电力电子控制器和电动汽车的制作方法

文档序号:16243585发布日期:2018-12-11 23:20阅读:163来源:国知局
电力电子控制器和电动汽车的制作方法

本发明属于交流电机驱动控制技术领域,涉及用于为交流电机提供交流输入并控制所述交流电机的电力电子控制器(powerelectronicunit,peu)。

背景技术

大功率的交流电机(例如感应电机或永磁同步电机)在诸如电动汽车领域广泛应用并用作驱动电机,随着电动汽车的不断普及,市场对电机驱动系统的功率密度、成本、安全性等方面提出更高的要求。

驱动电机的电机驱动系统中,使用电力电子控制器peu对驱动电机转速进行控制调节,peu同时将例如动力电池输入的直流高压电逆变为交流高压电,作为驱动电机的电流输入。peu主要功能包括如下两点:

第一,作为动力电池与驱动电机之间的能量传输装置,其具有逆变功能,也即dc-ac转换功能,例如,其可以将动力电池输入的高压直流电转换为三相高压交流电传输给驱动电机;

第二,作为控制信号接口电路与驱动电机控制电路,接收由整车控制器vcu(vehiclecontrolunit)发送的信号以及电机温度、速度、功率等信号,做出相应反馈,再将信号反馈给vcu和驱动电机,从而起到驱动电机控制作用。

目前,电力电子控制器采用单一的传统三相全桥逆变功率模块,对于例如功率较大的电动汽车的驱动电机来说,容易受到功率器件最大允许电流的限制,例如,目前市场中的peu峰值功率不超过200kw,峰值相电流不超过500a,因此,驱动电机的功率输出将受到限制;并且,单一的传统三相全桥逆变功率模块,功率器件的选型及成本都不好控制,过大的功率导致体积和成本将难以下降,冷却效率也较低。



技术实现要素:

本发明的目标是公开一种解决方案,该解决方案消除或至少减轻现有技术方案中出现的如上所述的缺陷。本发明的目标也是实现下面的优点的一个或多个:

-提高peu的功率输出和电流输出能力;

-提高peu的可靠性;

-提高peu的散热效率;

-提高peu的结构紧凑性。

本发明提供以下技术方案。

按照本发明的一方面,提供一种电力电子控制器,用于为交流电机提供交流输入并控制所述交流电机,其包括:

并行设置的第一逆变功率模块总成和第二逆变功率模块总成;和

夹置于所述第一逆变功率模块总成和第二逆变功率模块总成之间的冷却夹层;

其中,所述第一逆变功率模块总成和第二逆变功率模块总成从所述电力电子控制器的同一高压直流输入端子并联地接入外部高压直流电源、并且并行地输出交流输出至其交流输出端;

在所述冷却夹层中布置有所述第一逆变功率模块总成和第二逆变功率模块总成共用的冷却流道。

根据本发明一实施例的电力电子控制器,其中,在所述电力电子控制器的内部设置有与所述高压直流输入端子电连接的用于将所述外部高压直流电源均分为两路直流输入的直流汇流排总成;所述直流汇流排总成具有对应所述两路直流输入分别设置的两路并行的第一直流排和第二直流排,所述第一逆变功率模块总成和第二逆变功率模块分别电连接于所述第一直流排和第二直流排。

根据本发明一实施例的电力电子控制器,其中,所述直流汇流排总成还包括滤波电容和滤波电感。

根据本发明一实施例的电力电子控制器,其中,第一逆变功率模块总成和第二逆变功率模块总成各自包括:

电容;

开关功率模块;和

驱动电路;

其中,所述第一逆变功率模块总成和第二逆变功率模块总成的所述开关功率模块上分别设置的散热部件相向地至少部分伸入所述冷却流道中。

可选地,所述第一逆变功率模块总成和第二逆变功率模块总成的电容分别贴附在所述冷却夹层的上表面和下表面上,或者至少部分地设置在所述冷却夹层的冷却流道中。

根据本发明一实施例的电力电子控制器,其中,所述第一逆变功率模块总成包括用于构成所述交流输出端的第一交流输出汇流排接口,所述第二逆变功率模块总成包括用于构成所述交流输出端的第二交流输出汇流排接口。

根据本发明一实施例的电力电子控制器,其中,对应所述第二交流输出汇流排接口/第一交流输出汇流排接口设置有用于构成所述交流输出端的转接汇流排,其中,所述转接汇流排的第一端与所述第二交流输出汇流排接口/第一交流输出汇流排接口连接。

根据本发明一实施例的电力电子控制器,其中,所述转接汇流排的高度等于所述第一交流输出汇流排接口和第二交流输出汇流排接口的高度差,所述转接汇流排的第二端以及所述第一交流输出汇流排接口/所述第二交流输出汇流排接口在同一高度上按直线地布置。

根据本发明一实施例的电力电子控制器,其中,对应第一交流输出汇流排接口/第二交流输出汇流排接口设置有用于构成所述交流输出端的第一转接输出汇流排,对应所述转接汇流排的第二端设置有用于构成所述交流输出端的第二转接输出汇流排,第一转接输出汇流排和第二转接输出汇流排按直线地并排地布置。

根据本发明一实施例的电力电子控制器,其中,所述交流输出端还包括设置在所述第一转接输出汇流排和第二转接输出汇流排上的滤波电感。

根据本发明一实施例的电力电子控制器,其中,所述第一逆变功率模块总成和第二逆变功率模块总成各自还包括电流传感器。

根据本发明一实施例的电力电子控制器,其中,所述交流输出端具有对应于第一逆变功率模块总成的三根相线第一三相交流输出以及对应于第二逆变功率模块总成的第二三相交流输出的三根相线。

可选地,所述第一三相交流输出对应的三根相线和第二三相交流输出对应的三根相线对应叠加地电连接在三相交流电机的三相绕组上。

可选地,所述第一三相交流输出和第二三相交流输出之间存在相差时,所述第一三相交流输出对应的三根相线和第二三相交流输出对应的三根相线分别电连接在六相交流电机的六相绕组上。

根据本发明一实施例的电力电子控制器,其中,所述电力电子控制器被构造为大致箱体结构,所述第一逆变功率模块总成、冷却夹层和第二逆变功率模块总成分别用于形成所述箱体结构的上层、中间层和下层。

根据本发明一实施例的电力电子控制器,其中,所述冷却夹层被配置为所述箱体结构的主箱体的一部分,所述第一逆变功率模块总成和第二逆变功率模块总成对称地分布在所述冷却夹层的上下两侧。

根据本发明一实施例的电力电子控制器,其中,所述电力电子控制器还包括低压控制电路和屏蔽板,其中,所述屏蔽板设置在所述低压控制电路和所述第一逆变功率模块总成或第二逆变功率模块总成之间用于屏蔽高压电流信号的电磁干扰。

按照本发明的又一方面,提供一种电动汽车,其包括有用于输出动力的交流电机,和以上所述及的电力电子控制器。

本发明的电力电子控制器peu具有并行设置的第一逆变功率模块总成和第二逆变功率模块总成,并且它们共用冷却夹层中的冷却流道,提高peu的功率输出和电流输出能力的同时,可以提高其工作可靠性,并且,具有较好的散热效率,整体结构紧凑。

附图说明

从结合附图的以下详细说明中,将会使本发明的上述和其他目的及优点更加完整清楚,其中,相同或相似的要素采用相同的标号表示。

图1和图2是按照本发明一实施例的电力电子器件的外部立体结构示意图。

图3是按照本发明一实施例的电力电子器件的横截面图。

图4是按照本发明一实施例的电力电子器件的内部的直流汇流排总成与逆变功率模块总成的结构示意图。

图5是按照本发明一实施例的电力电子器件的内部的直流汇流排总成的结构示意图。

图6是按照本发明一实施例的电力电子器件的逆变功率模块总成的局部结构示意图。

图7是按照本发明一实施例的电力电子器件的逆变功率模块总成的交流输出端的结构示意图。

图8是按照本发明一实施例的电力电子器件的内部结构示意图,其中示出了低压控制电路和屏蔽板。

图9是按照本发明一实施例的电力电子器件的内部的冷却流道示意图。

图10是按照本发明一实施例的电力电子器件的冷却原理示意图。

具体实施方式

现在将参照附图更加完全地描述本发明,附图中示出了本发明的示例性实施例。但是,本发明可按照很多不同的形式实现,并且不应该被理解为限制于这里阐述的实施例。相反,提供这些实施例使得本公开变得彻底和完整,并将本发明的构思完全传递给本领域技术人员。

下面的描述中,为描述的清楚和简明,并没有对图中所示的所有多个部件进行详细描述。附图中示出了本领域普通技术人员为完全能够实现本发明的多个部件,对于本领域技术人员来说,许多部件的操作都是熟悉而且明显的。

在以下的说明中,为方便说明,将电力电子控制器的高的方向定义为z方向,电力电子控制器的长的方向定义为x方向,垂直于z方向和x方向的方向,即电力电子控制器的宽的方向,定义为y方向。需要理解,这些方向的定义是用于相对于的描述和澄清,其可以根据电力电子控制器的方位的变化而相应地发生变化。

在以下实施例中,在没有特殊说明的情况下,“上”和“下”的方位术语是基于z方向来定义的;并且,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据稳定装置所安装的方位的变化而相应地发生变化。

以下结合图1至图10对本发明一实施例的电力电子控制器peu10进行详细示例说明。

peu10示例地应用于驱动电动汽车(包括纯电动汽车和混合动力汽车)的交流电机,其能够为交流电机提供大功率的三相高压交流输出(u1、v1和w1,u2、v2和w2),并提供较大的峰值功率和峰值电流输出。

如图1和图2所示,peu10整体地被设置为大致为方形的箱体结构11,其外部具有高压直流输入端子101,其用于接入高压直流电源,例如,两个高压直流输入端子101分别连接动力电池包的正负输出端;并且,peu10外部具有对应内部的冷却流道310设置的出入口301,用于冷却的液体(例如水)可以从出入口301循环地流进和流出。peu10的外部结构的具体形状设计不是限制性的,其可以根据其安装在例如电动汽车上的位置等因素来设计其形状。在其后的描述中,将理解到,本发明实施例的具有箱体结构11的peu10整体具有结构紧凑的优点。

peu10内部主要地设置有逆变功率模块总成200和逆变功率模块总成400,两个逆变功率模块总成200和400主要用于实现从dc-ac的转换;从电学连接结构上看,它们的输入端同时并联地接入外部高压直流电源,并且,逆变功率模块总成200和400并行输出三相交流u1、v1和w1、以及三相交流u2、v2和w2;从结构上来看(如图3所示),逆变功率模块总成200和400可以并行地设置,它们中间设置冷却夹层300,这样,逆变功率模块总成200、冷却夹层300和逆变功率模块总成400分别用于形成箱体结构11的上层、中间层和下层。冷却夹层300对应的中间层可以是例如铝合金形成的箱体结构11的主箱体的一部分,主箱体作为箱体结构11的主体,其可以一体地形成并用于固定peu10所包括的其他各个部件,其具有一定的强度和导热性。对应夹置在逆变功率模块总成200和400之间的主箱体部分的内部可以形成冷却液可以循环流动的冷却流道310,从而形成了逆变功率模块总成200和400共用的冷却夹层300,其可以同时对逆变功率模块总成200和400进行冷却,冷却效率高,并且,在冷却结构上可以实现更紧凑地布置。

在一实施例中,逆变功率模块总成200和400均具有大致相似的如4和图6所示的相似的结构,它们上下对称地分布在冷却夹层300的上下两侧,并且分别具有用于提高散热效率的散热部件221和421,散热部件221和421可以是容易导热的柱体,如图3、图7和图9所示,逆变功率模块总成200上的散热部件221和逆变功率模块总成400上的散热部件421相向设置,并且至少部分伸入它们共用的冷却夹层300的冷却流道310中,从而提高对逆变功率模块总成的散热效率。

peu10的冷却原理如图10所示,逆变功率模块总成200的核心需要冷却的部件是大功率的开关功率模块220,其主要发热元件是开关功率模块220的功率开关元件(例如igbt)222;同样地,逆变功率模块总成400的特别需要冷却的部件是大功率的开关功率模块420,其主要发热元件是开关功率模块420的功率开关元件(例如igbt)422。冷却流道310中液体按照如图10示意的方向循环流动,从而同时带走功率开关元件222和422所散发的热量,因此,一个冷却夹层300同时能为两个逆变功率模块总成提供散热,从而提高散热效率。

如图3和图4所示,peu10的内部还设置有与高压直流输入端子101电连接的直流汇流排总成100,直流汇流排总成100用于将外部高压直流电源(例如动力电池包的高压直流输出)均分为两路直流输入,从而逆变功率模块总成200和逆变功率模块总成400同时具有相同的直流输入。直流汇流排总成100具有对应两路直流输入分别设置的两路并行的第一直流排120和第二直流排140,每个直流排120或140具有两个端子,其分别电连接两个直流输入端子101,即分别电连接正负直流输入端子;两路第一直流排120和第二直流排140通过并行设置来实现对直流汇流排总成100的直流输入进行分流。逆变功率模块总成200和逆变功率模块400分别电连接于第一直流排120和第二直流排140,从而为逆变功率模块总成200和逆变功率模块400分别接入独立的一路直流输入电源。第一直流排120和/或第二直流排140具体可以为直流铜排,第一直流排120和第二直流排140具有相同的结构设置并采用相同的材料,例如第一直流排120和第二直流排140具有相同的横截面积。

在一实施例中,如图5所示,直流汇流排总成100还包括滤波电容110和滤波电感130。滤波电容110例如可以是x电容和y电容,其可以对高压直流输入进行滤波处理,保证输入电流稳定可靠;滤波电感130具体可以是铁氧体电感等电感器件,其可以将来自动力电池包的高压直流输入的直流高压电杂波进行过滤,保证peu10的emc性能。

如图3、4和图7所示,逆变功率模块总成200主要包括电容210、开关功率模块220和驱动电路230;逆变功率模块总成400也具有类似的结构,其主要包括电容410、开关功率模块420和驱动电路430。其中,电容210和410可选地为薄膜电容,其可分别跨接在每路直流输入的两端,从而形成dc-link电容,因此,也被称为dc联接电容器。

由于电容210和410在工作时,可能在其上产生纹波电流而发热,因此,在一实施例中,可以将电容210和410分别贴附在冷却夹层300的上表面和下表面上,或者将电容210和410的至少以部分直接设置在冷却流道310中,从而利用冷却夹层300为电容210和410散热降温。

开关功率模块220和420在进行逆变工作过程会产生大量的热量并通过冷却夹层300液冷。开关功率模块220和420可以同时工作输出三相交流电,因此,提高了peu10的功率输出和电流输出能力,容易满足电动汽车中的交流电机的大功率输出要求。在一实施例中,该peu10的额定功率可以达到60kw、峰值功率可以达到240kw、峰值电流可以达到930a。并且,如果开关功率模块220和420中的一个发生故障或失效,另一个可以继续工作并提供一定功率交流输出,因此,交流电机可以在相对较低功率条件下继续驱动电动汽车行驶,可靠性得到提高,有利于防止车辆抛锚等情况发生。

开关功率模块220和420可以包括例如三个逆变子模块来逆变形成3相交流输出。需要说明的是,如果开关功率模块220和420需要输出除3相以外的交流输出,可以通过设置逆变子模块的个数来调整输出相的个数。每个逆变子模块是用的功率开关元件222和422可以但不限于为igbt(绝缘栅双极型晶体管)。

继续如图1和图3所示,peu10还具有交流输出端24,其具有对应两个逆变功率模块总成的两套交流输出汇流排接口,即第一交流输出汇流排接口240和第二交流输出汇流排接口440,如图7所示,第一交流输出汇流排接口240对应于开关功率模块220设置,第二交流输出汇流排接口440对应于开关功率模块420设置,第一交流输出汇流排接口240对应作为逆变功率模块总成200的三相交流输出端、并且三个接口分别输出u1相、v1相和w1相,第二交流输出汇流排接口440对应作为逆变功率模块总成400的三相交流输出端并且三个接口分别输出u2相、v2相和w2相。

在一实施例中,如图4和图7所示,由于逆变功率模块总成200和逆变功率模块总成400是在z方向上上下平行布置,因此,它们对应的第一交流输出汇流排接口240和第二交流输出汇流排接口440在z方向上存在高度差。为克服该高度差,如图4、图7和图8所示,对应第二交流输出汇流排接口440设置有用于构成交流输出端24的转接汇流排442,其中,转接汇流排442的第一端与第二交流输出汇流排接口440连接;转接汇流排442的高度基本等于第一交流输出汇流排接口240和第二交流输出汇流排接口440的高度差,从而,转接汇流排442的第二端以及第一交流输出汇流排接口240在同一高度上按直线地布置。这样,转接汇流排442将逆变功率模块总成400的交流输出转接到对应逆变功率模块总成200的交流输出的同一高度,方便将两路三相交流输出从peu10中引出。需要理解的是,在又一替换实施例中,也可以对应第一交流输出汇流排接口240设置转接汇流排,该转接汇流排的第一端连接第一交流输出汇流排接口240,其第二端与第二交流输出汇流排接口440在同一高度上并按直线地布置;这样,该转接汇流排将逆变功率模块总成200的交流输出转接到对应逆变功率模块总成400的交流输出的同一高度。转接汇流排442具体可以为转接铜排。

如图7和图8所示,对应交流输出汇流排接口240设置有用于构成交流输出端24的第一转接输出汇流排250,对应转接汇流排442的第二端设置有用于构成交流输出端24的第二转接输出汇流排450,第一转接输出汇流排250和第二转接输出汇流排450按直线地(例如在y方向上)并排布置,方便连接交流电机的输入端需要理解的是,以上实施例中,peu10的交流输出端24可以理解为交流输出端总成,其主要地包括第一交流输出汇流排接口240、第二交流输出汇流排接口440、转接汇流排442、第一转接输出汇流排250和第二转接输出汇流排450等部件。在又一实施例中,交流输出端24中设置有滤波电感245,滤波电感245可以一体地设置在第一转接输出汇流排250和第二转接输出汇流排450上,滤波电感可整体的对直线并排布置的第一转接输出汇流排250和第二转接输出汇流排450进行滤波;滤波电感245也可以为直线并排的布置6个滤波电感,对第一转接输出汇流排250和第二转接输出汇流排450的6个输出端分别进行滤波。滤波电感245保证交流输出信号的稳定。可选地,滤波电感245选用的材料可以但不限于是铁氧体或者非晶材料;滤波电感245可通过塑料件等集成在主箱体中,或者集成在主要箱体盖板上。继续如图3和图7所示,驱动电路230和430具体可以以电路板形式设置,它们分别为开关功率模块220和420提供开关驱动信号,从而控制每个功率开关元件222和422的导通和关断。在一实施例中,如图6所示,逆变功率模块总成200还包括电流传感器260,同样地,逆变功率模块总成400也相应地设置有电流传感器(图中未示出)。

在一实施例中,如图3和图8所示,电力电子控制器10还包括低压控制电路500,低压控制电路500例如可以用来控制驱动电路230和430,用来实现控制交流电机的功能。低压控制电路500中工作的电压低、电流小,因此,容易被peu10内部的直流汇流排总成100、电容210和410、开关功率模块220和420、第一交流输出汇流排接口240和第二交流输出汇流排接口440等的大电流、高压信号的电磁干扰,为避免该电磁干扰,对应低压控制电路500还设置有屏蔽板600,屏蔽板600可以设置在低压控制电路500与逆变功率模块总成200之间,也可以设置低压控制电路500与逆变功率模块总成400之间,其具有隔离高压电流信号的电磁干扰的作用。具体地,屏蔽板600设计为金属钣金件,其材料使用镀锌碳钢;该钣金件四周区域含有凸筋,使屏蔽板从结构上对低压控制电路500进行包裹,实现对低压控制电路500的信号隔离。低压控制电路500具体可以构造为电路板。

以上实施例的peu10在工作时,第一转接输出汇流排250可以输出三相交流输出(u1、v1、w1),第二转接输出汇流排450可以输出又一三相交流输出(u2、v2、w2),也即,交流输出端24具有对应两个三相交流输出的六根相线。若交流电机为三相交流电机,第一转接输出汇流排250的三相交流输出和第二转接输出汇流排450的三相交流输出在电气上为同相,它们可以同时为该三相电机提供叠加的三相交流输出,例如,u1和u2、v1和v2、w1和w2分别对应电连接在三相交流电机的三相绕组上,从而对应叠加地电连接在三相交流电机的三相绕组上。若交流电机为六相交流电机,第一转接输出汇流排250的三相交流输出和第二转接输出汇流排450的三相交流输出在电气上为存在例如60°的相差,第一转接输出汇流排250的三相交流输出和第二转接输出汇流排450的三相交流输出组合为六相交流电机提供六相交流输出,例如,u1、u2、v1、v2、w1和w2分别电连接在六相交流电机的六相绕组上。

本发明以上实施例的peu10在安装应用于电动汽车上来驱动交流电机时,形成了本发明实施例的电动汽车。本发明实施例的电动汽车可以使用三相交流电机,也可以使用六相交流电机。在使用三相交流电机时,u1和u2、v1和v2、w1和w2分别连接在三相交流电机的三相绕组上。在使用为六相交流电机时,第一转接输出汇流排250的三相交流输出和第二转接输出汇流排450的三相交流输出在电气上为存在例如60°的相差,u1、u2、v1、v2、w1和w2分别连接在六相交流电机的六相绕组上。

需要说明的是,本发明实施例的peu10并不限于应用于电动汽车中,根据以上揭示将理解到,本发明实施例的peu10还可以应用于具有类似电动汽车的交流电机的使用要求的机器或设备上。

将理解,当据称将部件“连接”到另一个部件时,它可以直接连接到另一个部件或可以存在中间部件。

以上例子主要说明了本发明的电力电子控制器和电动汽车。尽管只对其中一些本发明的实施方式进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1