半导体放大器元件的输出电路的制作方法

文档序号:7505208阅读:243来源:国知局
专利名称:半导体放大器元件的输出电路的制作方法
技术领域
本发明涉及半导体放大器元件的输出电路,所述输出电路的输出电容将被具有第一电感和第一电容的第一LC电路消除。
在射频(RF)功率放大器中,放大器元件的输出电容通常由所谓的”inshin”(内部分路电感)电路消除。”inshin”电路是一个串联电路,它由电感(表现为若干并联的内部连接线)和电容组成。这种LC电路用在多数器件中,会导致寄生输出电容,这种寄生电容由于把与频率有关的成分加到装置的输出阻抗中而会对器件的性能产生负面影响。在高功率器件中,通过把并联电感加到器件输出端来消除这种不希望有的效应,在功率放大器的工作频带或其工作频带附近,所述电感的数值和输出电容一起形成并联谐振电路。这样,输出阻抗的虚部就可被所述电感完全补偿或减小。所述电感通过大的叉指结构电容接地以防止DC电流通过所述电感。


图1示出具有先有技术补偿电路的功率晶体管。信号输入端2通过晶体管4的栅极端子5连接到晶体管4。晶体管4的输出电容6并联到晶体管4的输出端。输出电容6连接在漏极接点7和源极接点9之间,源极接点9也接地。为了消除输出电容6的负面影响,由电感8和电容10组成的串联电路并联到晶体管4的输出端。输出电容6和电感8形成并联谐振电路,其谐振频率处于功率放大器的工作或基本信号频率F0的中心或其工作频带附近,以减小晶体管4的输出阻抗虚部。电容10防止DC电流流到地。
电感12连接在晶体管4的输出端和信号输出端14之间。如果inshin电路的所有元件都选择恰当,那么它们和电感12一起在频带内提供非常平坦的输出阻抗。这种补偿部分可以在宽频带内与负载匹配。
这些器件的某些应用所要求的电感值用先有技术的inshin电路结构无法实现。在由有规律间隔的一根或多根电感性连接的金线组成的已知的设计中,电感值受限于技术或设计限制,例如金线厚度、间隔和数量,也受器件可靠性的限制。
形成电感的连接线的一些限制就是金连接线的回路高度和长度受到连接线的机械强度和组装设备的限制,金连接线的最小数量受流过金连接线的最大电流的限制。在某个特定反射相位条件下,晶体管输出端的失配会导致非常高的电流通过电感,就会破坏电感的连接线。金连接线的最大数量受可用空间、组装设备以及所需达到的电感值的限制。最后但也很重要的是,金线的直径需符合通用的组装规则和组装设备。
本发明的目的是提供半导体放大器元件的输出电路,所述输出电路在高功率器件的应用(POUT>100W)中对于可获得的较高补偿电感具有较少的限制。
为达此目的。本发明的输出电路包括第二电感电路,所述第二电感电路包括第二电感和第二电容,其中,所述第一电感电路和所述第二电感电路配置成补偿半导体放大器元件的输出电容,且第一电感和第一电容配置成抑制半导体放大器元件输出信号中不需要的谐波。第一电感和第一电容以及第二电感和第二电容的组合效果由于有适当的高次谐波终端负载和较好的宽带输出匹配条件而改进了放大器的器件性能。例如,因第一电感与第一电容串联而提供的基频二次谐波(2F0)的短路可显著改进高功率时的器件效率。除了性能改进之外,电感值可以增加而不会降低其最大的电流能力。
本发明的用于半导体放大器元件的输出电路的其它优点有通过消除半导体放大器元件输出信号中不需要的谐波来终止输出信号中不需要的电流谐波,从而有较好的器件性能;有较大可能对半导体放大器元件输出寄生电容作补偿;补偿电感的高电流能力,提供了较高的器件可靠性;
显著改进了的宽带电源去耦条件;以及将用于放大器设计的空间减至最小。
按照本发明的优选实施例,根据本发明的目的提出了一种输出电路,其中,第一电感连接到半导体放大器元件的输出端,第一电容连接在第一电感和地之间,其中,第二电感连接到第一电感和第一电容之间的节点并连接到接地的第二电容。由第一电感,第二电感,第一电容和第二电容组成的网络在所需频率下对基波信号频率F0的二次和三次谐波提供了短路终端负载。与此功能并行的还有,所述网络对半导体放大器元件的输出电容提供了补偿。
按照本发明的优选实施例,输出电路包括电源,所述电源连接在第二电感和第二电容之间的节点处。具有附加电源引线的解决方案对于低阻和低频来说很有利,并且必要时对功率放大器的电源有最宽带的去耦,可高达20MHz。此外,在所述器件的应用设计中,所述实施例提供最小的可能占用面积。器件的这个特征,即通过补偿电感来提供电源,对于数字调制信号例如CDMA、WCDMA和EDGE等提供了宽频带的最佳去耦条件。
按照本发明的优选实施例,输出电路包括连接在第二电感和第二电容之间的另一个LC电路,所述另一个LC电路包括另一个电感和另一个电容,其中,另一个电感连接到第二电感和第二电容之间的节点,并连接到接地的另一个电容。所述另一个LC电路用来将电源去耦,以达到电源所需的宽带和低阻抗性能。
按照本发明的优选实施例,输出电路包括连接在第三电感和第三电容之间的节点的电源。这又具有这样一个优点通过补偿电感来提供电源,这对于数字调制信号例如CDMA,WCDMA和EDGE等提供了宽频带的最佳去耦条件。
按照本发明的优选实施例,这样配置输出电路,使得第一电感和第一电容形成串联谐振器。第一电感和第一电容可以在所需频率为基波信号频率F0的第二和第三谐波提供短路终端负载。给定谐波的这种终端负载可以改善半导体放大器件的性能/效率或线性。
按照本发明的优选实施例,输出电路包括在形成该输出电路的衬底上的绝缘层和导电层的组合形式的所述电容。这有助于实现本发明的电路并有助于节省生产费用和时间。
按照本发明的优选实施例,输出电路包括由连接线构成的电感。这样,电感值可以很容易地与本发明所需的数值相匹配。在半导体放大器元件和电路衬底上的电容或电路的输出端之间形成输出电路的连接线。
按照本发明的优选实施例,所述半导体放大器元件是晶体管。
按照本发明的优选实施例,所述LC电路是内置分路LC电路。这电路表面积减至最小并降低了集成器件所产生的费用。
本发明特有的这些和各种其它优点和新颖特征在所附权利要求书中作了具体说明,所附权利要求书构成本说明书的一部分。但为了更好地理解本发明、其优点和使用本发明所达到的目的,应参阅构成本说明书一部分的附图以及所附的说明性事项,附图示出并说明了本发明的优选实施例。
图1示出具有先有技术补偿电路的功率晶体管的输出电路;图2示出具有本发明的补偿电路的功率晶体管的输出电路的电路图;图3示出具有本发明的补偿电路和去耦电路的的功率晶体管的输出电路;图4示出在输出端没有补偿电路的功率晶体管的输出电路的阻抗的示意图;图5示出在900MHz具有先有技术补偿电路的功率晶体管的输出电路的阻抗示意图;图6示出按照本发明在输出端有二次谐波终端负载的补偿电路的功率晶体管的输出电路的阻抗的示意图7示出按照本发明从晶体管漏极看去的通过补偿电感的电源去耦电路的阻抗的示意图;图8示出按照本发明在高于图7的电感条件下从晶体管漏极看去的去耦电路的阻抗以及在基带的低频边缘处电源的较高输出阻抗的示意图;图9示出具有建议的输出电路配置的晶体管输出设计的截面图;以及图10示出图9的功率晶体管的输出电路透视图。
图2示出具有补偿电路的功率晶体管的电路图。所述电路图包括信号输入端16,它连接到晶体管18的栅极端子19。输出电容20并联到晶体管18的漏极端子21和源极端子23。源极端子23接地。一个串联电路与晶体管18的输出电容20并联。所述串联电路包括电感22和电容24。电感30一侧连接到电感22和电容24之间,另一侧连接到电容32和电源引线34。电容32连接在电感30和地之间。电源引线34连接到电感30和电容32之间的节点31。电感26连接到晶体管18的漏极端子21和信号输出端28之间。
包括电感22和30以及电容24和32的电路补偿了晶体管18的输出电容20。除了寄生电容被减小的效应之外,器件的可能工作频带也可因此网络而加宽,因为所述网络显著降低了晶体管输出阻抗的虚部,如以下图5和图6所示。而晶体管输出阻抗ZOUT的实部,在工作频率F0和晶体管18的输出电容20一起提供并联谐振的同时,也有增加。这有助于使晶体管与负载匹配,因为输出匹配电路的所需转换比例较小。
包括电感22和电容24的串联电路形成串联谐振器,与晶体管18的输出电容20并联。适当选择其数值,元件22和24可在所需频率(例如基频信号F0的二次或三次谐波)下提供短路终端负载。所需谐波的终端负载可以改善晶体管18的性能。这种终端负载所需频率的效应在以下文章中已有讨论IEEE Transactions on MicrowaveTheory and Techniques,vol.45,no.11,November 1997,”Class-power amplifiers with maximally flat wave forms”,作者FredericH.Raab。
无线通信系统利用调制信号工作,例如CDMA,特别是WCDMA。这些信号的频谱处于高达20MHz的带宽内,且调制的RF信号具有高达16dB的峰值对平均值的比。具有可变包络的这种RF信号的功率放大需要为发射器中的晶体管提供适当的电源条件。用电源附加引线的解决方案具有以下优点在高达20MHz的频带内可以提供通过补偿电感去耦的低阻抗,从而提供了放大器的高线性。而且,所述解决方案在为应用设计的放大器中可提供最小的可能占用表面积。
图3示出具有按照本发明的补偿短路的功率晶体管的电路图,所述补偿电路具有附加的晶体管电源去耦电路。所述电路具有连接到晶体管40的栅极端子41的信号输入端36。输出电容42与晶体管40的漏极端子43和源极端子45并联。源极端子45接地。一个串联电路与晶体管40的输出电容42并联。所述串联电路包括电感44和电容46。电容46连接在电感44和地之间。
电感52一侧连接在电感44和电容16之间,另一侧连接到电容54和电感56。电容54连接在电感52和地之间。去耦电路连接在电感52和电容54之间。去耦电路是包括电感56和电容58的串联电路。电源引线60连接到电感56和电容58之间的节点。电感48连接在晶体管40的漏极端子43和信号输出端50之间。
图3的电路和图2的电路不同之处在于包括电感56和电容58的去耦电路。去耦电路的目的在于获得晶体管电源去耦的所需宽带和低阻抗性能。去耦电路的电感56和电容58使这种性能成为可能的。所述去耦电路具有关于这种功能的理想的特性,因为它非常靠近功率晶体管的芯片。此外,去耦电路具有寄生成分极低的电容,可在宽频带提供低阻抗,且通过补偿网络的导线直接连接到晶体管的漏极或集电极,这些特性综合在一起就可在高达30MHz的基带频率提供可能的最低阻抗。阻抗图示于以下图7和图8。
电容58是若干并联电容器的组合,并包括陶瓷电容器,具有覆盖通信系统基带的适当的工作频带,便于使电源去耦。电容器的谐振频率在远离基带或在基带之外。
电容器58的位置也要尽可能靠近放大器元件的电源引线。这样可以提供小数值的电感56(可小于5nH)以及在宽频带下去耦电路的低阻抗。对于基带的最低规定频率,电源应具有小于0.1Ω的输出阻抗。
图4示出没有补偿的放大器件所提供的输出阻抗实例。曲线68代表输出阻抗的实部,曲线70代表放大器件的输出阻抗的虚部。应当指出,与图5和图6中的虚线部分曲线相比,曲线70所示的放大器件的虚线部分相当高。对于晶体管的宽带效率,高的虚部是不理想的。
图5示出在900MHz时具有先有技术补偿电路的放大器件的输出阻抗。曲线72代表输出阻抗的实部,曲线74代表在900MHz时输出阻抗的虚部。在接近900MHz时输出阻抗的虚部几乎为零。而且,在900MHz时输出阻抗的实部高于图4中的实部。高实部和低虚部的优点是输出可以更容易地与后续的电路元件匹配。
图6示出按照本发明在输出端具有补偿电路的放大器的输出阻抗。曲线76代表输出阻抗的实部,曲线78代表虚部。所述放大器是90W的RF功率晶体管,它工作在F0=900MHz,具有本发明的补偿电路,所述补偿电路连接到晶体管的输出端。补偿电路为二次谐波2F0=1800MHz提供了第三电路。应当指出,由曲线78表示的虚部在接近900MHz时几乎为零,在1.8GHz时也接近于零。由曲线76表示的实部在900MHz时具有大约为2.4Ω的最大值,在1.8GHz时具有大约为0.1Ω的最小值。所示的实部情况改善了放大器元件的效率。而且,因实部在900MHz时的最大值也使后续电路元件的匹配更加容易。
图7示出按照本发明具有电源去耦电路的放大器元件的输出阻抗。去耦电路具有3nH的电感和0.12Ω的电源输出阻抗。曲线80示出输出阻抗的实部,曲线82示出放大器元件输出阻抗的虚部。如果去耦电容直接连接到放大器元件的电源引线,且电源在规定基带的低频频带具有小于0.1Ω的输出阻抗,则在0.01kHz到30MHz频带内输出阻抗都低于0.12Ω。
图8示出去耦电路的输出阻抗,但与图7相比,电感56具有增大的电感,即30nH,且在低频时电源的输出阻抗具有增大的数值,即0.25Ω。曲线84示出输出阻抗的实部,曲线86示出输出阻抗的虚部。在所示从0.1kHz到10000kHz的频谱内,实部的最大值大约为0.28Ω。曲线84的值一般都高于图7的曲线80的数值。高实数值的优点是能更好地匹配所连接的电路元件。曲线86所示的虚部数值也因30nH的高电感和0.25Ω的电源的较高输出阻抗而增加,但在10kHz到1000kHz的范围内虚部接近于零,所以在这个频带可以不将它作为匹配条件。
图9示出具有本发明的输出电路结构的晶体管设计实例。所述设计包括栅极引线88,它通过连接线89连接到前置匹配管帽(prematch cap)90。前置匹配管帽90通过连接线91连接到晶体管芯片92。晶体管芯片92通过同时形成电感的连接线98连接到电容94。连接线98和电容94形成串联电路,以短接工作频率的所需谐波,从而改善晶体管92的性能。电容94通过同时形成电感的连接线100连接到电容96。连接线98和100以及电容94和96补偿了晶体管92的输出电容。晶体管芯片92通过形成电感的连接线102连接到漏极引线104。连接线102的电感使输出阻抗变平。
通过其上形成有输出电路的衬底上的绝缘层110和114以及导电层108和112的组合来形成电容94和96。衬底106是导热和导电层,而且接地。
如图9中所示,栅极引线88和漏极引线104借助于由绝缘材料制成的隔离框架118安装在衬底上。
图10是图9的功率晶体管的输出电路透视图,其中,为清晰起见,图9的预置匹配管帽90,将预置匹配管帽连接到栅极引线88的连接线以及晶体管92均未示出。如图10中所示,电源引线120、122连接到框架118。电源引线120通过三条连接线连接到电容96,其中一条是连接线114。在图10的实例中,有四条连接线将晶体管92连接到电容94,其中一条是连接线100,有七条连接线将晶体管92连接到漏极引线104,,其中一条连接线是102。如上所述,器件的各种元件之间的连接线数量以及连接线的物理特性应根据为获得它们应提供的电感所需特性来选择。
本文所论及的本发明的新颖的特征和优点已在前述作了说明。但是,显然,本公开的内容在许多方面仅是说明性的。可以在细节方面,特别是在形状、尺寸、零件的安排等方面,做出许多变化,而不超出本发明的范围。本发明的范围由所附权利要求书表达的各条款定义。
权利要求
1.一种半导体放大器元件的输出电路,所述输出电路的输出电容(20,42)将被具有第一电感(22,44)和第一电容(24,46)的第一LC电路抵消,所述输出电路包括具有附加电感(30,52)和附加电容(32,54)的个附加电感电路,所述第一电感电路和所述附加电感电路补偿所述半导体放大器元件的所述输出电容(20,42),而所述第一电感(22,44)和所述第一电容(24,46)抑制了所述半导体放大器元件的输出信号中的二次谐波。
2.如权利要求1所述的输出电路,其特征在于所述第一电感(22,44)连接到所述半导体放大器元件的输出端,而所述第一电容(24,46)连接在所述第一电感(22,44)和地之间,其中,所述第二电感(30)连接到所述第一电感(22,44)和所述第一电容(24,46)之间的节点并且连接到接地的所述第二电容(32)。
3.如权利要求2所述的输出电路,其特征在于电源连接到所述第二电感(30)和所述第二电容(32)之间的节点。
4.如上述权利要求中任一项所述的输出电路,其特征在于包括另一个LC电路,所述另一个LC电路连接在所述第二电感(30,52)和所述第二电容(32,54)之间,所述另一个LC电路包括第三电感(56)和第三电容(58),其中,所述第三电感(56)连接到所述第二电感(52)和所述第二电容(54)之间的节点以及接地的所述第三电容(58)。
5.如权利要求2所述的输出电路,其特征在于电源连接到所述第三电感(56)和所述第三电容(58)之间的节点(57)。
6.如上述权利要求中任一项所述的输出电路,其特征在于所述第一电感(22,44)和所述第一电容(24,46)形成串联谐振器。
7.如上述权利要求中任一项所述的输出电路,其特征在于所述电容是由其上形成有所述输出电路的衬底(106)上的绝缘层(110,114)和导电层(108,112)组合形成的。
8.如上述权利要求中任一项所述的输出电路,其特征在于所述电感是由一条或多条电感耦合的连接线(98,100,102)形成的。
9.如上述权利要求中任一项所述的输出电路,其特征在于所述半导体放大器元件是晶体管。
10.如上述权利要求中任一项所述的输出电路,其特征在于所述LC电路是内置分路LC电路。
全文摘要
一种半导体放大器元件的输出电路,所述输出电路的输出电容(20,42)将被具有第一电感(22,44)和第一电容(24,46)的第一LC电路抵消,所述输出电路包括具有附加电感(30,52)和附加电容(32,54)的附加电感电路,所述第一电感电路和所述附加电感电路补偿所述半导体放大器元件的输出电容(20,42),而所述第一电感(22,44)和所述第一电容(24,46)消除了在所述半导体放大器元件的输出信号中的二次谐波。
文档编号H03F3/213GK1625834SQ03802894
公开日2005年6月8日 申请日期2003年1月30日 优先权日2002年2月1日
发明者I·I·布勒德诺夫, A·K·维内马 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1