一种用于新能源并网的混合直流输电装置及其输电方法

文档序号:9419696
一种用于新能源并网的混合直流输电装置及其输电方法
【技术领域】
[0001]本发明属于电力系统直流输电技术领域,具体涉及一种用于新能源并网的混合直流输电装置及其输电方法。
【背景技术】
[0002]能源是人类发展的引擎,随着全球经济的不断发展,能源需求与日倶增,传统的化石能源枯竭,水电资源对环境的负面影响,以及核电事故的灾难性,都驱使新能源成为全球可持续发展最重要的课题。当下最重要的新能源是风电和太阳能发电,但风电和太阳能受天气自然因素影响较大,从生成就具有随机性和间隙性,风电站和光伏电站电能输出不稳定,直接接入电网面临安全、稳定运行的巨大考验,一旦电压质量严重下降,将导致电网的电压崩溃,并可能引发大区域面积停电事故,因此,如何将这些输出的电能安全、可靠、稳定地并入电力系统中成为了业界共同关注的焦点。
[0003]基于MMC(Modular Multilevel Converter,模块化多电平换流器)的柔性直流输电技术是当今直流输电领域的重要发展方向,该技术能灵活调节无功功率,有效提高电能质量并确保电网安全稳定运行。在电网互联、城市配电网增容改造、直流电网的形成和新能源并网等领域有着广阔的前景。基于MMC的柔性直流输电技术具备优异的风电和光伏发电并网可控性能和较强的抗干扰能力,还能有效改善低电压穿越能力,满足并网系统对暂态性能的要求,但基于MMC的柔性直流输电一般需要在送端和受端均建设柔性直流换流站,来进行直流电能的输送,导致控制复杂、损耗较大,造价较高。现有技术中新能源并网还有采用交流并网,由于新能源具有不稳定和不可持续的特点,采用这种并网方式会对电网造成较大冲击,影响电网的安全。另外,基于LCC(Line Commutated Converter,电流源换流器)的常规直流技术成熟、损耗较低、可靠性高,但由于采用了不可控电力电子器件,具有不能控制无功功率和谐波多的缺点。
[0004]因此,设计一种新的、能够克服上述缺陷的、用于新能源并网的直流输电装置及其输电方法具有重要应用价值。

【发明内容】

[0005]本发明的目的在于克服现有技术的缺点与不足,提供一种用于新能源并网的混合直流输电装置及其输电方法,该装置及其输电方法用于将分散的新能源并入交流电网,并网的稳定性影响小,成本较低。
[0006]本发明的目的通过以下的技术方案实现:一种用于新能源并网的混合直流输电装置,包括依次相连的第一交流变压器、第一换流阀、架空直流输电线路、第二换流阀、第二交流变压器;所述第一交流变压器的输入端与外部新能源发电装置相连,用于变换新能源发电装置输出的电压,使其二次侧电压与第一换流阀相匹配;所述第一换流阀包括基于MMC的柔性直流换流器,所述第二换流阀包括基于LCC的常规直流换流器;所述第二交流变压器的二次侧匹配交流电网的电压后并网。本发明新能源发电装置侧采用基于MMC的柔性直流换流器+交流电网侧基于LCC的常规直流换流器的组合方式进行混合直流输电,其中基于MMC的柔性直流技术具备优异的新能源发电并网可控性能和较强的抗干扰能力,可改善低电压穿越能力,满足并网系统对暂态性能的要求,而基于LCC的常规直流技术成熟,损耗较低,二者相结合性能彼此互补。
[0007]优选的,所述基于MMC的柔性直流换流器由6个桥臂组成,每个桥臂由电抗器和一混合子模块串联构成,所述混合子模块由至少一个D型子模块、至少一个E型子模块串联构成,上、下两个桥臂联接起来构成一个相单元,三相相互并联组成三相换流桥,其输出端通过第一交流变压器接入新能源发电装置;所述D型子模块为一半桥子模块,所述E型子模块为一箝位双子模块。
[0008]更进一步的,所述D型子模块由两个以IGBT为代表的可关断的器件和反并联二极管构成。通过可关断的器件的作用,可以实现模块输出电压Udsm在电容电压Uc或O之间的切换。
[0009]更进一步的,所述E型子模块由两个等效D型子模块、两个钳位二极管、一反并联二极管VT。、一以IGBT为代表的可关断的器件T。串并联构成。通过可关断的器件的作用,可以实现该模块输出电压Uesm在电容电压2U。或-U。之间的切换,该模块具有可自清除直流故障电流能力。
[0010]优选的,所述基于LCC的常规直流换流器由三相换流桥共6个桥臂组成,每个桥臂由N个大功率晶闸管串联构成,上、下两个桥臂联接起来构成一个相单元,三相相互并联组成三相换流桥,其输出端通过第二交流变压器接入交流电网。
[0011]优选的,第一交流变压器、第二交流变压器一般采用有载调压的方式,通过调节分接头调节其二次侧的基准电压,使得交流系统的电压经过变换后可调节到与第一换流阀、第二换流阀相匹配的二次侧电压,保证脉宽调制的调制度,减小两个换流器输出电压和电流的谐波量,从而使系统中的滤波器的容量降低,减小整个系统的成本。在联结组别方面,第一交流变压器连接新能源发电装置侧和第二交流变压器连接交流电网侧的绕组均采用星形接法,第一交流变压器连接第一换流阀侧、第二交流变压器连接第二换流阀侧的绕组均采用三角形接法。通过选择交流变压器的联结组别可基本消除谐波分量和直流电流分量,还能防止由调制模式引起的零序分量流向交流系统。
[0012]优选的,所述第一换流阀、第二换流阀之间采用直流架空线连接。由于基于MMC的柔性直流换流器可以自清除直流故障电流,采用直流架空线替代传统电缆柔性直流输电线路,可进一步降低直流输电成本。
[0013]优选的,所述第一换流阀、第二换流阀之间设有平波电抗器和直流隔离开关,平波电抗器和直流隔离开关并联。在并网过程中,合理开、合直流隔离开关,降低输电过程中的电能损耗。
[0014]一种基于上述混合直流输电装置的输电方法,包括步骤:
[0015]首次启动新能源发电装置时,交流电网经第二交流变压器、第二换流阀、第一换流阀、第一交流变压器后向新能源发电装置提供启动电源;
[0016]新能源发电装置进入发电状态后,新能源发电装置产生的直流电依次经第一交流变压器、第一换流阀、第二换流阀、第二交流变压器后并入交流电网。
[0017]更进一步的,所述第一换流阀、第二换流阀之间设有平波电抗器和直流隔离开关,平波电抗器和直流隔离开关并联,其输电方法包括步骤:
[0018]首次启动新能源发电装置时,断开直流隔离开关,在第二换流阀的整流和平波电抗器的平波作用下,交流电网向第一换流阀输出稳定的直流,再经第一换流阀的逆变,新能源发电装置在第一交流变压器一侧获得启动电源;
[0019]新能源发电装置进入发电状态后,闭合直流隔离开关,新能源发电装置输出电能,经第一交流变压器后输入到第一换流阀,经第一换流阀整流、第二换流阀的逆变后,经第二交流变压器的二次侧匹配交流电网的电压后并网。
[0020]上述步骤中,由于增加了直流隔离开关,可降低线损,并通过各种控制策略,充分利用柔性直流输电技术可控性好、抗干扰能力较强的优点,实现新能源安全、可靠、稳定地并网。
[0021]本发明与现有技术相比,具有如下优点和有益效果:
[0022]1、本发明新能源发电装置侧采用基于MMC的柔性直流换流器+交流电网侧基于LCC的常规直流换流器的组合方式进行混合直流输电,基于MMC的柔性直流换流器采用MMC的柔性直流换流技术进行独立控制,无需相互协助,可增加输电系统的抗干扰能力,有效改善低电压穿越能力,满足并网系统对暂态性能的要求;基于LCC的常规直流换流器采用常规的LCC直流三相不可控换流桥技术,可显著降低柔性直流输电系统的造价、换流阀功率损耗以及控制的复杂性。
[0023]2、本发明第一换流阀具有可自清除直流故障电流,采用直流架空线替代传统电缆柔性直流输电线路,进一步降低直流输电成本。
[0024]3、本发明第一换流阀的设计和制造具有高度模块化、对称性好的优点,在输电线路发生可恢复故障时,通过闭锁第一换流阀可快速隔离故障,保护新能源发电装置,在故障消除后,再启动运行,不需机械开关配合,安全性和可靠性高。第二换流阀可采用常规的LCC,结构简单、技术成熟。
[0025]4、本发明中的第一换流阀中的D型子模块和E型子模块由多个以IGBT为代表的可关断的器件及其相并联的二级管相互串并联构成,第二换流阀由多个大功率晶闸管串联构成,随着电力电子器件的耐压强度和通流能力的不断提高,这些子模块和换流阀的耐压强度和通流能力也会进一步提高,通过串、并联组合多电平,会形成更高电压等级、更大功率的直流输电系统。
【附图说明】
[0026]图1是本发明装置的结构示意图。
[0027]图2是实施例1中基于MMC的柔性直流换流器的结构示意图。
[0028]图3是实施例1中基于LCC的常规直流换流器的结构示意图。
[0029]图4是图2中D型子模块的结构示意图。
[0030]图5是图2中E型子模块的结构示意图。
【具体实施方式】
[0031]下面结
再多了解一些
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1