电力变换装置的制作方法

文档序号:19735477发布日期:2020-01-18 04:24阅读:136来源:国知局
电力变换装置的制作方法

本发明涉及电力变换装置中的设备的安装构造,尤其适合适用于搭载有功率半导体模块的电力变换装置。



背景技术:

设置在铁道车辆中的电力变换装置是用于控制对电气铁道车辆等车辆进行驱动的电动机的装置。电力变换装置主要设置在车辆的地板下,通过包括多个功率半导体模块的主电路的开关动作来变换从铁道架线输入的电力。该变换的电力用于铁道车辆用电动机的控制。作为该电力变换装置的主要构成装置的主电路例如具备:具备功率开关元件的功率半导体模块、作为其驱动电路的栅极驱动装置、以及使从架线输入的直流电力稳定化的滤波电容器(参照专利文献1)。

专利文献

专利文献1:日本特开平11-251499号公报



技术实现要素:

发明要解决的课题

然而,例如在想要在路面电车那样的低地板车辆的地板下设置电力变换装置的情况下,由于与地表面的距离的关系,垂直方向上的电力变换装置的高度尺寸成为设置上的制约之一。

本发明是考虑到以上问题而完成的,且要提出一种抑制设置时的垂直方向的高度尺寸而容易搭载到低地板车辆上的电力变换装置。

用于解决课题的技术方案

为了解决上述课题,在本发明中,其特征在于:具备:功率半导体模块,根据对p极端子以及n极端子的通电方式分别驱动上臂功率开关元件和下臂功率开关元件;栅极驱动装置,控制经由所述p极端子以及所述n极端子的对所述功率半导体模块的通电;滤波电容器,在所述功率半导体模块侧形成有分别与所述p极端子以及所述n极端子连接的多个端子;冷却器,经由所述功率半导体模块接触的给定面对所述功率半导体模块进行冷却;以及多个薄板状汇流条,分别将所述p极端子以及所述n极端子与所述多个端子电连接,所述滤波电容器沿着所述给定面配置在所述功率半导体模块的附近,并且所述多个端子配置在所述p极端子以及所述n极端子侧,所述多个薄板状汇流条沿着相对于所述给定面大致垂直的方向并行地形成。

发明效果

根据本发明,能够抑制设置时的垂直方向的高度尺寸而容易地搭载到低地板车辆上。

附图说明

图1是示出搭载根据第一实施方式的电力变换装置的铁道车辆的结构例的部分剖面图。

图2是示出图2所示的电力变换装置的结构例的上表面立体图。

图3是示出图2所示的电力变换装置的结构例的底面立体图。

图4是示出图2所示的电力变换装置的结构例的侧面立体图。

图5是示出图2所示的电力变换装置的主电路以及控制逻辑部的结构例的电路图。

图6是示出电力变换装置的基本结构的一个例子的剖视图。

图7是将图6所示的范围w的部分放大的图。

图8是示出从元件安装面侧观察图2所示的电力变换装置的主电路部的情况下的结构例的立体图。

图9是示出功率半导体模块的结构例的俯视图以及电路图。

图10是示出图9的(a)所示的功率半导体模块的结构例的立体图。

图11是示出根据第二实施方式的电力变换装置的结构例的立体图。

图12是示出根据第三实施方式的电力变换装置的结构例的立体图。

图13是示出根据第四实施方式的电力变换装置的结构例的立体图。

图14是示出根据第五实施方式的电力变换装置的结构例的立体图。

图15是示出根据第六实施方式的电力变换装置的结构例的俯视图。

图16是示出根据第七实施方式的电力变换装置的部分的结构例的俯视图。

图17是示出根据第八实施方式的电力变换装置的结构例的俯视图。

图18是示出根据第九实施方式的电力变换装置的结构例的俯视图。

图19是示出根据第十实施方式的电力变换装置的结构例的俯视图。

具体实施方式

以下,针对附图,对本发明的一个实施方式进行详细叙述。

(1)第一实施方式

(1-1)结构例

图1示出具备根据第一实施方式的电力变换装置1的铁道车辆的概略结构例。该铁道车辆是通过未图示的动力用车轮109在线路110上行驶的低地板车辆,在车身104的地板下,具备鼓风机105、通风室102以及电力变换装置1。

电力变换装置1收纳在安装于车身104的地板下的框体101内,例如在空冷式的情况下,通过将在通风室102中流动的冷却风103吹到散热构件来进行冷却。以下,对电力变换装置1的结构进行详细说明。

图2~图4分别示出图1所示的电力变换装置1的结构例。另外,图2表示从上方观察电力变换装置1的上表面的情况下的外观的一个例子,图3表示从下方观察电力变换装置1的底面的情况下的外观的一个例子,图4表示从稍上方观察电力变换装置1的侧面的情况下的外观的一个例子。

电力变换装置1是从单相交流产生直流或者从直流产生三相交流的装置,一般地,前者被称为转换器,后者被称为逆变器。

首先,转换器具有将来自交流电源的单相交流电压变换为直流电压并对直流电压平滑用的滤波电容器3进行充电的功能,由二相的支线(1eg)构成。

与此相对,逆变器具有通过使功率半导体模块所具备的各功率开关元件的导通/截止的比率连续地变化而将充电到滤波电容器3中的直流电压变换为交流电压的功能,构成三相的支线。由此,逆变器产生三相交流,将该三相交流经由u相汇流条91、v相汇流条92以及w相汇流条93对功率半导体模块的各功率开关元件进行通电,并对设置在车身104的地板下的台车上安装的电动机(未图示)进行驱动。转换器以及逆变器均通过对各功率开关元件进行通电控制来实施电力变换。

作为这种功率开关元件,能够举出具有导通电阻以及驱动电流小并且开关速度快这样的特征的si-igbt。或者,也可以采用能够进行更高速的开关动作的sic-mosfet。

电力变换装置1基本上具备支承框(框架)6、功率半导体模块、冷却器5、汇流条7、8、9、滤波电容器3以及栅极驱动装置4。

功率半导体模块2例如具备u相、v相以及w相的p极以及n极的功率开关元件。各功率开关元件在通电时以及切断时发热。对于功率半导体模块2的细节,将在后面叙述。

冷却器5具有对在通电时以及切断时消耗大电力而发热的功率半导体模块进行冷却的功能。冷却器5能够采用空冷式或者水冷式。作为空冷式,能够采用散热器方式、热管方式或者散热片方式。

冷却器5例如具备矩形的平板状的冷却块51,并且具备配置在冷却块51的一个面(在图示中相当于朝上的面)的大致中央的箱形状的散热构件52。

冷却器5在冷却块51的另一个面51a(在图示中相当于朝下的面)中的相对的矩形的两边部附近分别由支承框6支承。另外,沿着该另一个面51a配置功率半导体模块2。以下,也将该另一个面51a称为“元件安装面”。对于功率半导体模块2,支承框6是构成电力变换装置1的基本骨架,作为其功能,在固定于框体101或保持冷却器5及其他构成设备等时使用。

这些支承框6是以从冷却块51的上述另一个面51a向大致垂直的方向竖立的方式固定的矩形的平板状的构件,并成为如下结构,即该平板部分当中不与冷却块51的上述另一个面51a接触的另一个边构件在与该另一个面51a平行的方向上向外侧折弯的结构。该折弯而构成的该另一个边构件的一个面例如在将电力变换装置1安装于低地板车辆的底部时被固定于该底部。

图5示出电力变换装置1的主电路以及控制逻辑部100的结构例。一般地,铁道的馈电方式存在交流式以及直流式。主电动机也存在交流电动机以及直流电动机。因此,根据馈电方式和电动机的组合,电力变换装置1中也可以单独具有逆变器或者转换器或者两者的组合。在本实施方式中,作为一个例子,对适用于直流馈电方式和交流电动机的组合的情况下的逆变器进行说明。

本实施方式中的主电路成为如下结构,即具有连接在作为直流端子的p极汇流条7和n极汇流条8之间的电气电路路径中的滤波电容器3以及三相逆变器的结构。

三相逆变器将输入的直流变换为任意频率以及任意电压的三相交流,并将三相交流输出到交流端子u、v、w。该三相逆变器具备u相211、v相212、w相213这六组功率开关元件(pu、nu、pv、nv、pw、nw)。

各相的功率开关元件具备元件和与该元件并联连接的续流二极管。在图示的例子中,作为功率开关元件,电路符号作为一个例子是si-igbt,但也可以取而代之是sic-mosfet。

控制逻辑部100与电力变换装置1分开设置,并在通电控制时经由栅极驱动装置4将控制信号输出到电力变换装置1。控制逻辑部100通过该控制信号驱动功率半导体模块2的各功率开关元件。

栅极驱动装置4隔着滤波电容器3配置在与冷却器5相反的面侧。该栅极驱动装置4也可能存在安装的电子部件由于热的影响而进行误动作或寿命变短的情况。例如功率半导体模块2以及汇流条7、8、9那样的布线等自己发热,附近可能成为高温,因此优选栅极驱动装置4配置在能够避免来自周围的发热部件的热的影响的位置。

图6是示出电力变换装置1的基本结构的一个例子的剖视图,图7是将图6所示的范围w的部分放大的图。图8是示出从元件安装面侧观察图2所示的电力变换装置1的主电路部的情况下的结构例的立体图。

图9的(a)以及图9的(b)分别是示出功率半导体模块2的结构例的俯视图以及电路图。图10是图9的(a)所示的功率半导体模块2的立体图。

首先,使用图9的(a)、图9的(b)以及图10对功率半导体模块2的结构例进行说明。在该功率半导体模块2中,使用所谓的2in1封装体的结构。在此,2in1的意思是图9的(b)所示的p极用上臂的元件组11和n极用下臂的元件组12被收纳在一个封装体内。这种2in1结构的封装体的功率半导体模块2的特征之一在于,如图9的(a)以及图10所示,能够将p极端子21和n极端子22靠近设置。

在封装体中,设有p极端子21、n极端子22以及m极端子23和信号输入端子24、25。信号输入端子24是用于驱动上臂的元件组11的端子,信号输入端子25是用于驱动下臂的元件组12的端子。

接下来,对使用了功率半导体模块2的电力变换装置1的结构进行说明。在功率半导体模块2中,相对于具备冷却块51以及散热构件52的冷却器5,安装为p极端子21以及n极端子22侧成为内侧朝向,并且安装为m极端子23侧成为外侧朝向。

首先,在电力变换装置1中,为了与外部设备的电连接,设有各汇流条7、8、9、13、14。另外,p极汇流条7和n极汇流条8分别表示汇流条13、14的端部。为了抑制导体的发热,这些汇流条7、8、9、13、14采用体积电阻率小的铜作为材料,并且导体剖面积构成为较大。特别是在要求轻型化的情况下,有时也采用铝作为其材质。

通过使粘贴了用于绝缘的薄膜的薄的平板状的汇流条13、14靠近并使其沿着汇流条13、14,来确保功率半导体模块2的p极端子21以及n极端子22和滤波电容器3的各端子10之间的各个电连接。由于该汇流条13、14的存在,能够减少主电路的电感。

如图8所示,在p极端子21以及n极端子22上,p极薄板状汇流条13以及n极薄板状汇流条14在相对于功率半导体模块2的安装面垂直的方向上立起并且分别以对置的朝向靠近而固定,该p极薄板状汇流条13以及n极薄板状汇流条14用于分别将功率半导体模块2和滤波电容器3电连接。这是为了减少p极薄板状汇流条13以及n极薄板状汇流条14的电感。越成为p极薄板状汇流条13和n极薄板状汇流条14的距离短的结构,越能够将电感抑制得较低,但是若设为这种结构,则绝缘耐压会变低,从而成为制约。

滤波电容器3沿着功率半导体模块2的长度方向且沿着冷却器5的冷却块51的元件安装面51a设置在功率半导体模块2的附近,并且多个端子10配置在p极端子21以及n极端子22侧。即,滤波电容器3的多个端子10以图6以及图7所示的线图的朝向而在水平方向上设置在功率半导体模块2侧,将p极薄板状汇流条13和n极薄板状汇流条14连接。

一般地,图6所示的栅极驱动装置4存在安装的电子部件由于热的影响而进行误动作或寿命变短的可能性。在此,功率半导体模块2、电线以及汇流条等自己发热,附近可能成为高温。因此,要求栅极驱动装置4避开来自周围发热部件的热的影响而配置,因此以图6以及图7所示的线图的朝向配置在滤波电容器3的正下方。

若设为这种结构,则由于滤波电容器3和栅极驱动装置4不会在功率半导体模块2的端子面侧(按图6以及图7所示的线图的朝向,功率半导体模块2的正下方)重叠,因此能够忽略功率半导体模块2的高度以及与栅极驱动装置4等的空间绝缘距离等。因此,如图6所示,根据本实施方式的电力变换装置1在垂直方向上的高度尺寸a成为最小,向低地板车辆进行搭载变得更容易。

进而,在本实施方式中,由于能够使功率半导体模块2的p极端子21以及n极端子22和滤波电容器3的端子10之间的距离b最短,因此能够减少主电路的电感。

在此,在将电感设为l,将时间设为t的情况下,在将功率半导体模块2内的各功率开关元件中流过的电流i切断时可能产生的跳变电压v如下式所示。

v=l×di/dt

若跳变电压v超过功率开关元件的额定值,则会损坏功率开关元件或寿命变短,因此产生了使流过功率开关元件的电流变小的制约。作为针对于此的具体的对策,也可以设为将多个功率半导体模块2并行排列而使用。

如上所述,根据本实施方式,由于能够将电感l抑制到最小,因此能够将上述那样的制约限制在最小限度。

(2)第二实施方式

根据第二实施方式的电力变换装置1a是与根据第一实施方式的电力变换装置1大致同样的结构,并且主要执行大致同样的动作,因此对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图11是示出根据第二实施方式的电力变换装置1a的结构例的立体图。在本实施方式中,对冷却器5的散热构件52采用散热片方式。在本实施方式中,使功率半导体模块2和平面状的散热片15的安装朝向一致。即,散热片15沿着功率半导体模块2中的p极端子21和n极端子22的排列方向安装。

若设为这种结构,则不仅能够获得根据第一实施方式的效果,而且能够简化p极薄板状汇流条13以及n极薄板状汇流条14的结构,并且能够将冷却块51的宽度尺寸w抑制得较小,因此能够减小通风室102(参照图1)的通路剖面积。由此,能够使电力变换装置1a更小型化。

(3)第三实施方式

根据第三实施方式的电力变换装置1b是与根据第一实施方式的电力变换装置1大致同样的结构,并且执行大致同样的动作,因此对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图12是示出根据第三实施方式的电力变换装置1b的结构例的立体图。在本实施方式中,对冷却器5的散热构件52采用热管方式。

若设为这种结构,则能够获得与第一实施方式同样的效果。

(4)第四实施方式

根据第四实施方式的电力变换装置1c是与根据第一实施方式的电力变换装置1大致同样的结构,并且执行大致同样的动作,因此对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图13是示出根据第四实施方式的电力变换装置1c的结构例的立体图。在本实施方式中,对冷却器5的散热构件52采用散热器方式。

若设为这种结构,则能够获得与第一实施方式同样的效果。

(5)第五实施方式

根据第五实施方式的电力变换装置1d是与根据第一实施方式的电力变换装置1大致同样的结构,并且执行大致同样的动作,因此对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图14是示出根据第五实施方式的电力变换装置1d的结构例的立体图。在本实施方式中,取代以前的实施方式那样的方式的冷却器5,采用水冷方式的冷却器5。

若设为这种结构,则不仅能够获得根据第一实施方式的效果,而且水冷方式不需要在冷却器5内具备暴露于冷却风103的散热构件52,因此在与根据第一实施方式的电力变换装置1相比的情况下,能够将电力变换装置1d设为更薄的结构。

(6)第六实施方式

根据第六实施方式的电力变换装置1e是与根据第一实施方式的电力变换装置1大致同样的结构,并且执行大致同样的动作,因此对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图15示出根据第六实施方式的电力变换装置1e的结构例的俯视图。在图示的例子中,将滤波电容器3配置在功率半导体模块2的上风侧。

若设为这种结构,则由于滤波电容器3的允许温度低于功率半导体模块2,因此如附图标记sh所示,通过配置在发热的功率半导体模块2的冷却风ca的上风,从而能够即使在更高的周围环境温度下也能够使用。

(7)第七实施方式

根据第七实施方式的电力变换装置1f是与根据第一实施方式的电力变换装置1大致同样的结构,并且执行大致同样的动作,因此对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图16是示出根据第七实施方式的电力变换装置1f的部分的结构例的俯视图。在本实施方式中,滤波电容器3的端子10配置在在元件安装面51a的垂直方向上相对于滤波电容器3的中心偏心的位置。即,成为如下结构,即垂直方向上的滤波电容器3中的从冷却块51的元件安装面51a到端子10的中心的尺寸c、和在滤波电容器3中从与上述元件安装面51a相接的面相反侧的面到该中心的尺寸d不相等的结构。

若设为这种结构,则通过在确保空间绝缘距离以及沿面距离的同时,使功率半导体模块2的p极端子21或者n极端子22和滤波电容器3的端子10之间的距离b最短,从而能够减少主电路的电感l。

(8)第八实施方式

根据第八实施方式的电力变换装置1g是与根据第一实施方式的电力变换装置1大致同样的结构,并且执行大致同样的动作,因此对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图17是示出根据第八实施方式的电力变换装置1g的结构例的俯视图。在本实施方式中,在冷却块51的与滤波电容器3相对的面和滤波电容器3的与冷却块51相对的面之间设有空隙s。另外,该空隙s设置在滤波电容器3和冷却块51相对的整个面或者部分的一部分的面上。

这样,通过在滤波电容器3和冷却块51之间设置空气层而隔热,滤波电容器3难以受到来自功率半导体模块2的热。此外,由于滤波电容器3的允许温度比功率半导体模块2低,因此即使在进行冷却块51的温度超过滤波电容器3的允许温度那样的使用方法的情况下,由于冷却风通过空隙s,因此冷却效率进一步提高。此外,也可以在支承框6或者框体101内设置散热片,使冷却风在框体101内循环,使冷却风通过空隙s。

(9)第九实施方式

根据第九实施方式的电力变换装置1h是与根据第八实施方式的电力变换装置1g大致同样的结构,并且执行大致同样的动作,因此,对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图18是示出根据第九实施方式的电力变换装置1h的结构例的俯视图。在本实施方式中,与第八实施方式同样地在冷却块51的与滤波电容器3相对的面和滤波电容器3的与冷却块51相对的面之间设有空隙s,进而在该空隙s填充有隔热构件17。另外,填充在该空隙s中的隔热构件17设置在滤波电容器3和冷却块51相对的整个面或者局部的一部分的面上。

若设为这种结构,则即使在进行冷却块51的温度超过滤波电容器3的允许温度那样的使用方法的情况下,根据隔热构件17的材质,冷却效率也比第八实施方式进一步提高。

(10)第十实施方式

根据第十实施方式的电力变换装置1i是与根据第一实施方式的电力变换装置1大致同样的结构,并且执行大致同样的动作,因此对于同样的结构以及动作省略说明,以下将以不同点为中心进行说明。

图19是示出根据第十实施方式的电力变换装置1i的结构例的俯视图。在本实施方式中,用于冷却由功率半导体模块2产生的发热sh的冷却器5的散热构件52设置在元件安装面的大致正上方表面上,该元件安装面是功率半导体模块2和冷却块51的接触面。

通过这样将散热构件52的设置面积设为最低限度,能够实现电力变换装置1i的轻型化,并且作为使重心位置尽可能靠近电力变换装置1i的中央部的结构,能够改善电力变换装置1整体的重量平衡。

此外,通过将通风方向的长度相对于冷却风设为最小限,能够将上述的鼓风机105(参照图1)的动力抑制为最小限度,因此能够实现基于鼓风机105的轻型化以及省电力化的节能,并且能够实现运行成本的减少。

(11)其他实施方式

上述实施方式是用于说明本发明的例示,并不旨在将本发明仅限于这些实施方式。本发明只要不脱离其主旨,就能够以各种方式实施。

工业实用性

本发明能够广泛应用于搭载有功率半导体模块的电力变换装置。

附图标记说明

1……电力变换装置、2……功率半导体模块、3……滤波电容器、4……栅极驱动装置、5……冷却器、51……冷却块、51a……元件安装面(给定面)、51b……面、52……散热构件、6……支承框(框架)、7……p极汇流条、8……n极汇流条、9……m极汇流条、10……端子、13……p极薄板状汇流条、14……n极薄板状汇流条、15……散热片、16……热管式冷却器、17……隔热构件、91……u相汇流条、92……v相汇流条、93……w相汇流条、100……控制逻辑部、101……框体、102……通风室、103……冷却风、104……车身、105……鼓风机。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1