用于高压大功率的高频隔离软开关DC-DC变换器及调制方法与流程

文档序号:15182596发布日期:2018-08-17 06:11阅读:268来源:国知局

本发明涉及dc-dc变换器领域,特别涉及用于高压大功率隔离型基于辅助开关的半周期pwm调制型串联谐振变换器(sh-src)及其调制方法。



背景技术:

谐振型dc-dc变换器可实现开关器件软开关运行,具有高效率、低损耗、电磁兼容性能好等优点,成为不同直流母线之间实现电气隔离的优选拓扑。

谐振型dc-dc变换器类型众多,其中开环控制的串联谐振变换器(src)因结构简单、控制方便等特性而得到广泛应用。然而,在实际应用中,由于谐振电感、变压器和谐振电容都具有一定的容差,同时谐振电感磁芯的磁滞曲线非线性,src的实际工作频率与理论计算频率有一定的偏差,谐振点很难精准锁定。由此,会导致当负载大幅度变化时,src变换器的电压增益随之变化,造成次级母线电压的波动。传统的llc谐振变换器由于励磁电感的存在,可以通过令谐振腔工作于llc模式下而实现升压。但是对于高压大功率场合,llc变换器则较难应用。大功率场合下,50kw功率等级以上磁性元件的工作频率范围受到工艺限制,其最优工作状态工作频率范围一般为20khz-50khz,为避免谐振电容两端电压过高,往往需要增大谐振电容的容值。如此,在谐振频率一定时,谐振电容值较大,则需要降低谐振电感的感值,但在700v-800v初级母线电压等级下,励磁电感的取值较大,以限制励磁电流的幅值,如此,则励磁电感和谐振电感的比值就会很大,导致llc无法得到较好的电压增益-频率特性。

因此,对传统的src变换器和llc变换器进行拓扑和控制方式的优化,以提高电压增益非常重要。



技术实现要素:

本发明提出了一种高频隔离软开关dc-dc变换器拓扑结构和一种与之相适应的调制方法。本拓扑及其调制方法解决了由于元器件容差、温漂及负载大幅度变化导致的输出母线电压跌落,而传统src变换器无法升压的问题。该拓扑灵活可控,应用简单,极大拓展了传统src的适用范围。

为了实现上述目的,本发明技术方案如下:

用于高压大功率的高频隔离软开关dc-dc变换器,为带辅助开关的半周期pwm调制型串联谐振变换器(sh-src);

所述的带辅助开关的半周期pwm调制型串联谐振变换器,包括输入母线电容、输入全桥逆变电路、lc串联谐振电路、辅助开关、高频变压器、输出全桥整流电路和输出母线电容;所述的辅助开关包括二极管和开关管,所述二极管的负极与开关管的d极(d代指mosfet器件的漏极和igbt等器件的集电极)连接,所述二极管的正极连接于lc串联谐振电路的电感电容之间,所述开关管的s极(s代指mosfet器件的源极和igbt等器件的发射极)连接输入母线的负极;

进一步,所述输入全桥逆变电路,为包括4个开关管s1、s2、s3、s4的h全桥电路,开关管s1d极与s3d极相连,s1s极与s2d极相连,s3s极与s4d极相连,s4s极与s2s极相连;所述lc串联谐振电路输入端连接于开关管s1、s2之间,输出端连接所述高频变压器一次绕组后连接于开关管s3、s4之间;所述的辅助开关的二极管连接于lc串联谐振电路的电感电容之间,所述的辅助开关的开关管的s极连接于开关管s4s极;所述输入母线电容与所述输入全桥逆变电路的输入端并联。

进一步,所述输出全桥整流电路,为包括4个开关管s5、s6、s7、s8的h全桥电路,所述开关管s5d极与s7d极连接,s5s极与s6d极连接,s6s极与s8s极连接,s8d极与s7s极连接,所述高频变压器二次绕组一端连接于s5、s6之间,另一端连接于s7、s8之间,所述输出母线电容与所述输出全桥整流电路的输出端并联。

进一步,所述输出全桥整流电路,还可为包括4个二极管d1、d2、d3、d4的h全桥电路,所述二极管d1正极与d3正极连接,d1负极与d2正极连接,d2负极与d4负极连接,d4正极与d3负极连接,所述高频变压器二次绕组一端连接于d1、d2之间,另一端连接于d3、d4之间,所述输出母线电容与所述输出全桥整流电路的输出端并联。

进一步,所述用于高压大功率的高频隔离软开关dc-dc变换器,为双向运行的带辅助开关的半周期pwm调制型串联谐振变换器,所述输入全桥逆变电路侧连接有所述辅助开关,所述输出全桥整流电路侧连接有所述辅助开关。

进一步,所述输出全桥整流电路侧连接有所述辅助开关,为包括4个开关管s5、s6、s7、s8的h全桥电路,所述开关管s5d极与s7d极连接,s5s极与s6d极连接,s6s极与s8s极连接,s8d极与s7s极连接,所述高频变压器二次绕组一端连接电感后连接于s5、s6之间,另一端连接于s7、s8之间,所述输出母线电容与所述输出全桥整流电路的输出端并联,所述的辅助开关的二极管连接于二次绕组和电感之间,所述的辅助开关的开关管的d极连接于开关管s6d极。

进一步,所述开关管可采用电力mosfet、igbt、bjt、晶闸管、igct等各种电力半导体开关器件。

所述高压大功率的高频隔离软开关dc-dc变换器的调制方法,为带辅助开关的半周期pwm调制型串联谐振变换器调制方法,所述输入全桥逆变电路4个开关管工作于定频pwm开关模式,占空比固定为0.5,所述辅助开关工作于定频pwm模式,辅助开关的开关管与所述输入全桥逆变电路中的开关管s4开关频率相同、开通时刻相同,但辅助开关的开关管q1先于开关管s4关断,其占空比根据输出电压增益进行调整,所述输出电压增益-辅助开关占空比计算公式如下:

gpwm:变换器电压增益,为输出电压与输入电压比值,

vin:输入电压,

d:辅助开关q1的占空比,

lr:谐振电感感值,

io:输出电流,

fs:开关频率

正向运行的sh-src,运行过程:所述开关管s1、s4和所述辅助开关的开关管导通,开关管s2、s3断开,输入母线电源直接对所述lc串联谐振电路的电感充电,电感中电流线性上升,lc谐振网络电容被短路,电压保持不变;谐振腔不向次级传递能量;

所述开关管s1、s4导通,所述辅助开关的开关管断开,开关管s2、s3断开,输入母线电源对lc串联谐振电路充电,谐振腔向次级传递能量;

所述开关管s2、s3导通,所述辅助开关的开关管断开,开关管s1、s4断开,输入母线电源对lc串联谐振电路充电,其电感与电容谐振,谐振腔向次级传递能量。

本发明具有以下有益效果:

1、常态工作情况下,变换器工作于传统src工作模式,实现不同直流母线间高效率电气隔离;

2、辅助开关工作模式下,变换器电压增益与辅助开关占空比单调正相关,便于采用闭环控制方式,控制简单更能保证输出母线电压稳定;

3、相对于广泛应用的llc谐振变换器方案,sh-src变换器不需要考虑励磁电感的设计,设计流程更简单。

解决了直流母线电气隔离等应用中,因元器件参数温漂、负载波动等,而导致次级母线波动或跌落等问题,可推广应用于大功率充电、交直流微电网等领域。

附图说明

图1为sh-src变换器实施例1电路图;

图2为sh-src变换器实施例2电路图;

图3为双向运行的sh-src变换器电路图;

图4为sh-src变换器开关波形及关键电流波形;

图5为sh-src变换器电压增益与辅助开关占空比特性曲线图。

具体实施方式

下面结合附图与实例对本发明作进一步说明。

用于高压大功率的高频隔离软开关dc-dc变换器,其为带辅助开关的半周期pwm调制型串联谐振变换器(sh-src);

实施例1

如图1所示,带辅助开关的半周期pwm调制型串联谐振变换器,包括输入母线电容c1、输入全桥逆变电路、lc串联谐振电路、高频变压器、输出全桥整流电路和输出母线电容c2,以上部分均与传统src谐振变换器相同。图中开关管q1支路部分称为辅助开关,则为优化之后添加的谐振网络,可直接快速从电源获取能量注入谐振电感,以实现更高的电压增益。

辅助开关包括二极管d1和开关管q1,二极管d1的负极与开关管q1的d极连接。

输入全桥逆变电路,为包括4个开关管s1、s2、s3、s4的h全桥电路,开关管s1d极与s3d极相连,s1s极与s2d极相连,s3s极与s4d极相连,s4s极与s2s极相连;lc串联谐振电路电感lr一端连接于开关管s1、s2之间,另一端连接电容cr,电容cr另一端连接高频变压器一次绕组后连接于开关管s3、s4之间;所述的辅助开关的二极管连接于lc串联谐振电路的电感电容之间,辅助开关的开关管的s极连接于开关管s4s极;输入母线电容c1两端分别与开关管s1的d极、s2的s极相连。

输出全桥整流电路,为包括4个开关管s5、s6、s7、s8的h全桥电路,所述开关管s5d极与s7d极连接,s5s极与s6d极连接,s6s极与s8s极连接,s8d极与s7s极连接,所述高频变压器二次绕组一端连接于s5、s6之间,另一端连接于s7、s8之间,所述输出母线电容c2两端分别与开关管s7的d极、s8的s极相连。

实施例2

如图2所示,基于实施例1的sh-src变换器电路图,可将实施例1中输出全桥整流电路中的4个开关管替换为4个二极管,其他不变。具体的输出全桥整流电路为,包括4个二极管d1、d2、d3、d4的h全桥电路,二极管d1正极与d3正极连接,d1负极与d2正极连接,d2负极与d4负极连接,d4正极与d3负极连接,高频变压器二次绕组一端连接于d1、d2之间,另一端连接于d3、d4之间,输出母线电容c2两端分别与d3的正极、d4的负极相连。

实施例3

如图3所示,一种用于高压大功率的高频隔离软开关dc-dc变换器,为可双向运行的带辅助开关的半周期pwm调制型串联谐振变换器时,基于实施例1的sh-src变换器电路图,输出全桥整流电路侧也连接有辅助开关。

具体的输出全桥整流电路侧连接有辅助开关,为包括4个开关管s5、s6、s7、s8的h全桥电路,所述开关管s5d极与s7d极连接,s5s极与s6d极连接,s6s极与s8s极连接,s8d极与s7s极连接,高频变压器二次绕组一端连接电感后连接于s5、s6之间,另一端连接于s7、s8之间,输出母线电容c2与输出全桥整流电路的输出端并联,所述的辅助开关的二极管连接于二次绕组和电感之间,所述的辅助开关的开关管的d极连接于开关管s6d极。

本发明所述开关管可采用电力mosfet、igbt、bjt、晶闸管、igct等各种电力半导体开关器件。

一种用于高压大功率的高频隔离软开关dc-dc变换器的调制方法,为带辅助开关的半周期pwm调制型串联谐振变换器调制方法,输入全桥逆变电路4个开关管工作于定频pwm开关模式,占空比固定为0.5,辅助开关工作于定频pwm模式,辅助开关的开关管与输入全桥逆变电路中的开关管s4开关频率相同、开通时刻相同,但开关管q1先于开关管s4关断,其占空比根据输出电压增益进行调整。

本发明中正向运行的sh-src变换器开关波形及关键电流波形如图4所示,结合实施例1的电路图,说明主要包括以下阶段:

相关波形符号定义如下:

gs1:为开关管s1及s4驱动波形,

gs2:为开关管s2及s3驱动波形,

gq1:为开关管q1驱动波形,

iq:为流过辅助开关管q1的电流波形,

ilr:为流过谐振电感lr的电流波形,

id1:为流过开关管d1的电流波形,

id2:为流过开关管d2的电流波形,

t0-t3:开关时刻。

(1)【t0-t1】阶段,开关管s1、s4和辅助开关的开关管q1导通,开关管s2、s3断开,输入母线电源va直接对所述lc串联谐振电路的电感lr充电,电感lr中电流线性上升,速度很快,lc谐振网络电容cr被短路,电压保持不变;此时谐振腔不向次级传递能量;

(2)【t1-t2】阶段,开关管s1、s4导通,辅助开关的开关管q1断开,开关管s2、s3断开,输入母线电源va继续对lc串联谐振电路充电,lr与cr谐振,谐振腔向次级传递能量;

(3)【t2-t3】阶段,开关管s2、s3导通,辅助开关的开关管q1断开,开关管s1、s4断开,输入母线电源va对lc串联谐振电路充电,lr与cr谐振,此时,变换器工作模式与src相同,谐振腔向次级传递能量。

如图5sh-src变换器电压增益与辅助开关占空比特性曲线图所示,辅助开关提供了一种单调提升传统串联谐振变换器的方法,增加了传统串联谐振变换器的控制自由度,如此可以在母线电压跌落、负载变动等造成输出母线电压波动时,以简单的方式进行调整,以保证输出母线电压稳定。输出电压增益-辅助开关占空比计算公式如下:

gpwm:变换器电压增益,为输出电压与输入电压比值,

vin:输入电压,

d:辅助开关q1的占空比,

lr:谐振电感感值,

io:输出电流,

fs:开关频率

本例设定参数vin=800v,lr=20uh,i0=70a,fs=50khz。

上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1