基于电流‑位置的开关磁阻电机转矩脉动抑制方法与系统与流程

文档序号:11215165阅读:1618来源:国知局
基于电流‑位置的开关磁阻电机转矩脉动抑制方法与系统与流程

本发明涉及新能源汽车驱动用开关磁阻电机的控制技术领域,具体为一种基于电流-位置的开关磁阻电机转矩脉动抑制方法与系统。



背景技术:

开关磁阻电机srm(switchedreluctancemotor,srm)具有成本低、结构简单、鲁棒性好以及相对较高的转矩输出等特点,适合应用于新能源电动汽车领域。然而,开关磁阻电机的双凸极结构、电磁特性的高度非线性和强耦合性,导致其运行时尤其是低速运行时转矩脉动较大,由转矩脉动导致的噪音问题严重,特定频率下的谐振问题也较为突出。这些缺点限制了开关磁阻电机在小型电动汽车上的应用。目前,抑制转矩脉动主要方法有两类:一类是从电机设计的角度出发,改进电机的结构;另一类是从控制策略的角度出发,设计更适宜的控制方案。现有的控制方案中,改进的转矩分配函数tsf(torque-sharingfunction,tsf)控制有广泛应用。相关文献报道考虑到srm的强非线性,舍弃固定的tsf,而是不断调整tsf函数使相电流的平方最小。也有的文献考虑了电机磁场的非线性及高度磁饱和性,通过优化换相期间开通相与关断相电流曲线以抑制脉动。还有的方案是采用模糊逻辑控制在线修改tsf,以转矩偏差及其变化率作为模糊逻辑控制的输入,分配函数的补偿量为输出,补偿开通期望转矩以抵消拖尾电流的影响以降低转矩脉动。其中tsf控制均有参考相转矩转换成相电流的环节,本质上是对电流的分配。转矩-电流转换有两种方法:一种方法是查表法,但是表格不易获取且占用大量系统资源;另一种方法是数学计算。也有的文献报道采用交流电动机坐标变换的思想,将开关磁阻电动机的给定电流进行坐标变换,然后再进行一系列复杂的数学运算,以获得开关磁阻电动机各相的参考控制电流。现有的方法的计算均太复杂或者结果不精确,难以实现有效抑制开关磁阻电机的转矩脉动。



技术实现要素:

本发明的目的是设计一种基于电流-位置的开关磁阻电机转矩脉动抑制方法,根据相电流平方之和与转子位置角的周期性关系,设计了基于电流-位置神经网络模型,直接由转子位置角计算相电流平方之和,作为参考总电流,再通过分配函数得到三相参考电流。三相参考电流与三相实测电流的差作为电流迟滞控制器的输入信号,控制开关磁阻电机的运行,本方法有效地降低srm的转矩脉动。

本发明的另一目的是设计一种基于电流-位置的开关磁阻电机转矩脉动抑制系统。包括信号处理器、功率驱动器、电流传感器、转矩传感器、位置传感器及开关磁阻电机srm。信号处理器含有电流-位置神经网络模块、电流分配模块及电流滞环控制器。信号处理器接收各传感器信号,其各模块运算得到电流迟滞控制器的输入信号,控制功率驱动器,驱动开关磁阻电机。

本发明设计的一种基于电流-位置的开关磁阻电机转矩脉动抑制方法,包括以下步骤:

步骤ⅰ、电流-位置神经网络模型

ⅰ-1、相电流平方之和与转矩的关系

srm遵循磁通总是沿着磁阻最小路径闭合的原理,产生磁拉力形式转矩,转矩的大小与相电感、相电流和转子位置角有关,srm输出转矩的数学模型为:

式(1)中,tkk为第kk相转矩的值;lkk为第kk相电感的值;ikk为第kk相实测电流的值;θ为电机转子位置角。kk=1,2,3,分别对应srm的a、b及c相。

选择合适的开通关断角,在srm磁路未达到饱和时,相电感与转子位置角近似为线性关系,电感变化率近似为常数kl,式(1)写成:

即:

式(2)和式(3)中,t为srm的输出转矩。

由式(3)得知,相电流平方之和与输出转矩是线性对应关系。

ⅰ-2、电流-位置神经网络模型构建

以srm某相导通至其邻相导通为一个运行区间,将电机的运行划分为不同的运行区间。以θ1、θ2及θ3分别为电机三相在不同位置的转子位置角,那么θ1-θ2为一个运行区间,θ2-θ3为下一个运行区间。

srm不同区间运行状态相同只是通断的相不同,也就是说各个区间相电流波形是相同的。因此,srm运行时相电流平方之和iz与转子位置角θ呈周期函数关系。

利用相电流平方之和与转子位置角所表现出的周期关系,构建电流-位置神经网络模型。因相电流平方之和与输出转矩是线性对应关系,所以在电流-位置神经网络模型中,直接采用转矩偏差作为学习信号,得到相电流平方之和。根据srm各周期的相电流波形与高斯函数接近的特点,为提高计算速度并减小计算量,神经网络的激励函数选用高斯函数。本发明选择rbf_nn(radiobasisfunctionneuralnetwork)神经网络模型的结构。神经网络的输入为转子位置角θ;神经网络的输出即相电流平方之和iz,作为参考总电流;激励函数为高斯基函数hj;为了消除控制系统设计对电机参数的依赖,融入神经网络的权值中。

rbf_nn神经网络模型输出的相电流平方之和iz通过电流分配及电流滞环控制器,控制srm运转;期望转矩td与srm实测的输出转矩t之差为误差信号δt,作为rbf_nn神经网络模型的学习信号。

电流-位置神经网络中各参数间关系如式(4)、式(5)所示:

式(4)和(5)中,hj为高斯函数的输出,wj为输出层加权系数,cj为节点的中心;bj为节点的基参数,j为某个隐含节点,隐含节点总数为n,取值范围5~20。

误差目标e(k)为:

式(6)中,td(k)为k时刻的期望转矩,t(k)为k时刻的srm的输出转矩。δt(k)是td(k)与t(k)之差。

根据梯度下降法,权值、节点中心及节点基宽参数的迭代算法为:

δwj(k)=ηδt(k)hj(k)(7)

wj(k+1)=wj(k)+δwj(k)+α[wj(k)-wj(k-1)](8)

bj(k+1)=bj(k)+△bj(k)+α[bj(k)-bj(k-1)](10)

cj(k+1)=cj(k)+△cj(k)+α[cj(k)-cj(k-1)](12)

式(7)~式(12)中,wj(k)为k时刻的输出层权值,wj(k-1)是k时刻的前一时刻的输出层权值,△wj(k)为k时刻的调整权值增量;bj(k)为k时刻的高斯函数中宽度参数,bj(k-1)是k时刻的前一时刻的高斯函数中宽度参数,△bj(k)为高斯函数中宽度参数增量;cj(k)为k时刻的高斯函数中心参数,cj(k-1)是k时刻的前一时刻的高斯函数中心参数,δcj(k)为高斯函数中心参数的增量;θ(k)为k时刻的转子位置角。hj(k)为k时刻的高斯函数的输出。η为学习速率取值在0~1;α为动量因子,取值范围0.001~0.1。

步骤ⅱ、电流分配

典型的分配函数有直线型、指数型、正弦型、立方型四种。本发明选择正弦型分配函数作为电流分配函数,正弦型电流分配函数如下:

式(13)中,fkk(θ)为第kk相的电流分配函数;θon为开通角;θov为相电流重叠角;θoff为导通相电流减小的起始角;τr为360度周期角。

通过分配函数对相电流平方之和iz进行分配,求得各相参考电流。

ikk=izfkk(θ)(14)

式(14)中,ikk为srm第kk相的参考电流。

步骤ⅲ、电流滞环控制

传统电流滞环控制器的输出仅对应功率驱动器的开1和关-1两种状态。本发明的电流滞环控制器的输出对应功率驱动器的开1、关-1和续流0三种状态。在srm单相导通区和开通区,当电流偏差小于阈值|△imax|时,功率驱动器的状态为续流0。

本发明根据实时检测的srm电机转子位置角,转矩偏差δt,作为rbf_nn神经网络模型的学习信号,通过该rbf_nn神经网络模型,得到srm三相的相电流平方和iz作为参考总电流。通过电流分配后,得到srm的三相参考电流与三相实测电流的差送入电流滞环控制器。电流滞环控制器的输出送给功率驱动器,驱动srm运转。

本发明设计的一种基于电流-位置的开关磁阻电机转矩脉动抑制系统,包括信号处理器、功率驱动器、电流传感器、转矩传感器、位置传感器及开关磁阻电机srm。

电流传感器、转矩传感器和位置传感器安装于开关磁阻电机,分别采集srm的a、b和c相的三相电流值ia、ib和ic,srm的输出转矩t,以及srm的转子位置角θ;各传感器的信号线与信号处理器连接。

信号处理器含有电流-位置神经网络模块、电流分配模块及电流滞环控制器。

信号处理器接收电流传感器、转矩传感器、位置传感器输出信号以及输入的期望转矩值td,电流-位置神经网络模块根据期望转矩值td与实测转矩的差δt以及转子位置角θ得到输出相电流平方之和iz,iz经电流分配模块得到对应srm电机a、b及c三相的参考电流ia、ib及ic;三相参考电流与三相实测电流的差δia、δib和δic接入电流滞环控制器作为输入信号,得到控制信号接入功率驱动器,驱动srm运转。

信号处理器连接显示设施,实时显示本系统控制状态和srm的控制结果。

信号处理器连接can(控制器局域网络controllerareanetwork)接口,提供与外设通信接口。

与现有技术相比,本发明一种基于电流-位置的开关磁阻电机转矩脉动抑制方法与系统的优点为:1、根据相电流平方之和与转子位置角的周期性特殊关系,设计了电流-位置神经网络模型,直接由转子位置角和转矩偏差计算相电流平方之和;2、参考tsf控制的分配方法,通过分配函数得到参考相电流与三相实测电流的差作为电流滞环控制器的输入信号;3、本发明有效地降低srm转矩脉动,脉动率可低至仅1.7%。

附图说明

图1为本基于电流-位置的开关磁阻电机转矩脉动抑制方法实施例步骤ⅰ-2中电机运行区间划分示意图;

图2为本基于电流-位置的开关磁阻电机转矩脉动抑制方法实施例步骤ⅰ-2中电流-位置神经网络模型的拓扑结构示意图;

图3为本基于电流-位置的开关磁阻电机转矩脉动抑制方法实施例步骤ⅰ-2中电流-位置神经网络模型的实现原理图;

图4本基于电流-位置的开关磁阻电机转矩脉动抑制系统结构示意图。

具体实施方式

基于电流-位置的开关磁阻电机转矩脉动抑制方法实施例

本基于电流-位置的开关磁阻电机转矩脉动抑制方法实施例,包括以下步骤:

步骤ⅰ、电流-位置神经网络模型

ⅰ-1、相电流平方之和与转矩的关系

srm输出转矩的数学模型为:

式(1)中,tkk为第kk相转矩的值;lkk为第kk相电感的值;ikk为第kk相实测电流的值;θ为电机转子位置角。kk=1,2,3,分别对应srm的a、b及c相。

选择合适的开通关断角,在srm磁路未达到饱和时,相电感与转子位置角近似为线性关系,电感变化率近似为常数kl,式(1)写成:

即:

式(2)和式(3)中,t为srm的输出转矩。

由式(3)得知,相电流平方之和与输出转矩是线性对应关系。

ⅰ-2电流-位置神经网络模型构建

如图1所示,以srm某相导通至其邻相导通为一个运行区间,将电机的运行划分为不同的运行区间。以θ1、θ2及θ3分别为电机三相在不同位置的转子位置角,那么θ1-θ2为一个运行区间,θ2-θ3为下一个运行区间。

srm不同区间运行状态相同只是通断的相不同,也就是说各个区间相电流波形是相同的。因此,srm运行时相电流平方之和iz与转子位置角θ呈周期函数关系。

利用相电流平方之和与转子位置角所表现出的周期关系,构建电流-位置神经网络模型。因相电流平方之和与输出转矩是线性对应关系,所以在电流-位置神经网络模型中,直接采用转矩偏差作为学习信号得到相电流平方之和。如图2所示,本例选择rbf_nn神经网络模型的结构。神经网络的输入为转子位置角θ;神经网络的输出即相电流平方之和iz;激励函数为高斯函数hj;融入神经网络的权值中。rbf_nn神经网络模型输出的相电流平方之和iz通过电流分配及电流滞环控制器,控制srm运转;期望转矩td与srm实测的输出转矩t之差为误差信号δt,作为rbf_nn神经网络模型的学习信号。

电流-位置神经网络中各参数间关系如式(4)、式(5)所示:

式(4)和(5)中,hj为高斯函数的输出,wj为输出层加权系数,cj为节点的中心;bj为节点的基参数,j为某个隐含节点,隐含节点总数为n,本例取n=10。

误差目标e(k)为:

式(6)中,td(k)为k时刻的期望转矩,t(k)为k时刻的srm输出转矩。△t(k)是td(k)与t(k)之差。

根据梯度下降法,权值、节点中心及节点基宽参数的迭代算法为:

△wj(k)=η△t(k)hj(k)(7)

wj(k+1)=wj(k)+△wj(k)+α[wj(k)-wj(k-1)](8)

cj(k+1)=cj(k)+△cj(k)+α[cj(k)-cj(k-1)](12)

式(7)~式(12)中,wj(k)为k时刻的输出层权值,wj(k-1)是k时刻的前一时刻的输出层权值,△wj(k)为k时刻的调整权值增量;bj(k)为k时刻的高斯函数中宽度参数,bj(k-1)是k时刻的前一时刻的高斯函数中宽度参数,△bj(k)为高斯函数中宽度参数增量;cj(k)为k时刻的高斯函数中心参数,cj(k-1)是k时刻的前一时刻的高斯函数中心参数,δcj(k)为高斯函数中心参数的增量;θ(k)为k时刻的转子位置角。hj(k)为k时刻的高斯函数的输出。η为学习速率,本例η=0.3;α为动量因子,本例α=0.01。

步骤ⅱ、电流分配

典型的分配函数有直线型、指数型、正弦型、立方型四种。本发明选择正弦型分配函数作为电流分配函数,正弦型电流分配函数如下:

式(13)中,fkk(θ)为第kk相的电流分配函数;θon为开通角;θov为相电流重叠角;θoff为导通相电流减小的起始角;τr为360度周期角。

通过分配函数对相电流平方之和iz进行分配,求得各相参考电流。

ikk=izfkk(θ)(14)

式(14)中,ikk为srm第kk相的参考电流。

步骤ⅲ、电流滞环控制

本例电流滞环控制器的输出对应功率驱动器的开1、关-1和续流0三种状态。在srm单相导通区和开通区,当电流偏差小于阈值|△imax|时,功率驱动器的状态为续流0。

本例根据实时检测的srm电机转子位置角,转矩偏差δt作为rbf_nn神经网络模型的学习信号,过通过该rbf_nn神经网络模型,得到srm三相的相电流平方和iz作为参考总电流iz。通过电流分配后,得到srm的三相参考电流ia、ib及ic,三相参考电流与三相实测电流的差送入电流滞环控制器作为输入信号。电流滞环控制器的输出送给功率驱动器,驱动srm运转。

基于电流-位置的开关磁阻电机转矩脉动抑制系统实施例

本基于电流-位置的开关磁阻电机转矩脉动抑制系统实施例的整体结构如图4所示,包括信号处理器、功率驱动器、电流传感器、转矩传感器、位置传感器及开关磁阻电机srm。

电流传感器、转矩传感器和位置传感器安装于开关磁阻电机,分别采集srm的a、b和c相的三相实测电流值ia、ib和ic,srm的输出转矩t,以及srm的转子位置角θ;各传感器的信号线与信号处理器连接。

信号处理器含有电流-位置神经网络模块、电流分配模块及电流滞环控制器。

信号处理器接收电流传感器、转矩传感器、位置传感器输出信号以及输入的期望转矩值td,电流-位置神经网络模块根据期望转矩值td与实测转矩的差δt以及转子位置角θ得到输出相电流平方之和iz,iz经电流分配模块得到对应srm电机a、b及c三相的参考电流ia、ib及ic;δia、δib和δic分别表示三相参考电流与三相对应电流之差。

三相参考电流与对应实测三相电流的差作为电流滞环控制器的输入信号,得到控制信号接入功率驱动器,驱动srm运转。本例开关磁阻电机的转矩脉动率仅为1.7%。

本例信号处理器连接显示设施,实时显示本系统控制状态和srm的控制结果。

本例信号处理器连接can接口,提供与外设通信接口。

上述实施例,仅为对本发明的目的、技术方案和有益效果进一步详细说明的具体个例,本发明并非限定于此。凡在本发明的公开的范围之内所做的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1