动能发电装置的制造方法中,是将所述线圈与所述弹片固定连接,因此所述线圈能够随着所述弹片的弹力进行上下运动,进而在所述磁隙中进行往复运动,以产生感生电流。

作为选择,在本发明所述的动能发电装置的制造方法中,所述驱动装置中被设置有一跷板,通过所述跷板驱动所述线圈在所述磁隙中进行往复运动。具体地,所述跷板的中部设置有一支点部,通过所述支点部,所述跷板两端能够在外力的作用下进行上下运动,所述线圈与所述跷板固定在一起,因此所述线圈能够随着所述跷板的两端的上下运动而在所述磁隙中进行往复运动,从而产生感应电流。

值得注意的是,由于所述跷板两端在所述支点部的作用下是同时进行双向运动的,只是所述跷板的两端运动方向相反。换言之,外力作用一次,就可以实现所述跷板的两端进行相反方向的同时运动,本领域技术人员可以在所述跷板的两端分别设置所述线圈和所述磁隙,再将所述两个线圈分别与所述跷板的两端固定,如此,外力在所述跷板上作用一次,就可以带动所述跷板两端的线圈同时在所述磁隙中进行运动。重复相同的外力,即可实现所述跷板两端的线圈分别在所述磁隙中进行往复运动,进而分别产生感应电流。也就是说,在本发明所述的动能发电装置的制造方法中,若设置跷板作为驱动装置驱动所述线圈在所述磁隙中进行往复运动,那么相同的作用力,在其他条件也相同的前提下,可以产生双倍的感生电流,从而能够提高所述动能发电装置的发电效率。

作为选择,所述驱动装置也可以通过旋转运动驱动所述线圈在所述磁隙中进行往复运动。

更进一步地,在本发明所述的动能发电装置的制造方法中,在所述驱动装置中设置一凸轮,通过所述凸轮的圆周运动驱动所述线圈在所述磁隙中进行往复运动。具体地,所述凸轮被设置分为一对相互啮合的上凸轮和下凸轮,所述上凸轮和所述下凸轮上分别设置连续的凸齿,通过所述凸齿的啮合使所述上凸轮和所述下凸轮实现啮合,且所述上凸轮和所述下凸轮能够沿着所述凸齿进行相对的圆周运动。由于所述凸齿是齿状的,因此在所述上凸轮和所述下凸轮沿着所述凸齿进行相对的圆周运动时,所述上凸轮和所述下凸轮也会因为所述凸齿的形状而进行相对的上下运动。

在本发明所述的动能发电装置的制造方法的第一个实施例中,所述线圈被设置为与所述上凸轮固定连接,所述磁隙被设置为与所述下凸轮固定连接,因此当所述上凸轮和所述下凸轮沿着所述凸齿进行圆周运动时,所述线圈也会随着所述上凸轮沿着所述凸齿形状进行上下运动,从而实现在所述磁隙中的往复运动,进而产生感应电流。

值得注意的是,在本发明所述的动能发电装置的制造方法中,只要设置所述线圈和所述磁隙,且所述线圈能够在所述磁隙中进行往复运动即可,本领域技术人员可以根据客户要求或这实际情况设置所述线圈和所述磁隙的相对运动关系,比如设置所述磁隙不动,所述线圈在所述磁隙中进行往复运动的方式,也可以设置所述线圈不动,所述磁隙相对于所述线圈进行往复运动的方式,只要与本发明采用了相同或相似的技术方案,并且达到了与本发明相同或相似的技术效果,都属于本发明的保护范围之内,本发明的具体实施方式不以此为限。

在本发明所述的动能发电装置的制造方法中,所述磁隙是通过以下步骤形成:

设置一纵切面为U型的中空柱形底导磁板;

设置一圆形磁铁和一圆形顶导磁板,其中磁铁和所述顶导磁板的内径小于所述底导磁板的外径;

将所述磁铁和所述顶导磁板设置于所述底导磁板内,以形成一密布磁感线的所述磁隙。

此外,本领域技术人员可以根据实际情况利用其他方式设置所述磁隙,本发明所述的动能发电装置的制造方法的具体实施方式不以此为限。因此,本发明所述的动能发电装置及无线发射器结构简单、成本低廉,而且在发电过程中安全可靠,对环境也无污染,能够最大程度地实现发电要求和环境要求。而本发明所述的动能发电方法操作过程简单方便,非常有利于实现普通电子设备的电流需求。本发明所述的无线发射器结构简单、性能可靠,成本低廉。

本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1