一种两级控制器及ac/dc开关电源的制作方法

文档序号:10909366阅读:551来源:国知局
一种两级控制器及ac/dc开关电源的制作方法
【专利摘要】一种两级控制器及AC/DC开关电源,其中两级控制器包括BOOST前级的控制环路、反激后级的控制环路及FA端、FB端,BOOST前级的控制环路和反激后级的控制环路集成在一颗芯片中,芯片仅有一个FA端和一个FB端,芯片的FA端,在反激后级变压器的激磁阶段,为BOOST前级的控制环路,采集和保存BOOST前级的输出电压;在反激后级变压器的去磁阶段,采集和保存反激后级的输出电压,并提供给反激后级的控制环路;芯片的FB端,在反激后级变压器的去磁阶段,对反激后级的输出电压进行采集和保存,进而产生后级开关管的开启信号及关断信号。本实用新型不仅能够应用在有PFC功能的AC/DC电路技术中,以实现减小或移除小功率级别的ACDC输入大电解电容,而且将原本控制所需要的两个控制芯片合二为一,节省了IC引脚和PCB的布板面积。
【专利说明】
_种两级te制商及AG/DG开关电源
技术领域
[0001] 本实用新型涉及AC/DC开关电源产品,特别涉及一种高集成的两级控制方法和实 现上述控制方法的控制器电路,及基于该控制器的AC/DC开关电源。
【背景技术】
[0002] 常规AC/DC产品中,AC输入之后都需要进行整流和滤波来将输入的交流电压转变 为直流电压。针对全输入范围的AC电压而言(85~264VAC),最高的直流电压可能高达375V, 因此此处需要采用较高电压规格的滤波电容;同时,后级的DC/DC电路对要输入其中的直流 电压的纹波要求较高,AC滤波后的纹波如果过大可能会导致后级DC电路停止工作,因此该 滤波电容的容值一般较大(1〇〇此数量级)。在现有电容种类中,只有电解电容能符合高压、 大容值的要求。然而普通AC/DC产品,特别是功率较小的产品中,这个输入电解电容的体积 占到总产品体积的1/4以上,且现阶段国内高压大容值的电解电容普遍存在高温寿命短和 低温时容值不稳定的缺点,这直接制约了整个AC/DC产品的寿命与可靠性的提升。针对以上 问题,减小或移除整流后滤波电容的AC/DC电路技术已经逐渐发展起来。
[0003] 整流后不需要滤波的AC/DC电路技术与有PFC功能的AC/DC电路技术基本相同,且 在20W功率级上,AC/DC产品不需要考虑PF值。因此可以借鉴PFC电路技术来减小滤波电容, 而采用薄膜电容或陶瓷电容来代替。
[0004] 前级PFC电路一般采用BOOST电路方案,目前市场上成熟的方案只是前级BOOST和 后级反激两级电路的简单叠加,所以两个电路的控制模块是独立的。这就要求该产品至少 要包含两个控制芯片,相比起单级产品用单个控制芯片来,一方面,前后级分别用分压电阻 对各自输出采样,则电阻上消耗的功耗更多;另一方面,占用了PCB板更多面积的同时两个 芯片引脚也更多,在PCB板上布线引起的寄生连线的电容也更复杂,输出分压电阻较多情况 下,发生虚焊的概率增大,进而引起电源的炸机风险增加。 【实用新型内容】
[0005] 本实用新型的一个目的是提供一种将BOOST前级和反激后级的控制环路结合起来 的高集成的两级控制方法。
[0006] 与此相应,本实用新型的另一个目的是提供一种将BOOST前级和反激后级结合起 来由单个引脚分时对两级环路进行调控的两级控制器电路。
[0007] 本实用新型的再一个目的是提供一种基于此两级控制的AC/DC开关电源。
[0008] 就产品主题而言,本实用新型提供一种两级控制器,适用于AC/DC中前级开关管和 后级开关管的控制,包括BOOST前级的控制环路、反激后级的控制环路及FA端、FB端,所述 BOOST前级的控制环路和反激后级的控制环路集成在一颗芯片中,所述芯片包括一个FA端 和一个FB端,所述芯片的FA端,在反激后级变压器的激磁阶段,为BOOST前级的控制环路,采 集和保存BOOST前级的输出电压,进而产生前级开关管的关断信号和时钟信号,来对前级开 关管的开关频率和峰值电流进行分别调控;在反激后级变压器的去磁阶段,采集和保存反 激后级的输出电压,以提供上一周期的后级输出电压波形,叠加于后级消磁时间Tds,来选 定上一周期的后级消磁时间Tds的中点时刻为本周期反激后级的采样时刻,并提供给反激 后级的控制环路;所述芯片的FB端,在反激后级变压器的去磁阶段,为反激后级的控制环 路,在反激后级的采样时刻,对反激后级的输出电压进行采集和保存,进而产生后级开关管 的开启信号及关断信号,以通过控制后级开关管的开启和关断,一方面在反激后级恒流阶 段实现消磁时间比后级开关管的周期为恒定值,即Tds/T = C,另一方面也实现对后级开关 管的开关频率和峰值电流调控。
[0009] 优选的,所述的两级控制器还包括连接于BOOST前级的控制环路与反激后级的控 制环路之间的防充爆电路,所述防充爆电路包括计时降幅电路,计时降幅电路在反激后级 为极轻载或空载时,通过计时降幅电路让BOOST前级控制环路的前级峰值电流跟随反激后 级的控制环路的降频和降幅,以将前级峰值电流降至最小幅值,进而减小前级开关管导通 占空比。
[0010] 优选的,所述防充爆电路的计时降幅电路,包括计时器、RS触发器、开关Ml及电阻 R31和电阻R32串联支路,计时器的控制清零端Clr_LSRS触发器的R端接入反激后级的开启 信号,以在每一个后级开关管的开启时刻控制计时器清零;计时器的计数端〇?_1在每一个 前级开关管的开启时刻计数一次,达到设定次数时,输出有效电平让RS触发器翻转,在Q'端 产生高电平输出经开关Ml,以控制开关Ml闭合来短接电阻R32,从而让流过电阻R31和电阻 R32串联支路的前级峰值电流Ipk_BT在串联支路上产生的电压Vpk_BT减小。
[0011]优选的,所述BOOST前级的控制环路,包括前级采样电路、前级电流采样电路、前级 比较判断电路和前级控制信号产生电路,其具体连接关系是,所述的前级采样电路的输入 端口与两级控制器的FA端相连,输出端口与所述的前级比较判断电路的第一输入端口相 连;所述的前级采样电路在反激后级变压器的激磁阶段,将前级输出电压采样并保存,以传 送给前级比较判断电路;所述的前级比较判断电路通过第一输入端口接收前级采样电路的 采样信号,并通过第一输出端口和第二输出端口分别与所述的前级控制信号产生电路的第 一输入端口和第二输入端口连接,以输出调节开关频率的电流和限定前级峰值电流大小的 电流;所述的前级电流采样电路的输入端口与所述控制器的Dra i n 1端相连,前级电流采样 电路的输出与所述的前级控制信号产生电路的第三输入端口连接;所述的前级控制信号产 生电路的输出端口与所述的前级开关管的栅极相连,前级开关管的漏极和源极分别与所述 控制器的Drainl端和地电位相连;前级控制信号产生电路在调频和调幅电流作用下,生成 控制信号控制所述前级开关管的开启和关断。
[0012]优选的,所述的前级采样电路包括:前级采样模块和电阻R1,前级采样模块的输入 端与FA端相连,前级采样模块的输出端与电阻R1的一端相连,电阻R1的一端还连接前级比 较判断电路的输入端,电阻R1的另一端接地;前馈电流以一定的比例镜像放大后降落在所 述的前馈电流采样电阻上,以电压的形式传送到所述的前级比较判断电路的第一输入端; 所述的前级比较判断电路包括:误差放大器和前级跨导放大器,误差放大器的两个输入分 别接前级采样电路的电阻R1的一端和第一基准电压,误差放大器的输出与第二基准电压 Vref2分别接入前级跨导放大器的两个输入,前级跨导放大器的第一输出和第二输出接入 前级控制信号产生电路,用以将前级比较判断电路生成的两路电流Ipk_BT和lose分别输出 给前级控制信号产生电路;所述的误差放大器将前级反馈回的输出电压与所述的基准电压 一作比较,得到的误差放大电压与基准电压二分别作为所述的前级跨导放大器的两个输 入,用来调节产生决定前级工作频率和限定前级峰值电流大小的两路电流输出,二者分别 作为所述的前级控制信号产生电路的第一输入端口和第二输入端口;所述的前级电流采样 电路包括:前级峰值电流检测模块和电阻R2,前级峰值电流检测模块的输入与Drainl端连 接,前级峰值电流检测模块的输出与电阻R2的一端相连,电阻R2的一端还连接前级控制信 号产生电路,电阻R2的另一端接地;在前级开关管导通阶段,前级峰值电流检测模块通过 Drainl端将前级输入电流采集下来并转化成电压,经过所述峰值电压分压电阻分压后,连 接到所述的前级控制信号产生电路的第三输入端口;所述的前级控制信号产生电路包括: 电阻R3、比较器0CP1、振荡器OSC和前级逻辑及驱动模块;所述比较器0CP1的反向输入端与 前级峰值电流检测模块的输出连接,比较器0CP1的正向输入端接入前级比较判断电路的 前级跨导放大器的第一输出的电流Ipk_BT,比较器0CP1的正向输入端还通过电阻R3接地, 用以生成后级开关管的关断信号Toff_BT;所述前级比较判断电路的前级跨导放大器的第 一输出所输出的lose信号,作为振荡器OSC的输入,经振荡器OSC输出时钟信号CLK;振荡器 0SC输出的时钟信号CLK和比较器0CP1输出的关断信号Toff_BT-起连接到前级逻辑及驱动 模块的输入端口,前级逻辑及驱动模块的输出作为前级控制信号产生电路的输出端,用以 与后级开关管的栅极连接;前级峰值限定电流通过所述的前级峰值限定电流转换电阻转换 成电压,与所述的前级电流采样电压分压,一同输入到所述的前级过流保护比较器进行比 较,产生的信号连接至所述的前级逻辑及驱动模块;决定前级工作频率的电流流入所述的 前级振荡器,生成的时钟信号也连接至所述的前级逻辑及驱动模块,产生的信号连也接至 所述的前级逻辑及驱动模块;所述的前级逻辑及驱动模块输出将连接至所述前级开关管的 栅极。
[0013]优选的,所述反激后级的控制环路,包括:后级采样电路、后级比较判断电路、后级 电流采样电路和后级控制信号产生电路,所述后级采样电路的输入与两级控制器的FA端相 连,后级采样电路的输出给到后级比较判断电路的输入端口,用以输出采样到的后级变压 器去磁阶段的时间信号Tds;所述后级比较判断电路的输入端口 C72连接两级控制器的FB引 脚和后级采样电路的输出,后级比较判断电路的输出端口C73输出后级开关管的开启信号 Ton_L和限定后级峰值电流的电压信号Vpk_FB,这两个输出信号分别连接至后级控制信号 产生电路的第一和二输入端口 C91和C9 2;所述后级电流采样电路的输入端口 C81连接两级 控制器的Drain2引脚,其输出端口 C82输出检测到的后级输入电流转化成的电压Vcs_FB给 后级控制信号产生电路的第三输入端口 C93;所述后级控制信号产生电路包含三个输入端 口C91、C92和C93,以及一个输出端口C94,其输出端口C94作为后级控制信号产生电路的输 出端,用以与后级开关管的栅极相连。
[0014]优选的,所述的后级输出电压采样电路包括:快速比较器和后级输出采样模块;FA 端连接至快速比较器的正相输入端,第三基准电压Vref3连接至快速比较器的负相输入端, 快速比较器的输出及FA端一并作为后级输出采样模块的输入,后级输出采样模块的输出连 接后级比较判断电路,用以将信号Tds输出给后级比较判断电路;所述的后级比较判断电路 包括:后级跨导放大器、后级峰值电流限定电阻R4和电压选择模块;所述后级输出采样模块 输出的信号Tds与FB端分别连接至后级跨导放大器的两个输入,后级跨导放大器的第一输 出与后级控制信号产生电路连接,用以输出生成的后级开关管的开启控制信号Ton_L;后 级跨导放大器的第二输出与第四基准电压Vref4-起输入到电压选择模块,电压选择模块 的输出与后级控制信号产生电路连接;所述的后级电流采样电路包括:后级峰值电流检测 模块;后级峰值电流检测模块的输入与Drain2端连接,后级峰值电流检测模块的输出连接 至后级控制信号产生电路;比较器0CP2的正相输入端;所述后级控制信号产生电路包括:比 较器0CP2和后级逻辑及驱动模块,比较器0CP2的正相输入端与后级峰值电流检测模块的输 出连接,比较器0CP2的反相输入端与电压选择模块的输出连接,比较器0CP2的输出连接后 级逻辑及驱动模块,用以输出生成的后级开关管的关断控制信号Toff_FB;比较器0CP2的输 出和后级跨导放大器的第一输出一起连接至后级逻辑及驱动模块的输入,后级逻辑及驱动 模块的输出作为后级控制信号产生电路的输出端。
[0015] 优选的,所述芯片还集成有前级开关管和/或后级开关管,所述前级开关管的漏极 和源极分别与Drainl端和地电位相连;所述后级开关管的漏极和源极分别与Drain2端和地 电位相连。
[0016] 本实用新型还提供一种AC/DC开关电源,包括BOOST前级电路、反激后级电路和上 述的两级控制器,所述BOOST前级电路包括辅助绕组、电阻Rsl和电阻Rs2的串联支路及前级 开关管,所述反激后级电路包括变压器、光耦和后级开关管,所述两级控制器的FA端,与电 阻Rsl和电阻Rs2的串联连接点相连,在反激后级变压器的激磁阶段,为所述BOOST前级的控 制环路,采集和保存BOOST前级的输出电压,进而产生前级开关管的关断信号和时钟信号, 来对前级开关管的开关频率和峰值电流进行分别调控;在反激后级变压器的去磁阶段,采 集和保存反激后级的输出电压,以提供上一周期的后级输出电压波形,叠加于后级消磁时 间Tds,来选定上一周期的后级消磁时间Tds的中点时刻为反激后级的采样时刻,并提供给 反激后级的控制环路;所述两级控制器的FB端,与光耦连接,在反激后级变压器的去磁阶 段,为反激后级的控制环路,在反激后级的采样时刻,对反激后级的输出电压进行采集和保 存,进而产生后级开关管的开启信号和关断信号。
[0017] 本实用新型再提供一种两级控制方法,适用于AC/DC中前级开关管和后级开关管 的控制,是将BOOST前级和反激后级的控制环路结合起来的控制方法,包括如下步骤:在反 激后级变压器的激磁阶段,BOOST前级的输出电压,通过两级控制器的FA端进行采集和保 存,经前级采样模块采样并输出与基准电压进行比较,得到的比较电压输入跨导运放器生 成前级峰值电流Ipk_BT和前级工作频率电流lose两路电流,再转化成前级开关管的关断信 号和时钟信号,来对前级开关管的开关频率和峰值电流进行分别调控;在反激后级变压器 的去磁阶段,反激后级的输出电压,通过两级控制器的FA端进行采集和保存,以提供上一周 期的后级输出电压波形,叠加于后级消磁时间Tds,来选定上一周期的后级消磁时间Tds的 中点时刻为反激后级的采样时刻,控制两级控制器的FB端在反激后级的采样时刻,对反激 后级的输出电压进行采集和保存,通过两级控制器的FB端输入后传送到后级跨导运放器; 经后级跨导运放器后,产生后级开关管的开启信号及后级峰值电流,后级峰值电流再转化 成后级开关管的关断信号,用以通过控制后级开关管的开启和关断,一方面在反激后级恒 流阶段实现消磁时间比后级开关管的周期为恒定值,即Tds/T = C,另一方面也实现对后级 开关管的开关频率和峰值电流的调控。
[0018] 优选的,所述前级采样模块,在反激后级变压器的激磁阶段,将BOOST前级的输出 电压进行采样并保存。
[0019] 优选的,所述反激后级变压器的去磁阶段,通过后级采样模块将反激后级的输出 电压在消磁的中点时刻进行采样并保存。
[0020] 优选的,所述BOOST前级控制环路,在反激后级为极轻载或空载时,通过计时降幅 电路让BOOST前级控制环路的前级峰值电流跟随反激后级的控制环路的降频和降幅,以将 前级峰值电流降至最小幅值,进而减小前级开关管导通占空比。
[0021] 本实用新型所述的一种高集成的两级控制电路和方法,将BOOST前级和反激后级 的控制环路结合起来控制,不仅能够应用在有PFC功能的AC/DC电路技术中,以实现减小或 移除小功率级别的AC/DC输入大电解电容,而且将原本控制所需要的两个控制芯片合二为 一,节省了 1C引脚和PCB的布板面积。且将两个控制电路集成为一个芯片:一方面BOOST和反 激结构的控制1C内部有部分模块的功能和引脚是可以共用的,比如:高压启动电路、基准电 压和基准电流的产生电路以及公共地引脚等;另一方面,两个控制芯片均采用含功率管的 BICMOS工艺,因而从工艺的角度允许二者兼容在同一颗芯片上。而现有两级控制器的采样 是前后级两个独立的环路分别采样前后级的输出电压:其中前级需要选定采样时刻的引脚 和反馈输出电压的引脚各一个,后级也需要选定采样时刻的引脚和反馈输出电压的引脚各 一个,一共是四个引脚。本专利通过对FA引脚进行分时复用实现了前级采样时刻选定、前级 输出电压反馈和后级采样时刻选定三个功能,再结合FB脚对后级输出电压的反馈,这样仅 仅通过两个引脚就实现了对两个环路输出的采样和反馈,具体来说:在后级变压器激磁期 间,利用FA脚将前级输出电压采样并保存,用于调控前级环路的频率和幅值;在后级变压器 去磁期间,利用FA脚波形提取出后级消磁时间Tds,采集到Tds的中点时刻,结合FB脚反馈 回的后级输出电压用于控制后级环路对输出电压的准确采样。这样进一步提高了 1C引脚的 利用率,实现了两个环路的紧密配合工作。
【附图说明】
[0022] 图1是现有BOOST变换器式开关电源的应用电路图;
[0023]图2是现有BOOST变换器正常工作时各点的工作电压、电流波形;
[0024] 图3是现有反激变换器式开关电源的应用电路图;
[0025] 图4是现有反激变换器在断续模式下正常工作时各点工作电压、电流波形;
[0026] 图5是本实用新型提出的一种将BOOST前级和反激后级的控制环路结合起来的两 级控制器的应用电路图;
[0027] 图6是本实用新型实施例一所述的由芯片同一引脚来分时反馈两级的输出电压分 别参与两个环路调控的两级控制器的电路原理框图;
[0028]图7是本实用新型实施例一的两级控制器在正常工作时各点工作电压、电流波形; [0029]图8是本实用新型实施例二的两级控制器的电路原理框图。
【具体实施方式】
[0030]为了更好地理解本实用新型相对于现有技术所作出的改进,在对本实用新型的两 种【具体实施方式】进行详细说明之前,先对【背景技术】部分所提到的现有技术结合附图加以说 明。
[0031]现有常见的BOOST变换器式开关电源的应用电路图如图1所示(小功率情况下不考 虑功率因数校正),其中,BOOST前级的控制环路包括电阻Rsl和电阻Rs2的串联支路及前级 开关管Ml,通过电阻Rsl和Rs2分压采样输出电压与基准在误差放大器中比较,得到的电压 输入跨导运放生成电流来对开关频率和峰值电流进行调控。BOOST变换器的正常工作时各 点的工作电压、电流波形如图2所示,输入电压是以工频(50Hz)工作的,当开关管开启时,电 感激磁使电流上升;开关管关断时,电感去磁使电流下降,输出电压上会有与开关频率相同 频率的纹波。而现有常见的反激变换器式开关电源的应用电路图如图3所示,其中,反激后 级的控制环路包括变压器的辅助绕组、电阻Rs3和电阻Rs4的串联支路及后级开关管M2,在 副边绕组去磁阶段通过检测辅助绕组两端的电压VA大小来采样输出电压,反馈给环路与基 准在误差放大器中比较,得到的电压输入跨导运放生成电流实施恒压恒流的控制,反激变 换器在断续模式下正常工作时各点工作电压、电流波形如图4所示,开关管开启阶段原边 绕组激磁,原边电流逐渐上升至Ippk;当开关管一旦关闭副边电感开始去磁,电流逐渐由峰 值电流Ispk下降至0,这之后进入断续模式的振铃阶段直到下一次开关管再次开启。目前市 场上成熟的方案只是前级BOOST和后级反激两级电路的简单叠加,所以两个电路的控制模 块是独立的两颗芯片。两颗芯片占用PCB板的面积多,引脚也更多。现有两级控制器的采样 是前级控制环路采样前级的输出电压,需要选定采样时刻的引脚和反馈输出电压的引脚各 一个;后级控制环路采样后级的输出电压,也需要选定采样时刻的引脚和反馈输出电压的 引脚各一个,因此,现有两级控制芯片共需四个采样引脚。
[0032] 针对此问题,实用新型人对现有技术进行了深入研究,发现只有打破现有引脚的 功能定义,利用同一个引脚分时复用来控制两个环路,才能进一步减少芯片面积和引脚数 量。基于此基本构思,实用新型人进一步提出改进思路,通过对采样引脚的功能进行重新组 合、定义,将两级控制芯片所需的采样引脚数量,由现有的四个减少为两个。同时还可将前 后级的功率开关管也集成到芯片内部来节省引脚。
[0033] 具体改进思路是通过对前级采样的FA引脚进行分时复用功能定义,以实现前级采 样时刻选定、前级输出电压反馈和后级采样时刻选定三个功能,再结合后级采样的FB脚对 后级输出电压的反馈,这样仅仅通过两个引脚就实现了对两个环路输出的采样和反馈。
[0034] 虽然同在辅助绕组处分时采样前后级输出电压可以用于实现单个引脚反馈控制 两个环路,但仍存在前后级控制配合的风险问题,比如:当后级输出空载时,其频率会下降 至对应的最小频率(0.1~1kHz级别),此时若不对前级作相应处理,它仍会以较高频率工 作,在一个后级电路的工作周期内,前级会出现充爆的危险情况,需提出相应的对策来解决 这个问题。
[0035]基于以上改进构思,本实用新型提供一种高集成的两级控制电路,以将BOOST前级 和反激后级的控制环路结合起来控制。本实用新型同时也提供一种由芯片同一引脚来分时 反馈两级的输出电压分别参与两个环路的调控的两级控制方法。本实用新型还可应用于小 功率的有PFC功能的AC/DC电路技术,以减小电解电容体积。为了使本实用新型的目的、技术 方案及优点更加清楚明白,以下结合附图和实施例,对本实用新型做进一步详细说明。应当 理解,此处所描述的具体实施例仅仅用于解释本实用新型,并不用于限定本实用新型。 [0036] 实施例一
[0037]如图5所示,为应用本实用新型的两级控制器的AC/DC开关电源电路图,是将BOOST 前级和反激后级的控制环路结合起来的两级控制器的应用电路图,BOOST级的控制可以通 过辅助绕组反馈其输出电压的变化,采样该电压拐点处的电压值与基准在误差放大器中比 较,得到的电压输入跨导运放生成电流来对开关频率和峰值电流进行调控。后级反激电路 可工作在断续模式(DCM)下,在变压器去磁阶段(也就是副边绕组向负载和输出电容传输能 量的阶段),也可以通过检测辅助绕组两端的电压大小来采样输出电压并实施恒压恒流的 控制。这样一来前后级都在辅助绕组处采样输出电压,则原本在BOOST级输出处用于采样输 出电压的分压电阻可以移除,这样既节省了系统的功耗,又降低了由于电阻虚焊引起的炸 机风险。更重要的是,基于同一个引脚分时复用来使两级环路结合允许芯片采用更小的封 装,进一步节省封装成本和PCB面积。
[0038]图6是实施例一的两级控制器的电路原理框图。一种将Boost前级和反激后级的控 制环路结合起来的两级控制器,包括:控制器的FA端、控制器的FB端、控制器的Drainl端、控 制器的Drain2端、前级输出电压采样电路101、前级比较判断电路102、前级电流采样电路 103、前级控制信号产生电路104、前级开关管105、后级输出电压中点采样电路106、后级比 较判断电路107、后级电流采样电路108、后级控制信号产生电路109和后级开关管110。 [0039] BOOST前级控制环路111包括:控制器的FA端、控制器的Drainl端、前级输出电压采 样电路101、前级电流采样电路102、前级比较判断电路103、前级控制信号产生电路104、前 级开关管105。
[0040] 前级输出电压采样电路有一个输入端口 Cl 1和一个输出端口 C12,输入端口 Cl 1与 控制器的FA引脚相连,输出端口 C12输出由前馈电流转化成的前级输出采样电压Vo_BT给前 级比较判断电路的输入端口 C21。前级输出采样电路在后级开关管开启的时候,将前级输出 电压采样并保存,传送给所述的前级比较判断电路。
[0041] 前级比较判断电路有一个输入端口 C21和两个输出端口 C22和C23,输出端口 C22输 出限定前级峰值电流大小的电流信号Ipk_BT,输出端口 C23则输出决定前级工作频率的电 流信号lose,两路电流分别连接至前级控制信号产生电路的第一和二输入端口 C41和C42, 用以输出调节开关频率的电流和限定前级峰值电流大小的电流,二者分别对前级电路进行 调频和调幅的控制。
[0042] 前级电流采样电路有一个输入端口 C31和一个输出端口 C32,输入端口 C31与控制 器的Dra i n 1引脚相连,输出端口 C3 2输出检测到的前级输入电流转化成的电压Vc s_BT给前 级控制信号产生电路的第三输入端口 C43;前级控制信号产生电路包含三个输入端口 C41、 C42和C43,以及一个输出端口 C44,其输出端口 C44与前级开关管105的栅极G1相连;前级开 关管的漏极和源极分别与控制器的Drainl端和地电位相连。
[0043]两级控制器中各部分的具体控制结构是,所述的前级输出电压采样电路101包括: 前级输出采样模块和前馈电流采样电阻R11,前级输出采样模块的输入与输入端口 C11相 连,前级输出采样模块的输出与R11的第一端口相连,R11的第一端口也连接至输出端口 C12,R11的第二端口连接至地电平;前馈电流以一定的比例镜像放大后降落在所述的前馈 电流采样电阻上,以电压的形式传送到所述的前级比较判断电路的第一输入端。
[0044]所述的前级比较判断电路102包括:误差放大器和前级跨导放大器,输入端口 C21 和基准电压Vrefl分别是误差放大器的两个输入信号,误差放大器的输出信号VEA与基准电 压Vref2连接至前级跨导放大器作为输入,生成了两路电流Ipk_BT和lose分别从输出端口 C22和C23输出;误差放大器将前级反馈回的输出电压与所述的基准电压一作比较,得到的 误差放大电压与基准电压二分别作为所述的前级跨导放大器的两个输入,用来调节产生决 定前级工作频率和限定前级峰值电流大小的两路电流输出,二者分别作为所述的前级控制 信号产生电路的第一输入端口和第二输入端口。
[0045] 所述的前级电流采样电路103包括:前级峰值电流检测模块和峰值电压分压电阻 R12,前级峰值电流检测模块的输入与输入端口 C31连接,其前级峰值电流检测模块的输出 与R12的第一端口相连,R12的第一端口也连接至输出端口 C32,R12的第二端口连接至地电 平;在前级开关管导通阶段,降落在所述前级开关管内阻上的压降,即对应时刻的Drainl端 电压能够体现前级输入电流的大小,所述的前级峰值电流检测模块将该阶段的Drainl端电 压采集下来,经过所述峰值电压分压电阻分压后,输入到所述的前级控制信号产生电路。
[0046] 所述的前级控制信号产生电路104包括:前级峰值电流转换电阻R3、前级过流保护 电压比较器0CP1、振荡器0SC和前级逻辑及驱动模块;输入端口 C41连接前级比较判断电路 输出的lose信号,作为振荡器0SC的输入,R13的第一端口连接输入端口 C42,第二端口连接 到地电平,输入端口 C43和C42-起输入到前级过流保护电压比较器0CP1,生成的Toff_BT信 号和振荡器0SC的输出信号CLK 一起连接到前级逻辑及驱动模块的输入端口,前级逻辑及驱 动模块的输出与输出端口C44连接。在前级控制信号产生电路中,前级峰值限定电流通过所 述的前级峰值限定电流转换电阻转换成电压,与所述的前级电流采样电压分压,一同输入 到所述的前级过流保护比较器进行比较,产生的信号决定了前级每个周期的关断;同时,决 定前级工作频率的电流流入所述的前级振荡器,生成的时钟信号也连接至所述的前级逻 辑及驱动模块;前级过流保护比较器输出决定开关关断,振荡器产生的时钟信号的下降沿 决定开关开启,二者共同决定开关周期;所述的前级逻辑及驱动模块输出将连接至所述前 级开关管的栅极,来决定前级的开关频率和占空比大小。由于芯片内置前级开关管,其栅极 信号在芯片外围观察不到,开关频率和占空比大小的调节效果可以从开关管漏极,即 Drainl端波形得以体现。
[0047] 反激后级控制环路112包括:控制器的FA端、控制器的FB端、控制器的Drain2端、后 级输出电压中点采样电路106、后级比较判断电路107、后级电流采样电路108、后级控制信 号产生电路109和后级开关管110。
[0048] FB端口是所述的后级比较判断电路的输入端,FB为后级输出电压副边反馈端口, 后级输出电压副边反馈环路由TL431、采样分压电阻、补偿电容和光耦构成,FB端口在所述 的后级输出电压中点采样电路采集到的消磁中点时刻,通过光耦将准确的输出电压反馈回 环路,控制所述的后级跨导放大器产生调节开关频率的电流和调节峰值限定电压的电流, 二者分别对后级电路进行调频和调幅的控制;所述的后级峰值电流限定电阻将后级跨导放 大器生成的调节峰值限定电压的电流转换成电压,与选定的最小峰值限定电压一起输入到 所述的电压选择器,作用在于当后级降幅到一定值时,启用最小峰值限定电压而不会让峰 值电流一直降到最小;所述的后级跨导放大器生成调节后级开关频率的电流被转化成控制 后级每个周期开启的控制信号,与电压选择的输出信号一起输入到所述后级控制信号产生 电路。
[0049] 后级输出电压中点采样电路有一个输入端口 C61和一个输出端口 C62,输入端口 C61与控制器的FA引脚相连,输出端口 C62输出采样到的后级变压器去磁阶段的时间信号 Tds,给到后级比较判断电路的输入端口 C71;后级比较判断电路有两个输入端口 C71和C7 2, 两个输出端口 C7 3和C74,其中输入端口 C7 2连接控制器的FB引脚,输出端口 C7 3输出跨导放 大器产生的控制后级每个周期开启的信号Ton_L,输出端口 C73输出限定后级峰值电流的电 压信号Vpk_FB,这两个输出信号分别连接至后级控制信号产生电路的第一和二输入端口 C91和C9 2;后级电流采样电路由一个输入端口 C81和一个输出端口 C82,输入端口 C81连接控 制器的Dra in 2引脚,输出端口 C8 2输出检测到的后级输入电流转化成的电压Vc s_FB给后级 控制信号产生电路的第三输入端口 C93;后级控制信号产生电路包含三个输入端口 C91、C92 和C93,以及一个输出端口C94,其输出端口C94与后级开关管110的栅极G2相连;后级开关管 的漏极和源极分别与控制器的Drain2端和地电位相连。在后级输出电压中点采样电路中, 快速比较器的输出与FA端电压一起控制后级输出采样模块,在后级变压器去磁阶段,通过 FA反馈回来的输出电压波形,所述的后级输出采样模块一方面可以提取出消磁时间Tds,在 反激拓扑恒流阶段实现Tds/T为恒定值,这里T表示前级开关周期;另一方面也能够通过电 容对上一周期的TDS时间Tdsl进行存储,然后再当前周期消磁时间开始后,经过l/2*Tdsl的 时间,采样所谓的"消磁中点时刻",避开后级开关切换瞬间引起的尖峰干扰电压,采集到 Tds的中点时刻,用于控制后续电路对输出电压的准确采样,连接至后级所述的后级比较判 断电路。
[0050] 所述的后级输出电压采样电路106包括:快速比较器和后级输出采样模块;输入端 口 C61和基准电压Vref 3分别连接至快速比较器的正相和负相输入端,比较器的输出又与输 入端口 C61-并作为后级输出采样模块的输入,后级输出采样模块的输出信号Tds连接至输 出端口 C62;
[0051] 所述的后级比较判断电路107包括:后级跨导放大器、后级峰值电流限定电阻R4和 电压选择模块;输入端口 C71和C72分别连接至后级跨导放大器的两个输入,后级跨导放大 器生成调节后级开关频率的电流,被转化成控制后级每个周期开启的控制信号Ton_L,连接 作为输出端口C73;同时后级跨导放大器也产生了限定后级峰值电流大小的电流信号,连接 至R14的第一端口,对应生成Vpk_FB0信号,R14的第二端口连接至地电位;Vpk_FB0信号和基 准电压Vref 4-起输入到电压选择模块,生成的电压信号Vpk_FB连接至输出端口 C74;
[0052]所述的后级电流采样电路108包括:后级峰值电流检测模块;后级峰值电流检测模 块的输入与输入端口 C81连接,后级峰值电流检测模块的输出为Vcs_FB信号,连接至输出端 口 C82。所述的后级峰值电流检测在后级开关管导通阶段,降落在所述后级开关管内阻上的 压降,即对应时刻的Drain2端电压能够体现后级输入电流的大小,所述的后级峰值电流检 测模块将该阶段的Drain2端电压采集下来,经过分压电阻分压后,连接到所述的后级控制 信号产生电路。
[0053] 所述的后级控制信号产生电路109包括:后级过流保护电压比较器0CP2和后级逻 辑及驱动模块;输入端口 C92和C93分别接至0CP2的两个输入端;0CP2的输出信号和输入端 口 C91 一起连接至后级逻辑及驱动模块,后级逻辑及驱动模块的输出连接至输出端口 C94。 在后级控制信号产生电路中,后级峰值电流限定电压和后级峰值电流检测电压一同输入到 所述的后级过流保护比较器进行比较,产生的信号决定了后级每个周期的关断;控制后级 每个周期开启和关断的控制信号一起输入至后级逻辑及驱动模块,通过控制所述的后级开 关管来决定后级的开关周期;所述的后级逻辑及驱动模块输出将连接至所述后级开关管的 栅极,来决定后级的开关频率和占空比大小。由于芯片内置后级开关管,其栅极信号在芯片 外围观察不到,开关频率和占空比大小的调节效果可以从开关管漏极,即Drain2端波形得 以体现。
[OOM]需注意的是,输入的能量从原边绕组的两端经过Drainl和Drain2引脚流入芯片, 经过内部环路的调节,由于芯片内置前后级开关管,开关频率和占空比大小的调节效果还 是通过Drainl和Drain2脚来体现,因此从该角度而言Drainl和Drain2引脚即作为芯片的能 量输入端,又做为环路调控的输出端。而能量的输出则是通过芯片外围的绕组传递到功率 级的输出端。
[0055]结合图7所示的本实用新型两级系统正常工作时各点工作电压、电流波形,分析前 后级两个环路中各模块的工作原理如下:
[0056] Boost前级控制环路111的工作原理:前级输出电压采样电路101中,在图7所示的 后级开关管开启阶段Ton,由控制器FA端能够反馈回体现前级BOOST输出电压VQUT_BT大小的 电流,对照图5所示的两级控制器的应用电路图,辅助绕组上的电压VA处于如图7中所示VA 波形中的VA1阶段,满足:
[0058] 其中,Na表示辅助绕组上的匝数,NP表示变压器原边绕组匝数,
[0059] 此时控制器内部电路将FA端电压拉低至地电位,因此通过RS1电阻采样到与输入电 压成正比的电流:
[0061]这就是所需前馈电流,以一定的比例镜像放大1_后降落在所述的前馈电流采样 电阻R1上,转化成电压Vo_BT传送到前级比较判断电路102里的误差放大器;误差放大器将 Vo_BT与基准电压Vrefl作比较,得到的误差放大电压VEA与基准电压Vref2-起作用在前级 跨导放大器,调节产生决定前级工作频率和限定前级峰值电流大小的两路电流lose和Ipk_ BT;同时,前级电流采样电路103中,在内部逻辑和时序控制作用下,在前级开关管导通阶 段,前级峰值电流检测模块通过Drainl端将前级输入电流采集下来并转化成电压Vcs_BT; 在前级控制信号产生电路104中,前级峰值限定电流Ipk_BT通过电阻R3转换成电压Vpk_ BT,与Vcs_BT-起输入到前级过流保护比较器0CP1进行比较,产生的信号TofT_BT连接至所 述的前级逻辑及驱动模块,控制前级每个周期开关管的关断,而决定前级工作频率的电流 lose流入振荡器0SC,生成时钟信号CLK也连接至前级逻辑及驱动模块,在信号Toff_BT和 CLK的共同作用下,前级逻辑及驱动模块产生G1信号,控制前级开关管105的开启和关断,SP 调控BOOST级的工作频率和占空比。
[0062]反激后级控制环路112的工作原理:
[0063]后级输出电压中点采样电路106中,基准电压Vref3与控制器FA端电压在快速比较 器中比较,其输出将与FA端电压一起输入到后级输出采样模块,进而采集到图7所示波形中 后级变压器的消磁时间Tds,在这一阶段,对应图7中所示VA波形中的VA2阶段,此时FA上的 压降是通过电阻Rs4PR S2对VA分压得到的值,因此FA通过辅助绕组可以反映后级输出电压:
[0065]其中,VF表示后级副边二极管上的压降,Rs表示副边绕组上的等效电阻,Is则表示 流过电阻Rs上的副边电流;推荐采用中点采样的目的在于,避免开关管关断瞬间的漏感尖 峰引起误判断,并且等到Is消失为〇,使得Is*Rs = 〇,中点的具体位置具体来说就是用电容将 上一周期的Tds宽度保存下来,下一周期Tds到达中点时比较器翻转。此时满足:
[0067] 虽然依据上公式所述,可以在一周期的Tds中点时采样FA的电压以体现后级输出 电压的值给到内部环路,但由FB将光耦反馈回的后级输出电压会更加精准。Tds信号传送至 后级比较判断电路107,控制在后级变压器消磁的中点时刻FB端口通过光耦将准确的输出 电压V QUT_FB反馈回环路,控制后级跨导放大器一方面生成调节后级开关频率的电流,并被转 化成控制后级每个周期开启的控制信号Ton;另一方面生成的调节峰值限定电压的电流转 换成电压Vpk_FB0后,与选定的最小峰值限定电压Vref 4-起输入到电压选择,生成后级峰 值电流限定电压Vpk_FB;同时,后级电流采样电路108中,在内部逻辑和时序控制作用下,在 后级开关管导通阶段,后级峰值电流检测模块通过Drain2端将后级输入电流采集下来并转 化成电压Vcs_FB;在后级控制信号产生电路109中,Vpk_FB和Vcs_FB-起输入到后级过流保 护比较器0CP2进行比较,产生的信号Toff_FB连接至后级逻辑及驱动模块,控制后级每个周 期开关管的关断,在信号TofT_FB和Ton的共同作用下,后级逻辑及驱动模块产生G2信号, 控制后级开关管110的开启和关断,即调控反激变换器的工作频率和占空比。
[0068] 可见以上前级111和后级112两个环路共同组成了两级系统中BOOST前级和反激后 级的控制电路,完成了从选择采样时间、采样输出电压、利用反馈回的输出调控跨导实现环 路的调幅和调频到最终实现对两个开关管的频率和占空比的控制。现有采样是前后级两个 独立的环路分别采样前后级的输出电压:其中前级需要选定采样时刻的引脚和反馈输出电 压的引脚各一个,后级也需要选定采样时刻的引脚和反馈输出电压的引脚各一个,一共是 四个引脚;本实施例所述的控制通过对FA引脚的分时采样,实现了前级采样时刻选定、前级 输出电压反馈和后级采样时刻选定三个功能,再结合FB脚对后级输出电压的反馈,这样通 过两个引脚就实现了两个环路的采样和反馈,不仅实现了前后级输出电压的准确反馈,也 进一步提高了 1C引脚的利用率,真正意义上实现了两个环路的紧密配合。这样一来,不仅能 够应用在有PFC功能的AC/DC电路技术中,以实现减小或移除小功率级别的AC/DC输入大电 解电容,而且将原本所需要的两个控制芯片合二为一,节省了 1C引脚和PCB的布板面积。
[0069] 然而,虽然同在辅助绕组处分时采样前后级输出电压可以用于实现单个引脚反馈 控制两个环路,但仍存在一个前后级控制配合的风险问题:当后级输出空载时,其频率会下 降至对应的最小频率(lKHz级别),此时若不对前级作相应处理,它仍会以较高频率工作,在 一个后级电路的工作周期内,前级可能会出现充爆的危险情况。
[0070] 实施例二
[0071] 本实施例在于提出一种利用实施例一中所述的控制电路和方法,并解决后级空载 时前级具有充爆风险的问题。
[0072] 当两级系统输出极轻载或空载情况时,后级会在环路调控的作用下降频和降幅至 设计最低值,通常此时的后级开关频率为O.lKHz~lKHz的数量级,而由于本实用新型提出 的两级合并控制环路中FA脚只是完成针对后级变压器在激磁和去磁两阶段分时采样输出 电压的功能,从而可能出现这样的情况:当后级降频至频率最小时,对应图7所示的Tds时间 会很长(ms级别),而此时前级的采样要在Tds的中点处才进行,这样前级可能一直以较高的 频率和较大的峰值电流工作传递能量到后级的输入端,但后级输出并不需要也接收不了这 么多能量,最终导致前级电感上储存的能量过多而烧毁,就是所谓的出现前级充爆风险。
[0073]图8是解决后级空载时前级具有充爆风险问题的两级控制器的电路原理框图。一 种解决前级充爆风险的两级控制器,包括:控制器的Drainl端、计时降幅电路201、前级控制 信号产生电路202和前级开关管203。
[0074] 计时降幅电路201有四个输入端口D11、D12、D13和D14,以及一个输出端口D15;D11 端口与前级控制信号产生电路生成的Driver_BT信号相连,D12和D13则分别由控制后级开 关管开启和关断的信号Ton和Toff_FB来提供,D14连接的限定前级峰值电流大小的电流信 号Ipk_BT,输出端口 D15输出Vpk_BT信号传送到前级控制信号产生电路的输入端口 D23;前 级控制信号产生电路202有三个输入端口 D21、D22和D23,还有两个输出端口 D24和D25;D21 端口与前级时钟信号CLK相连,D22端口与前级输入电流转化成的电压Vcs_BT相连,输出端 口D24生成Driver_BT信号,而输出端口D25生成了前级开关管203的栅极控制信号G1;前级 开关管203的漏极和源极分别与控制器的Drainl端和地电位相连;
[0075]所述的计时降幅电路201包括:前级逻辑及驱动模块、计时器、RS触发器、控制开关 M1、第一分压电阻R31和第二分压电阻R32;输入端口 D12和D13分别连接到后级逻辑及驱动 模块的两个输入端,控制后级逻辑及驱动模块生成Driver_FB信号,与输入端口 D11输入的 Driver_BT,分别连接至计时器的清零端ClrJJfP计数端CP_L,控制计时器产生的Q'信号与 Driver_FB信号又分别连接至RS触发器的S端和R端,RS触发器输出Freq_low信号,连接至控 制开关Ml的栅极,输入端口 D14与第一分压电阻R31的第一端口相连,R31的第二端口与第二 分压电阻R32的第一端口相连,R32的第二端口连接至地电位,开关Ml的第一端口与R32的第 一端口相连,开关Ml的第二端口也连接至地电位,电阻R31和R32上的压降信号Vpk_BT连接 到输出端口 D15;
[0076]所述的前级控制信号产生电路202包括:前级过流保护电压比较器0CP1和前级逻 辑及驱动模块;输入端口 D22和D23-起输入到前级过流保护电压比较器0CP1,生成的Toff_ BT信号和输入端口D21传送的CLK信号一起连接到前级逻辑及驱动模块的输入端口,前级逻 辑及驱动模块的两个输出D24和D25分别生成Driver_BT信号和开关管203的栅极控制信号 Gl〇
[0077] 以上电路解决后级空载时前级具有充爆风险问题的原理如下:
[0078] 当后级极轻载或空载时,后级逻辑及驱动模块在环路的调控下降频和降幅至最小 值,对应生成的后级开关的信号Driver_FB的周期会很长(ms级别),而此时对应的前级开关 信号Driver_BT仍以较高的频率在翻转,前级峰值电流的幅值也没有降下来。此时计时降幅 电路201中的计时器开始起作用,Driv er_FB在每一个后级开关开启时控制清零端(:&_1清 零,Driver_BT则在每一个前级开关开启时计数一次,设定在成功计到N个前级开关周期时 (Driv er_FB还未检测到后级开关开启而翻转),计数器输出有效电平让RS触发器翻转,在Q' 端产生高电平,控制后续Ml开关闭合短接分压电阻R32,从而在限定前级峰值电流大小的 Ipk_BT不变的情况下,减小了 Vpk_BT的限定电压值,假设阻值R31: R32 = 1:3,那么Vpk_BT将 减小为原来的1/4;在前级控制信号产生电路202中,Vpk_FB和Vcs_FB-起输入到前级过流 保护比较器0CP1进行比较,产生的Toff_FB控制前级每个周期开关管的关断,在信号Toff_ FB和CLK的共同作用下,前级逻辑及驱动模块产生G2信号,控制前级开关管203工作频率和 占空比,Vpk_BT的减小必然使得前级开关管的导通占空比减小。
[0079]在计时降幅电路201和前级控制信号产生电路202的配合工作下,上述电路完成了 在后级空载时,将前级峰值电流降至最小幅值进而减小前级开关管导通占空比的工作过 程,解除前级电感充爆的风险后,传递到前级输出的能量也减小了,当前级对其输出的响应 建立起来后,环路液晶调控前级进行自身的降频动作,这样实现了前级与后级环路的动态 配合。
[0080]本文上述所提及的"前级开关管",是BOOST前级电路中的功率开关管。"后级开关 管"是反激后级电路中的功率开关管。
【主权项】
1. 一种两级控制器,适用于AC/DC中前级开关管和后级开关管的控制,包括BOOST前级 的控制环路、反激后级的控制环路及FA端、FB端,其特征在于: 所述BOOST前级的控制环路和反激后级的控制环路集成在一颗芯片中, 所述芯片仅有一个FA端和一个FB端, 所述芯片的FA端,在反激后级变压器的激磁阶段,为BOOST前级的控制环路,采集和保 存BOOST前级的输出电压;在反激后级变压器的去磁阶段,采集和保存反激后级的输出电 压,并提供给反激后级的控制环路; 所述芯片的FB端,在反激后级变压器的去磁阶段,对反激后级的输出电压进行采集和 保存,进而产生后级开关管的开启信号及关断信号。2. 根据权利要求1所述的两级控制器,其特征在于:还包括连接于BOOST前级的控制环 路与反激后级的控制环路之间的防充爆电路,所述防充爆电路包括计时降幅电路,计时降 幅电路在反激后级为极轻载或空载时,让BOOST前级控制环路的前级峰值电流跟随反激后 级的控制环路的降频和降幅至最小幅值。3. 根据权利要求2所述的两级控制器,其特征在于:所述防充爆电路的计时降幅电路, 包括计时器、RS触发器、开关Ml及电阻R31和电阻R32串联支路,计时器的控制清零端Clr_L 及RS触发器的R端接入反激后级的开启信号,以在每一个后级开关管的开启时刻控制计时 器清零;计时器的计数端CP_L在每一个前级开关管的开启时刻计数一次,达到设定次数时, 输出有效电平让RS触发器翻转,在Q'端产生高电平输出经开关Ml,以控制开关Ml闭合来短 接电阻R32,从而让流过电阻R31和电阻R32串联支路的前级峰值电流Ipk_BT在串联支路上 产生的电压Vpk_BT减小。4. 根据权利要求1或2所述的两级控制器,其特征在于:所述BOOST前级的控制环路,包 括前级采样电路、前级电流采样电路、前级比较判断电路和前级控制信号产生电路,其具体 连接关系是, 所述的前级采样电路的输入端口与两级控制器的FA端相连,输出端口与所述的前级比 较判断电路的第一输入端口相连;所述的前级采样电路在反激后级变压器的激磁阶段,将 前级输出电压采样并保存,以传送给前级比较判断电路; 所述的前级比较判断电路通过第一输入端口接收前级采样电路的采样信号,并通过第 一输出端口和第二输出端口分别与所述的前级控制信号产生电路的第一输入端口和第二 输入端口连接,以输出调节开关频率的电流和限定前级峰值电流大小的电流; 所述的前级电流采样电路的输入端口与所述控制器的Drainl端相连,前级电流采样电 路的输出与所述的前级控制信号产生电路的第三输入端口连接; 所述的前级控制信号产生电路的输出端口与所述的前级开关管的栅极相连,前级开关 管的漏极和源极分别与所述控制器的Drainl端和地电位相连;前级控制信号产生电路在调 频和调幅电流作用下,生成控制信号控制所述前级开关管的开启和关断。5. 根据权利要求4所述的两级控制器,其特征在于: 所述的前级采样电路包括:前级采样模块和电阻Rl,前级采样模块的输入端与FA端相 连,前级采样模块的输出端与电阻Rl的一端相连,电阻Rl的一端还连接前级比较判断电路 的输入端,电阻Rl的另一端接地; 所述的前级比较判断电路包括:误差放大器和前级跨导放大器,误差放大器的两个输 入分别接前级采样电路的电阻Rl的一端和第一基准电压,误差放大器的输出与第二基准电 压Vref2分别接入前级跨导放大器的两个输入,前级跨导放大器的第一输出和第二输出接 入前级控制信号产生电路,用以将前级比较判断电路生成的两路电流Ipk_BT和lose分别输 出给前级控制信号产生电路; 所述的前级电流采样电路包括:前级峰值电流检测模块和电阻R2,前级峰值电流检测 模块的输入与Drainl端连接,前级峰值电流检测模块的输出与电阻R2的一端相连,电阻R2 的一端还连接前级控制信号产生电路,电阻R2的另一端接地; 所述的前级控制信号产生电路包括:电阻R3、比较器0CP1、振荡器OSC和前级逻辑及驱 动模块;所述比较器OCPl的反向输入端与前级峰值电流检测模块的输出连接,比较器OCPl 的正向输入端接入前级比较判断电路的前级跨导放大器的第一输出的电流Ipk_BT,比较器 OCPl的正向输入端还通过电阻R3接地,用以生成后级开关管的关断信号Toff _BT;所述前级 比较判断电路的前级跨导放大器的第一输出所输出的lose信号,作为振荡器OSC的输入,经 振荡器OSC输出时钟信号CLK;振荡器OSC输出的时钟信号CLK和比较器OCPl输出的关断信号 Toff_BT-起连接到前级逻辑及驱动模块的输入端口,前级逻辑及驱动模块的输出作为前 级控制信号产生电路的输出端,用以与后级开关管的栅极连接。6. 根据权利要求1或2所述的两级控制器,其特征在于:所述反激后级的控制环路,包 括:后级采样电路、后级比较判断电路、后级电流采样电路和后级控制信号产生电路, 所述后级采样电路的输入与两级控制器的FA端相连,后级采样电路的输出给到后级比 较判断电路的输入端口,用以输出采样到的后级变压器去磁阶段的时间信号Tds; 所述后级比较判断电路的输入端口 C72连接两级控制器的FB引脚和后级采样电路的输 出,后级比较判断电路的输出端口C73输出后级开关管的开启信号Ton_L和限定后级峰值电 流的电压信号Vpk_FB,这两个输出信号分别连接至后级控制信号产生电路的第一和二输入 端口 C91 和 C92; 所述后级电流采样电路的输入端口 C81连接两级控制器的Dra i n2引脚,其输出端口 C8 2 输出检测到的后级输入电流转化成的电压Vcs_FB给后级控制信号产生电路的第三输入端 口 C93; 所述后级控制信号产生电路包含三个输入端口 C91、C92和C93,以及一个输出端口 C94, 其输出端口 C94作为后级控制信号产生电路的输出端,用以与后级开关管的栅极相连。7. 根据权利要求6所述的两级控制器,其特征在于: 所述的后级输出电压采样电路包括:快速比较器和后级输出采样模块;FA端连接至快 速比较器的正相输入端,第三基准电压Vref3连接至快速比较器的负相输入端,快速比较器 的输出及FA端一并作为后级输出采样模块的输入,后级输出采样模块的输出连接后级比较 判断电路,用以将信号Tds输出给后级比较判断电路; 所述的后级比较判断电路包括:后级跨导放大器、后级峰值电流限定电阻R4和电压选 择模块;所述后级输出采样模块输出的信号Tds与FB端分别连接至后级跨导放大器的两个 输入,后级跨导放大器的第一输出与后级控制信号产生电路连接,用以输出生成的后级开 关管的开启控制信号Ton_L;后级跨导放大器的第二输出与第四基准电压Vref4-起输入到 电压选择模块,电压选择模块的输出与后级控制信号产生电路连接; 所述的后级电流采样电路包括:后级峰值电流检测模块;后级峰值电流检测模块的输 入与Drain2端连接,后级峰值电流检测模块的输出连接至后级控制信号产生电路;比较器 0CP2的正相输入端; 所述后级控制信号产生电路包括:比较器0CP2和后级逻辑及驱动模块,比较器0CP2的 正相输入端与后级峰值电流检测模块的输出连接,比较器0CP2的反相输入端与电压选择模 块的输出连接,比较器0CP2的输出连接后级逻辑及驱动模块,用以输出生成的后级开关管 的关断控制信号Toff_FB;比较器0CP2的输出和后级跨导放大器的第一输出一起连接至后 级逻辑及驱动模块的输入,后级逻辑及驱动模块的输出作为后级控制信号产生电路的输出 端。8. 根据权利要求1或2所述的两级控制器,其特征在于:所述芯片还集成有前级开关管 和/或后级开关管,所述前级开关管的漏极和源极分别与Drainl端和地电位相连;所述后级 开关管的漏极和源极分别与Drain2端和地电位相连。9. 一种AC/DC开关电源,包括BOOST前级电路、反激后级电路和权利要求1至8所述的两 级控制器,其特征在于: 所述BOOST前级电路包括辅助绕组、电阻Rsl和电阻Rs2的串联支路及前级开关管,所述 反激后级电路包括变压器、光耦和后级开关管, 所述两级控制器的FA端,与电阻Rsl和电阻Rs2的串联连接点相连,在反激后级变压器 的激磁阶段,为所述BOOST前级的控制环路,采集和保存BOOST前级的输出电压;在反激后级 变压器的去磁阶段,采集和保存反激后级的输出电压,并提供给反激后级的控制环路; 所述两级控制器的FB端,与光耦连接,在反激后级变压器的去磁阶段,对反激后级的输 出电压进行采集和保存,进而产生后级开关管的开启信号和关断信号。
【文档编号】H02M7/06GK205596029SQ201521143355
【公开日】2016年9月21日
【申请日】2015年12月31日
【发明人】唐盛斌, 周阿铖
【申请人】广州金升阳科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1