用于电能变换器的基本单元、电能变换器及通用功率接口

文档序号:25990410发布日期:2021-07-23 21:01阅读:132来源:国知局
用于电能变换器的基本单元、电能变换器及通用功率接口

本发明涉及微电网领域,特别是涉及一种用于电能变换器的基本单元、电能变换器及通用功率接口。



背景技术:

交直流混合微网是智能电网的重要组成部分。与单一的交流或直流微网相比,混合微网之间可互相提供功率支撑,从而改善系统供电可靠性,提高重要负荷的供电稳定性。在混合微网中,存在多种电能变换环节,具体为:单相整流与逆变、直流升压、直流降压以及三相整流与逆变。为实现上述电能变换,所用变换器的拓扑和功能差异较大,不同电能变换对应的变换器相互间不具备替换性,这不但增加了系统的制造成本,而且加大了后期维护的难度。



技术实现要素:

本发明的目的是提供一种用于电能变换器的基本单元、电能变换器及通用功率接口,以降低微网系统的制造成本,降低后期维护的难度。

为实现上述目的,本发明提供了如下方案:

一种用于电能变换器的基本单元,包括:电感、功率半桥、第一端口、第二端口、第三端口和第四端口;电感的一端连接至功率半桥的中点,电感的另一端连接至第一端口;功率半桥的下桥臂的源极连接至第二端口和第四端口,功率半桥的上桥臂的漏极连接至第三端口。

本发明还提供一种电能变换器,电能变换器包括前述的基本单元,且电能变换器中基本单元的个数为3~6n,n为大于1的整数;电能变换器的所有基本单元的第三端口均与输出电容的第一端和直流母线的正极连接,电能变换器的所有基本单元的第四端口均与输出电容的第二端和直流母线的负极连接。

本发明还提供一种通用功率接口,通用功率接口用于前述的电能变换器,电能变换器通过通用功率接口与微网中的负载或能量源连接;

通用功率接口包括第一功率接口和第二功率接口,第一功率接口包括6n个第一端口和6n个第二端口,第二功率接口包括6n个第三端口和6n个第四端口,第一功率接口的6n个第一端口和第二功率接口的6n个第三端口一一对应连接,第一功率接口的6n个第二端口与第二功率接口的6n个第四端口一一对应连接;n为大于0的整数;

电能变换器中所有基本单元的第一端口分别一对一连接至第一功率接口的多个第一端口;电能变换器中所有基本单元的第二端口分别一对一连接至第一功率接口的多个第二端口;

微网中的负载或能量源连接至第二功率接口。

根据本发明提供的具体实施例,本发明公开了以下技术效果:

本发明提供的基本单元可以适用于多种类型的电能变换器,具有通用性。本发明提供的电能变换器采用通用的基本单元构成,可以实现不同的电能变换功能,简化了系统设计,降低了制造成本,并且有利于后期的维护。

另外,本发明提供一种通用化功率接口,统一了标准化电能变换器与微网中各类型负载或能量源的连接方式,简化了系统布线,进一步降低了制造成本,有利于混合微网的后期维护。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明基本单元的结构示意图;

图2为本发明电能变换器用于直流升压或直流降压时基本单元的连接示意图;

图3为本发明电能变换器用于单相整流与逆变时基本单元的连接示意图;

图4为本发明电能变换器用于三相整流与逆变时基本单元的连接示意图;

图5为本发明通用化功率接口与电能变换器的连接示意图;

图6为本发明不同类型负载或能量源与第二功率接口的连接示意图;

图7为本发明实施例中电能变换器与通用化功率接口的连接示意图;

图8为本发明实施例中实现dc-dc功能的电能变换器与通用化功率接口的连接示意图;

图9为本发明实施例中实现光伏mppt功能的电能变换器与通用化功率接口的连接示意图;

图10为本发明实施例中实现单相整流和逆变功能的电能变换器与通用化功率接口的连接示意图;

图11为本发明实施例中实现三相整流和逆变功能的电能变换器与通用化功率接口的连接示意图;

图12为本发明实施例中构建的交直流混合微网系统的电能变换器与通用化功率接口的连接示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

微网中存在多种类型的负载和能量源,其与相应变换器的功率接口通常是不同的。单相负载或单相交流源的功率接口通常为两线(l极、n极);三相负载或三相交流源的功率接口通常为三相四线,即包含u、v、w三相和地线;直流负载或直流源的功率接口通常为两线,即直流正负两极。

电能变换器的多样性和相互不可替换性增加了混合微网的制造成本和后期维护难度,功率接口的差异性进一步增大了混合微网的复杂性;因此,本发明提出基本单元和基本单元构成的新型标准化变换器拓扑以及通用化功率接口,并以此来构建标准化、模块化的交直流混合微网具有十分重要的意义。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

本发明首先提出一种用于电能变换器的基本单元,如图1所示,基本单元包括:电感l、功率半桥hb、第一端口a、第二端口b、第三端口c和第四端口d。电感l的一端连接至功率半桥hb的中点,电感l的另一端连接至第一端口a;功率半桥hb的下桥臂的源极同时连接至第二端口b和第四端口d,功率半桥hb的上桥臂的漏极连接至第三端口c。基于该基本单元,可以通过基本单元的组合形成标准化的电能变换器,该标准化的电能变换器可以实现多种电能变换。具体电能变换器实现不同电能变换时的连接关系参见图2-图5所示。

如图2所示,图2中的电能变换器用于直流升压或直流降压,可实现非隔离型双向直流变换。此时的电能变换器相当于buck-boost变换器,buck-boost变换器所需的基本单元数量为1,因此每一个基本单元都相当于一个buck-boost变换器,,每个基本单元的第一端口a1、第二端口b1分别与直流源(或直流负载)的正、负极相连,第三端口c1与输出电容c0和直流母线dcbus的正极相连,第四端口d1与输出电容c0和直流母线dcbus的负极相连。

如图3所示,图3中的电能变换器用于单相整流与逆变,可实现非隔离型单相整流与逆变。此时的电能变换器相当于单相桥式整流-逆变变换器,单相桥式整流-逆变变换器所需的基本单元数量为2,因此电能变换器中任意两个基本单元可以构成一个单相桥式整流-逆变变换器,符号的下标与基本单元的标号对应,即下标为1表示第一个基本单元,下标为2表示第二个基本单元。基本单元的a1端连接至单相交流源(或单相交流负载)的l极,a2端连接至单相交流源(或单相交流负载)的n极,b1和b2端悬空;基本单元的c1、c2端与输出电容和直流母线的正极相连,d1、d2端与输出电容和直流母线的负极相连。

如图4所示,图4中的电能变换器用于三相整流与逆变,可实现非隔离型三相整流与逆变。此时的电能变换器相当于三相桥式整流-逆变换能器,三相桥式整流-逆变换能器需要的基本单元数量为3,因此,电能变换器中任意三个基本单元可以构成一个三相桥式整流-逆变换能器,符号的下标与基本单元的标号对应,即下标为1表示第一个基本单元,小标为2表示第二个基本单元,下标为3表示第三个基本单元。基本单元的a1~a3端分别连接至三相交流源(或三相交流负载)的u、v、w相,基本单元的b1~b3端悬空,c1~c3端与输出电容和直流母线的正极相连,d1~d3端与输出电容和直流母线的负极相连。

基于前述的电能变换器,本发明还提供一种通用功率接口,电能变换器通过通用功率接口与微网中对应类型的负载或能量源连接,可以实现多种电能变换。实现非隔离型直流升降压、单相整流及逆变、三相整流及逆变等非隔离型电能变换环节,最少需要的基本单元数量分别为1、2、3。为具备上述全部电能变换功能,标准化电能变换器所需基本单元数量至少为3个,但是为了有效利用基本单元,因此,本申请的通用功率接口的每一类端口均设计为6n个。

如图5所示,通用功率接口包括第一功率接口和第二功率接口,第一功率接口为连接电能变换器的部分,第二功率接口为连接负载或能量源的部分。第一功率接口包括6n个第一端口a1~a6n和6n个第二端口b1~b6n,第二功率接口包括6n个第三端口a1~a6n和6n个第四端口b1~b6n,第一功率接口的6n个第一端口a1~a6n和第二功率接口的6n个第三端口a1~a6n一一对应连接,第一功率接口的6n个第二端口b1~b6n与第二功率接口的6n个第四端口b1~b6n一一对应连接。

第一功率接口与电能变换器连接时,电能变换器中所有基本单元的第一端口分别一对一连接至第一功率接口的多个第一端口,电能变换器中所有基本单元的第二端口分别一对一连接至第一功率接口的多个第二端口。电能变换器中所有基本单元的个数最大为6n。当包括6n个基本单元时,基本单元的6n个端口c1~c6n与输出电容和直流母线的正极相连;基本单元的6n个端口d1~d6n与输出电容和直流母线的负极相连。第一功率接口的端口a1~a6n与基本单元的a1~a6n端口相连,第一功率接口的端口b1~b6n与基本单元的b1~b6n端口相连。

具体的,电能变换器实现不同的电能变换时,第二功率接口与负载或能量源的连接方式不同。如图6所示,图6中(a)部分为第二功率接口与直流负载或直流源连接的示意图,图6中(b)部分为第二功率接口与单相交流负载或单相交流源连接的示意图,图6中(c)部分为第二功率接口与三相交流负载或三相交流源连接的示意图。

如图6中(a)部分及图5所示,电能变换器包括m个基本单元,当电能变换器用于直流升压或直流降压时,此时电能变换器的m个基本单元的第一端口分别连接至第一功率接口的m个第一端口,m个基本单元的第二端口分别连接至第一功率接口的m个第二端口。此时,与第一功率接口的m个第一端口对应的第二功率接口中m个第三端口a1~am串联后与直流负载(或直流源)的正极连接,与第一功率接口的m个第二端口对应的第二功率接口中m个第四端口b1~bm串联后与直流负载(或直流源)的负极连接。基于上述连接方式,此时的电能变换器相当于m个buck-boost变换器。

如图6中(b)部分及图5所示,电能变换器包括2n个基本单元,当所述电能变换器用于单相整流与逆变时,将电能变换器中的2n个基本单元划分为n组,每组包括2个基本单元。电能变换器的2n个基本单元的第一端口分别连接至第一功率接口的2n个第一端口,2n个基本单元的第二端口分别连接至第一功率接口的2n个第二端口。此时,第二功率接口的第三端口分为两部分,与第一功率接口的第一组第一端口对应的n个第三端口a1~an串联后与单相交流负载(或单相交流源)的l极连接,与第一功率接口的第二组第一端口对应的n个第三端口an+1~a2n串联后与单相交流负载(或单相交流源)的m极连接;第四端口b1~b6n悬空。第一组第一端口和第二组第一端口均包括n个端口,第一组第一端口和第二组第一端口分别与电能变换器的2n个基本单元的第一端口连接。基于上述连接方式,此时电能变换器相当于n个单相桥式整流-逆变变换器并联。

如图6中(c)部分及图5所示,电能变换器包括3h个基本单元,当该电能变换器用于单相整流与逆变时,将电能变换器中的3h个基本单元划分为h组,每组包括3个基本单元。电能变换器的3h个基本单元的第一端口分别连接至第一功率接口的3h个第一端口,3h个基本单元的第二端口分别连接至第一功率接口的3h个第二端口。此时,第二功率接口的端口a1~a3h平均分为三部分,第二功率接口中与第一功率接口的第一组第一端口对应的h个第三端口a1~ah串联后与三相交流源(或三相交流负载)的u相连接,第二功率接口中与第一功率接口的第二组第一端口对应的h个第三端口ah+1~a2h串联后与三相交流源(或三相交流负载)的v相连接,第二功率接口中与第一功率接口的第三组第一端口对应的h个第一端口a2h+1~a3h串联后与三相交流源(或三相交流负载)的w相连接;第四端口b1~b3h悬空。第一组第一端口、第二组第一端口和第二组第三端口均包括h个端口,第一组第一端口、第二组第一端口和第二组第三端口分别与电能变换器的3h个基本单元的第一端口连接。基于上述连接方式,此时标准化电能变换器相当于h个三相桥式整流-逆变变换器并联。

下面提供一个具体实施例,进一步说明本发明的上述方案。本实施例为6个基本单元构成的电能变换器及相应的通用功率接口,连接关系如图7所示。以此为基础,可实现交直流混合微网所需的非隔离型电能变换,具体实施方式如下。

(1)非隔离型dc-dc变换的实现

基于电能变换器和通用功率接口,实现dc-dc变换功能,如图8所示,对于第二功率接口,a1~a6连接至直流负载或直流源的正极,b1~b6连接至直流负载或直流源的负极;对于第一功率接口,a1~a6与基本单元的电感相连,b1~b6与半桥下桥的源极相连。此时,电能变换器可作为6个并联的buck-boost变换器,基于该变换器可实现直流升降压及能量双向流动等非隔离型dc-dc变换功能。

(2)非隔离型光伏mppt的实现

基于电能变换器和通用功率接口,实现光伏mppt功能,如图9所示,对于负载或能量源侧的第二功率接口,a1~a6连接至光伏阵列的正极,b1~b6连接至光伏阵列的负极;对于电能变换器侧的第一功率接口,a1~a6与基本单元的电感相连,b1~b6与半桥下桥的源极相连。此时,电能变换器仍为6个并联的buck-boost变换器,基于该变换器可实现对光伏阵列的最大功率点跟踪。

(3)非隔离型单相整流和逆变的实现

基于电能变换器和通用功率接口,实现单相整流和逆变功能,如图10所示,对于负载或能量源侧的第二功率接口,a1~a3连接单相负载或单相交流源的l极,a4~a6连接单相负载或单相交流源的n极;对于电能变换器侧的第一功率接口,a1~a6与基本单元的电感相连,b1~b6与半桥下桥的源极相连。此时,电能变换器可作为3个并联的桥式整流-逆变变换器,基于该变换器可实现非隔离型单相整流和逆变功能。

(4)非隔离型三相整流和逆变的实现

基于电能变换器和通用功率接口,实现三相整流和逆变功能,如图11所示,对于负载或能量源侧的第二功率接口,a1、a2连接三相负载或三相交流源的u相,a3、a4连接三相负载或三相交流源的v相,a5、a6连接三相负载或三相交流源的w相,b1~b6悬空;对于电能变换器侧的第一功率接口,a1~a6与基本单元的电感相连,b1~b6与半桥下桥的源极相连。此时,电能变换器可作为2个并联的三相桥式整流-逆变变换器,基于该变换器可实现非隔离型三相整流和逆变功能。

(5)构建交直流混合微网系统

基于电能变换器和通用功率接口,构建交直流混合微网系统,如图12所示,图中所有的非隔离型电能变换环节均采用电能变换器,变换器与负载或能量源的连接均采用通用功率接口。混合微网中所有电能变换器的直流输出相互连接,形成共母线结构,从而实现能量互联和功率支撑。

基于上述方案,本发明采用电能变换器,实现了交直流混合微网所需的全部非隔离型电能变换环节,简化了系统设计,降低了制造成本。采用通用功率接口,统一了电能变换器与微网中各种类型负载与能量源的连接方式,实现了混合微网中不同功能变换器的相互替代,降低混合微网的系统复杂度和后期维护难度。并且基于电能变换器和通用功率接口构建的混合微网系统,由于具有良好的模块化特征,其系统布局和散热设计将得到简化,从而有助于提高系统的功率密度。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1