使用无源电压反转的双极DC-DC转换器拓扑的制作方法

文档序号:17731557发布日期:2019-05-22 02:53阅读:306来源:国知局
使用无源电压反转的双极DC-DC转换器拓扑的制作方法

本发明总的来说涉及谐振dc-dc转换器。更具体地,本发明涉及用于使用谐振整流器来生成高压dc脉冲的电路。



背景技术:

电穿孔是一种利用高脉冲电场在生物细胞壁中产生孔以用于医疗、液体灭菌和其他应用的技术。许多系统为了简单起见使用单极脉冲,但电迁移可能会限制电极寿命。

电穿孔涉及在液体内的两个导电电极之间产生大电场。暴露于电场的生物细胞在它们的细胞壁中产生孔。可逆电穿孔涉及每毫米数百伏的范围中的电场,并且可逆电穿孔可用于将材料移入和移出细胞。不可逆电穿孔或脉冲电场(pef)灭菌涉及甚至更高的电场并且通常用于破坏饮用液体和食品中的细菌的细胞壁。电穿孔要求短脉冲(≈几十μs)以便限制液体的欧姆加热。单极脉冲是有效的,但双极脉冲已显示出通过减少导体的电迁移来提高电极寿命。

用于提供dc电脉冲的常规方法可能是不期望地复杂的,特别是在脉冲需要是双极的和/或需要具有灵活的脉冲轮廓的情况下(例如,电穿孔应用中)。

生成方形双极脉冲的方法通常包括传统的高压电源,以产生与电容放电相结合的高压dc来传递脉冲序列。常规方法可能存在困难,包括启动缓慢、电路内的大量能量存储、电压下降、有限的脉冲重复和有限的脉冲宽度。对于具有浮动有源开关的多级方法,选通也会变得复杂。



技术实现要素:

在一个方面中,本发明提供了用于使用简单的控制策略来创建高压双极dc脉冲的谐振电路设计。电路包括两个多级谐振整流器,所述两个多级谐振整流器采用电容隔离并且在15mhz下操作。每个谐振整流器在端子处耦合至射频(rf)放大器。由放大器自身生成的rf信号用于控制脉冲持续时间并输出电路的极性。可以在几μs之间通过dc生成正和负脉冲列的任何序列。如说明性实施例那样,本说明书提出了将800v的正脉冲和负脉冲提供到电阻负载中的特定设计。

这项工作为双极(或单极)和脉冲双极(或单极)应用提供电源,能够实现短脉冲(亚微秒至无限)和高效操作,而不管脉冲长度如何。该方法可用于低电压但相比于传统拓扑而言对于高压应用具有显著益处。这允许创建小得多的和轻得多的双极(或更快的单极)电源以用于重量和尺寸是重要考虑的应用中。还可能降低这样的应用中的电源的成本。

更特别地,提供了能够将正电压或负电压以连续形式或脉冲形式施加至负载的谐振dc-dc转换器。对控制脉冲长度和脉冲极性的(一个或多个)有源开关进行驱动的方法是通过利用来自转换器结构中的特定谐振部件lr的能量。由此用于(一个或多个)有源开关的选通信号被动地被控制,以使得反相器级中的(一个或多个)受控开关是仅有的需要主动控制的开关。

应用包括但不限于:空间推进、医用等离子体、工业等离子体、水处理、脉冲电场(pef)灭菌、功率倒置和电穿孔。

提供了显著的优点。该方法导致与传统拓扑相比而言小得多的和轻得多的电源,特别是针对高压应用。对于功率级隔离而言变压器不是必需的。不需要复杂的栅极驱动来控制传递脉冲和改变极性的有源开关(即光耦合器或其他复杂的隔离选通方法)。不需要笨重的/昂贵的磁性材料。由于操作的高频率,电容隔离是有可能的。在其最简单的实现中,仅需要两个主动控制开关,并且这两个主动控制开关都是地电位基准。

使用谐振元件lr(或类似)中的循环电流来生成经隔离的选通信号以控制负载的脉冲轮廓和极性轮廓是一个显著的特征。由此仅需要生成的控制信号是用于反相器中的有源开关的地电位基准选通信号。这允许快的和精确的操作而不需要复杂的有源隔离栅极驱动来传递脉冲或将极性切换到负载。

本发明的方法介绍了在15mhz下被实现的谐振整流器拓扑。通过以数十mhz进行切换,可减小电路中的能量存储装置的尺寸,并且可在空芯中实现所有磁性元件。可使用小的陶瓷电容器而非大体积变压器来实现隔离。由于高开关频率,系统的瞬态响应足够快以从关断状态实时产生几十μs的必要方波脉冲,而不是依靠向相对较大的脉冲电容器提供能量的充电电路,所述脉冲电容器存储在短脉冲持续时间内施加到被处理的液体上的能量。放电电路由半桥电路或全桥电路组成,其开关设备的额定值至少为施加到目标的最大电压,所述最大电压在商业系统中可达到数十kv。由于谐振整流器的快速瞬态响应,所以整流器输出电压在脉冲期间基本上处于稳定状态,与许多高压脉冲电源(例如马克思发生器(marxgenerator))不同,脉冲宽度可以长达所期望的时间(ms、数秒、dc)。在电穿孔中通常关注气泡或污染物内的电弧。如果在电穿孔电源内存储有大量的能量并且发生电弧,则液体可以爆炸性地蒸发。在本文提出的1000vpkpk设计中,任何一个电容器中存储的能量从未超过75μj,因为周期间能量存储非常低。可以通过添加整流器级来在电压上放大所提出的设计,而无需增加半导体器件额定值。

在一个方面,本发明提供了一种用于生成高压mhz双极dc脉冲的谐振dc-dc转换器。所述谐振dc-dc转换器包括:左多级谐振整流器组,所述左多级谐振整流器组连接到正电极并经由电容隔离耦合到左rf放大器端子;右多级谐振整流器组,所述右多级谐振整流器组连接到负电极并经由电容隔离耦合到右rf放大器端子;其中,左多级谐振整流器组和右多级谐振整流器组在公共节点上连接;其中左多级谐振整流器组包括多个左谐振整流器级;其中右多级谐振整流器组包括多个右谐振整流器级;其中,多个左谐振整流器级和多个右谐振整流器级中的每一级包括:用于电容隔离该级的两个电容器、输出电容器、连接到相邻级的相邻mosfet开关的mosfet开关、以及连接到mosfet开关的选通谐振电路,其中左多级谐振整流器组和右多级谐振整流器组中的mosfet开关可以通过来自左rf放大器和右rf放大器的rf信号被动地被控制。

在优选实施例中,选通谐振电路包括并联的电感器、电容器、和电阻器。左多级谐振整流器组耦合至电感器lrp,并且其中右多级谐振整流器组耦合至电感器lrn。多个左谐振整流器级和多个右谐振整流器级中的每一级包括两个二极管以用于对穿过用于电容隔离该级的两个电容器的ac信号进行整流。

附图说明

图1a是根据本发明的一个实施例的具有双极输出的多级谐振整流器的高级示意性电路图。

图1b是图1a的正谐振整流器级的示意性电路图。

图1c是图1a的负谐振整流器级的示意性电路图。

图2是根据本发明的一个实施例的双极测试板的示意图。

图3a至图3d是由本发明的一个实施例的电路产生的各种持续时间和重复率的双极脉冲的曲线图。

图4是根据本发明的一个实施例的pef电极实验布置的示意图。

具体实施方式

图1a描绘了根据本发明的一个实施例的经开发用于生成用于电穿孔的双极脉冲的谐振整流器原理图的总体结构。

电路包括两个相对的多级隔离整流器,左多级谐振整流器组100和右多级谐振整流器组102。这些多级隔离整流器分别地连接至正电极104和负电极106。为了说明的目的,在该图中接触电极的负载108是被处理以用于电穿孔的液体。整流器组的低级被一起连结到共用节点110。当左侧整流器激活时,负载将经历正电压,而当右侧激活时,负载将经历负电压。

通过电容隔离,每个整流器组可以具有多级以达到阻抗匹配和电压增益。如图所示,左整流器组100具有多个谐振整流器级112、114、116,且右整流器组102具有多个谐振整流器级118、120、122。可将级112、114、116的各个谐振电感器组合成单个较小值电感器124(lrp)。类似地,可将级118、120、122的各个谐振电感器组合成单个较小值电感器126(lrn)。每个谐振整流器在端子处耦合至对应的射频(rf)放大器(未图示)。左rf信号在端子128处耦合至左整流器组,并且右rf信号在端子130处耦合至右整流器组。rf信号控制脉冲持续时间并输出电路的极性。

每个左谐振整流器级112、114、116具有图1b中所示的结构。类似地,每个右谐振整流器级118、120、122具有图1c中所示的结构。所述左级和所述右级互为镜像,所以我们将并行地描述它们。每一级具有mosfet开关150、152(q1p、q1n),将所述mosfet开关150、152放置成与输出电容器154、156(cop、con)并联。这些电路元件的相反端连接到相邻级,提供电极与底部节点110之间的连接。每一级还包括选通谐振电路,所述选通谐振电路包括:电感器178、180(wg1、wg2);电容器182、184(cg1、cg2);和电阻器186、188(rg1、rg2),所有的元件并联。选通谐振电路还包括二极管174、176。电感器wg1和wg2与rg1和rg2相耦合,以提供隔离的ac信号。二极管174和176对ac信号进行整流,并且cg1和cg2充当滤波元件以提供稳定的dc选通信号来在脉冲期间保持mosfet导通。可能使用开关的内部栅极电容作为cg1、cg2。当ac信号不存在时,电阻器rg1、rg2充当下拉电阻器以关闭栅极。

通过在级的两个端子处的一对电容器166、170(c1p、c2p)将左整流器级与rf信号电容隔离。类似地,通过一对电容器168、172(c1n、c2n)将右级与rf信号电容隔离。左级具有两个二极管158、162(d1p、d2p)。类似地,右级具有两个二极管160、164(d1n、d2n)。二极管158、162和160、164对通过阻塞电容器166、170和168、172的主隔离ac信号进行整流,以提供由电容器154和156滤波的级的dc输出。在该类型的谐振拓扑中,在二极管的导通和断开换相期间无损耗地循环存储在设备电容内的能量。

当相对侧正在传递电压时,激活开关150、152(q1p、q1n)。每一个组100、102中的mosfet开关控制从电极104、106到底部节点110的连接,否则为未激活的整流器将阻止电流流入负载回路中。因为mosfet开关仅需要在处于所述mosfet开关的断开状态时阻挡单个级的电压电平,所以任何半导体必须具有的最高电压额定值等于单个被隔离的级的输出电压。可添加被隔离的级以达到所期望的脉冲输出电压。

该设计的显著特征是控制mosfet开关的方式。通过简单地将导体回路放置在谐振电感器lrp或lrn周围或者放置在谐振电感器lrp或lrn附近以形成具有178、180(wg1、wg2)的经耦合的电感器对,在选通电路中诱导出被隔离的电压。对于与相对侧的级并联的每个mosfet,采用一个回路(以及因此选通电路)。因此,只要在整流器块的输入端存在rf信号,相对侧的mosfet就会导通。因此,可简单地通过启用和禁用整流器块的输入处的两个rf信号,从而以任何顺序将具有不同的长度、重复和符号的脉冲传送到负载。

为了测试双极整流器拓扑概念,实现了在每一侧上有4个级的原型。将每个级设计为向10kω电阻负载提供100ma的电流,以模拟能够以1升/分钟的流速处理污水的pef系统。基于总理论输出为2400v正极和2400v负极或4800v差分的半导体器件的额定值,每级可提供的最大电压为600v。可在表1中找到部件值。

表1:用于证明概念原型的部件值

对于wg1和wg2选择这些电感器的匝数以提供足够的电压来完全增强mosfet。在这种情况下,我们使用了一匝,但精确的电感值并不重要,因此精确的电感值不包括在此表中。

为了验证设计,使用两个eni1000线性rf放大器来测试原型双极整流器单元。

图2描绘了双极整流器的正极侧和负极侧,所述双极整流器的正极侧和负极侧被填充在单个pcb的同一侧,以便于可视化和测试。注意到,如果需要的话,可以使得转换器的总体pcb占地面积小得多并将转换器的总体pcb占地面积进行堆叠。rfinl和rfin2连接到受双通道普源(rigol)dg5102函数发生器控制的单独的功率放大器,以将交流15mhz突发串提供到整流器电路中。使用picotech公司的ta042差分探头以及安捷伦(agilent)公司的ds0-x3034a数字示波器来对输出电压波形进行测量。

图3a至图3d描绘了用于各种脉冲序列的负载电压。注意到,对于在脉冲之间存在死区时间的双极情况,由整流器块的负载电阻和输出电阻的rc时间常量来指定下降时间。然而,当传递双极脉冲时,由于相反的整流器主动地降低电压,所以下降时间要短得多。正脉冲或负脉冲的瞬态上升时间略低于5μs,总电压反转发生在10μs以内。

对于如图3a至图3d所示的电压波形,对于800v的电压,脉冲功率等于64w。对于从50μs到dc的脉冲宽度,初始测量指示了整流器效率超过90%。在没有散热的情况下,整流器可以连续运行而不会在脉冲操作或dc下过热。图3a显示了具有2ms消隐时间的双极性±800v1ms脉冲。图3b示出了具有1ms消隐时间的双极性±800v1ms脉冲。图3c显示了具有50μs消隐时间的双极性±800v50μs脉冲。图3d显示了双极性±800v50μs脉冲,没有消隐时间。

在单孔电极配置上测试双极设计的可行性,所述配置由铜电极404、406组成,所述铜电极404、406由基于聚四氟乙烯(teflon)的电介质410分开,如图4中所示。未经处理的液体400进入漏斗402并穿过电极404、406和聚四氟乙烯分离器410中的孔。经处理的液体408流过的孔的直径为0.5mm,顶部和底部电极板之间的间隔为0.5mm。这些尺寸在800v脉冲期间提供了足够的场分布和1.6kv/mm的平均电场。

为了提供30ml/分钟的恒定流量而没有气泡,使用具有恒定头压的重力系统。该流速确保了液体中的任何细菌在100μs的总周期时间和50%的工作周期期间将接受至少2个25μs的脉冲(1个正脉冲和1个负脉冲)。

技术文献中的工作表明,双极脉冲的pef效率与单极脉冲一样好或更好。该实验的重点是研究在具有几十μs脉冲的双极操作下电迁移是否减少。在利用具有±800v的振幅和50%工作周期的25μs和50μs的脉冲对含细菌的水(该含细菌的水来自于鱼缸)进行处理之后,将单极电极与双极电极进行比较。在单极电极上存在有显著的侵蚀,而双极电极表现出没有可见的损伤。

另外,用铜离子测试条进行的测试证实了用单极脉冲处理的水中存在金属离子。用单极脉冲处理的水表现出1至3mg/1的铜离子浓度,而用双极脉冲处理的水表现出低得多的电极金属浓度。

电路的几种变化是可能的。最简单的实施例具有两个单独控制的谐振dc-dc转换器,其中通过有源开关将浮动负载引入和引出电路,所述有源开关通过利用来自电路的谐振元件的能量来控制。可以隔离用于确定负载的脉冲和极性的有源开关的控制,使得可以堆叠多个开关用于更高电压的应用。附加开关可以被配置为使用从谐振元件lr利用的相同控制信号来断开输出电容以获得更快的脉冲和瞬态响应。

本说明书提出了一种谐振转换器设计,其能够有效地产生具有灵活脉冲轮廓的高压双极脉冲,以用于电穿孔和其他应用。通过利用电路内的谐振元件,可以使用简单的控制策略实现双极性操作。电容隔离允许添加多个级以实现更高的电压而不增加半导体器件应力。15mhz的开关频率依赖于转换器单独从零开始产生脉冲的快速瞬态响应,而不依赖于放电电容和高压开关。概念设计被证明可以提供从几十μs到dc的800v正方波脉冲和负方波脉冲。将单极脉冲与等效长度和重复率的双极脉冲进行比较表明,双极脉冲减少或消除了pef电极的电迁移以及侵蚀。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1