双点调制式调频装置、无线发送装置和无线通信装置的制作方法

文档序号:7508772阅读:201来源:国知局
专利名称:双点调制式调频装置、无线发送装置和无线通信装置的制作方法
技术领域
本发明特别涉及适用于包括便携式电话机的移动通信终端、在与上述移动通信终端之间进行通信的基站等通信机器中的双点调制式调频装置、无线发送装置和无线通信装置。
背景技术
就用于通信机器的PLL(Phase Locked Loop,锁相环)调制方式而言,一般有对低成本、低耗电、良好噪声特性和高调制精度的需求。在上述PLL调制方式中,为了提高调制精度,最好使PLL的频带(PLL带域)宽度大于调制信号的频带(调制带域)。
然而,如果扩大PLL带宽,却会引起噪声特性的恶化。因此,提出了双点调制方式,也就是将PLL带宽设置为调制带宽窄,并在不同的两处进行PLL频带内的调制和PLL频带外的调制(例如美国专利第6211,747号说明书)。
如图1所示,采用如上所提的双点调制方式的宽带调制PLL包括包括电压控制振荡器(VCO)1A、分频器1B、相位比较器1C、环路滤波器1D和加法器1E的PLL;调制灵敏度表4、Deltasigma调制器5、D/A转换器6、A/D转换器7、加法器2以及控制部3。
PLL中的电压控制振荡器1A输出RF调制信号。该RF调制信号的振荡频率根据输入到控制电压端子Vt的电压而改变。分频器1B对电压控制振荡器1A输出的RF调制信号的频率进行分频。相位比较器1C对分频器1B的输出信号的相位和基准信号的相位进行比较,并输出相应于该相位差的信号。环路滤波器1D对相位比较器1C的输出信号进行平均。
调制灵敏度表4根据调制数据输出调制信号。D/A转换器6根据控制部3输出的增益控制信号调整增益,并将调制灵敏度表4输出的调制信号转换为模拟电压。Deltasigma调制器5对由加法器2得到的、调制灵敏度表4输出的调制信号和控制部3输出的信道选择信号的相加信号进行Deltasigma调制,来生成分频器1B的分频比。A/D转换器7将输入到控制电压端子Vt的电压值转换为数字值,并将该转换为数字值的数据输出到控制部3。
然而,采用双点调制方式的宽带调制PLL中,双点调制之间的信号的输入定时需要一致,如果发生输入定时差异,则调制精度(EVMError VectorMagnitude,矢量误差幅度)会恶化。
如便携式电话机等作为通信部配备采用双点调制方式的宽带调制PLL的机器的制造上,电子零件特性的差异会引起上述输入定时差异。
另外,在便携式电话机的使用上,在电源启动时由电源变动、温度变化等会引起上述输入定时差异。再说,采用TDMA(Time Division MultipleAccess)方式的便携式电话机,在时隙的前头发生由电源变动、温度变化等引起的上述输入定时差异。为了提高调制精度需要改正这些输入定时差异,但是目前没有确定如何实现输入定时差异的调整的具体方法。

发明内容
本发明的目的是提供一种双点调制式调频装置、无线发送装置和无线通信装置,能够减少双点调制之间的输入定时差异并提高调制精度。
本发明采用了包括PLL电路;分频比设定部,根据第一数字基带信号和载波信号设定上述PLL电路的分频器的分频比;信号加法部,在上述环路滤波器的输出信号上加上第二数字基带信号;延迟量系数计算部,根据对上述输出信号加上上述第二数字基带信号所得的信号的振幅变化量,计算延迟量系数;以及延迟调整部,根据上述延迟量系数移位上述第一、第二数字基带信号中的至少其中之一的相位,减少上述第一、第二数字基带信号之间的相位差的结构。本发明通过根据对双点调制式PLL电路的环路滤波器的输出信号加上数字基带信号所得的信号的振幅变化量计算延迟量系数,并根据上述延迟量系数移位供给双点调制部的数字基带信号中的至少其中之一的相位,减少数字基带信号之间的相位差来实现上述目的。


通过参照附图所示的例子而对上述本发明的目的和特征等进行详细说明,其中图1是表示以往的宽带调制PLL的概略结构图;图2是根据本发明的实施例1的双点调制式调频装置的方框图;图3是表示存储在图2所示的双点调制式调频装置的滤波系数计算部的存储表中的延迟量系数数据的图;图4是图2所示的双点调制式调频装置的数字滤波器的方框图;图5是根据实施例1的输出波形图;图6是根据实施例1的输出波形图;图7是根据实施例1的输出波形图;图8是表示实施例1的延迟调整间隔的图;图9是根据实施例1的输出波形图;图10是根据实施例1的输出波形图;图11是数字滤波器的频率特性图;图12是采用装备图2所示的双点调制式调频装置的极性调制发送方式的无线通信装置的系统方框图;图13是根据本发明的实施例2的双点调制式调频装置的方框图;图14是图13所示的双点调制式调频装置的数字滤波器的方框图;图15是根据本发明的实施例3的双点调制式调频装置的方框图;图16是根据实施例3的输出波形图;图17是根据实施例3的输出波形图;图18是根据本发明的实施例4的双点调制式调频装置的方框图;图19是根据本发明的实施例5的双点调制式调频装置的方框图;图20是根据本发明的实施例1的频率-增益特性图;图21是根据本发明的实施例6的无线发送装置的方框图;以及图22是根据本发明的实施例6的无线通信装置的方框图。
具体实施例方式
以下参照附图来对本发明的实施例进行详细说明。
(实施例1)[双点调制式调频装置的结构]如图2所示,本发明的实施例1的双点调制式调频装置10包括PLL电路11,由电压控制震荡器(VCO)110、分频器111、相位比较器112和环路滤波器113来构成;分频比设定部,根据第一数字基带信号S1和载波信号设定分频器111的分频比;信号加法部,对环路滤波器113的输出信号加上第二数字基带信号S2;延迟量系数计算部,根据对环路滤波器113的输出信号加上第二数字基带信号S2所得的信号的振幅变化量,计算延迟量系数;以及延迟调整部,根据延迟量系数移位第二数字基带信号S2的相位,减少上述第一数字基带信号S1、第二数字基带信号S2之间的相位差。
双点调制式调频装置10还包括信号输入部12,并从该信号输入部12输出第一数字基带信号S1和第二数字基带信号S2。在实施例1中,作为信号输入部12输出的第一数字基带信号S1和第二数字基带信号S2,实际上可以使用「sin波」。在输入定时调整模式,信号输入部12根据定时调整控制信号,输出对于第一数字基带信号S1反转的第二数字基带信号S2。具体来说,信号输入部12作为第一数字基带信号S1输出「-sin波」,而作为第二数字基带信号S2输出「+sin波」。通过在信号输入部12中配备根据定时调整控制信号反转第一数字基带信号S1的反相电路等,来可容易实现上述信号的反转控制。
PLL电路11的电压控制振荡器110可以根据输入到控制电压端子Vt的电压而改变振荡频率。相位比较器112对分频器111的输出信号的相位和基准信号的相位进行比较,输出相应于双方信号之间的相位差的信号。PLL电路11还包括加法器114,在环路滤波器113的输出信号上加上第二数字基带信号S2(实际上是经过数字滤波器18、数字模拟转换器14,由滤波器15输出的信号)。环路滤波器113对相位比较器112的输出信号进行平均。
分频比设定部包括分频比生成部13而构成。该分频比生成部13根据第一数字基带信号S1和载波信号的输入来设定分频比,并将设定后的分频比输出到分频器111。在分频器111中,根据分频比生成部13的输出信号生成PLL带域内的调制信号。
信号加法部包括将第二数字基带信号S2转换为模拟信号的数字模拟转换器14、对数字模拟转换器14的输出信号除去谐波成分的滤波器15、以及对环路滤波器113的输出信号加上滤波器15的输出信号的加法器114而构成。
在该信号加法部中,可以通过对环路滤波器113的输出信号加上滤波器15的输出信号(第二数字基带信号S2),来对电压控制振荡器110的输入信号进行PLL带域外的调制。
如图2所示,延迟量系数计算部包括滤波系数计算部17而构成。因为在实施例1中,作为数字信号使用对环路滤波器113的输出信号加上滤波器15的输出信号所得的信号,也就是加法器114的输出信号,延迟量系数计算部还包括模拟数字转换器16。因为模拟数字转换器16输入PLL电路11的加法器114的输出信号,它连接在加法器114和电压控制振荡器110之间,也就是在电路上等效地连接在与电压控制端子Vt相同的位置。
滤波系数计算部17包括图3所示的存储表17M。在滤波系数计算部17中可以计算相应于加法器114的输出信号的振幅变化量的延迟量系数,该计算出的延迟量系数作为信息被存储在存储表17M中。
如图2所示,在实施例1中延迟调整部包括数字滤波器18而构成。如图4所示,该数字滤波器18包括延迟元件(z转换部)180、加法器181、乘法器183和184。
在数字滤波器18中,由信号输入部12输出的第二数字基带信号S2被输入到乘法器183的同时,经过延迟元件180被输入到乘法器184。另一方面,由滤波系数计算部17输出的延迟量系数(在本实施例中,抽头系数a0,a1)被输入到各个乘法器183、184。
如图3所示,本实施例的滤波器系数计算部17输出根据延迟量系数的抽头系数a0、a1。具体来说,将抽头系数a0输出到乘法器183,并将抽头系数a1输出到乘法器184。乘法器183将第二数字基带信号S2乘以抽头系数a0,并输出到加法器181。乘法器184将经过延迟元件180的第二数字基带信号S2乘以抽头系数a1,并输出到加法器181。加法器181将由乘法器183、184分别输出的输出信号相加,并经过数字模拟转换器14和滤波器15,将经延迟调整的输出信号(第二数字基带信号S2)输出到PLL电路11的加法器114。
接下来说明上述双点调制式调频装置10的调整双点调制之间的输入定时差的方法。
首先,为了调整图2所示的环路滤波器113、滤波器15等各个电子零件特性的差异、电源启动时的电源变动和温度变化等引起的双点调制之间的输入定时差,双点调制式调频装置10被设置为定时调整模式。
通过将定时调整控制信号输入到信号输入部12,来进行定时调整模式的设定。基于定时调整控制信号的输入,信号输入部12输出第一数字基带信号(例如-sin波)S1,并输出将其反转的第二数字基带信号(例如+sin波)S2。
第一数字基带信号S1被输入到分频比生成部13。分频比生成部13基于第一数字基带信号S1和载波信号生成分频比,并将所设定的分频比输出到分频器111。
在PLL电路11,由电压控制振荡器110振荡出RF调制信号,该振荡出的RF调制信号被分频后输入到分频器111。分频器111根据分频比生成部13的输出信号,生成PLL带域内的调制信号。分频器111的输出信号被输入到相位比较器112。相位比较器112对分频器111的输出信号的相位和基准信号的相位进行比较,并输出相应于双方的相位差的信号。相位比较器112的输出信号被输入到环路滤波器113,该环路滤波器113对相位比较器112的输出信号进行平均。随后,该环路滤波器113的输出信号被输入到加法器114。
另一方面,信号输入部12输出的第二数字基带信号S2经过数字滤波器18被输入到数字模拟转换器14。数字模拟转换器14将第二数字基带信号S2从模拟信号转换为数字信号,该转换后的第二数字基带信号S2被输出到滤波器15。滤波器15对数字模拟转换器14的输出信号除去谐波成分,该输出信号被输出到PLL电路11的加法器114。在加法器114中,将环路滤波器113的输出信号和滤波器15的输出信号相加,相加后的输出信号根据输入到控制电压端子Vt的电压,被输出到电压控制振荡部110。
在此,在双点调制式调频装置10中,双点调制之间的输入定时为一致的情况下,如图5所示,对环路滤波器113的输出信号(-sin波)S1a加上滤波器15的输出信号(+sin波)S2a时,加法器114的输出信号S3a的振幅因输出信号S1a和输出信号S2a之间没有相位差、相互抵消而为0。相反,在输入定时不一致的情况下,如图6所示,对环路滤波器113的输出信号S1b加上滤波器15的输出信号S2b时,在加法器114的输出信号S3b得到由输出信号S1b和输出信号S2b之间的相位差引起的、将输出信号S1b和输出信号S2b合并的振幅。
在此,作为信号输入部12输入的第一数字基带信号(相位调制数据)S1、第二数字基带信号(相位调制数据)S2选择图20所示的传递函数H(s)和1-H(s)相交时的频率f0的正弦波(+sin波、-sin波),在双点调制之间的定时一致时,如图5所示,可以使输出信号S3的值为0。然而,因为由环路滤波器13等的差异,难以选择频率f0,实际上输入如图20所示的频率f1等从频率f0偏离的正弦波。因此,各个调制输入的增益之间发生差异,即使在第一数字基带信号S1和第二数字基带信号S2的定时一致时,输出信号S3的振幅不会为0。再说,如上所述,随着第一数字基带信号S1和第二数字基带信号S2的定时的偏离加大,输出信号S3的振幅会变大。于是,在延迟量系数计算部通过求出使输出信号S3的振幅最小的延迟量系数来进行延迟调整。
在延迟量系数计算部,基于PLL电路11的加法器114的输出信号S3的振幅变化量,通过如下程序计算延迟量系数。
首先,假定双点之间的输入定时为一致,滤波系数计算部17作为初始值输出相当于存储在图3所示的存储表17M中的延迟量系数「0」的抽头系数a0「8/8」、a1「0/8」。此时,数字滤波器18输出实际上没有经过延迟调整的第二数字基带信号S2。
在此,如图8所示,存储在图3所示的滤波系数计算部17的存储表17M的延迟量系数是将1时钟信号(从上升到下一上升)均匀分割为8个,并被分配为「0」、「1」、「2」、......、「8」。Ts比表示延迟间隔对于1时钟信号的比。也就是说,最初的延迟量系数「0」是Ts比「0/8」的、实际上不对第二数字基带信号S2进行延迟调整的系数。延迟量系数「1」是Ts比「1/8」的、将第二数字基带信号S2的相位移位1时钟信号的1/8来进行延迟调整的系数。延迟量系数「2」是Ts比「2/8」的、将第二数字基带信号S2的相位移位1时钟信号的2/8来进行延迟调整的系数。以下同理,最后的延迟量系数「8」是Ts比「8/8」的、将第二数字基带信号S2的相位移位1时钟信号的8/8即1时钟信号份来进行延迟调整的系数。
另外,为了容易理解,在实施例1中将1时钟信号分割为8个,基本上最好分割为2的倍数个,通过这样分割1时钟能够提高灵敏度和精度。
数字滤波器18输出的实际上没有进行延迟调整的第二数字基带信号S2经过数字模拟转换器14输出到滤波器15,随后如图7所示,滤波器15将输出信号S2b输出。输出信号S2b在加法器114中与环路滤波器113的输出信号S1b相加,加法器114输出图7所示的输出信号S3b。
在模拟数字转换器16中,将加法器114输出的1周期份的输出信号(sin波)S3b的模拟数据(a、b、c、d、......)以每时钟信号(例如每当时钟信号的上升)转换为数字数据。该转换后的数字数据进入到滤波系数计算部17。在滤波系数计算部17中对进来的数字数据和在该数字数据的一个时钟信号前进来的数字数据进行比较,求出进行比较的数字数据的最大值和最小值,最后计算输出信号S3b的振幅的最大值W0。
在滤波系数计算部17计算出振幅的最大值W0时(检测出输入定时不一致时),存储在存储表17M中的延迟量系数「0」被变更为延迟量系数「1」。如图3所示,随着延迟量系数改变为「1」,在滤波系数计算部17输出相当于延迟量系数「1」的抽头系数a0「7/8」、a1「1/8」。此时,数字滤波器18使第二数字基带信号S2的相位往延迟的方向移位图8所示的1时钟信号的1/8。如图9所示,第二数字基带信号S2可以通过改变抽头系数a0、a1来改变振幅方向的值,结果将相位移位,数字滤波器18可以输出延迟了1时钟信号的1/8的第二数字基带信号S2c。
在数字滤波器18生成的第二数字基带信号S2c经过数字模拟转换器14被输入到滤波器15。随后,该滤波器15的输出信号和环路滤波器113的输出信号被输出到加法器114。如图7所示,在加法器114,利用相加双方输出信号所得的输出信号,与上述程序同样地计算振幅的最大值W1。
在滤波器系数计算部17对先前计算的输出信号的振幅的最大值W0和后计算的输出信号的振幅的最大值W1进行比较。随后,如图10所示,通过直到输出信号S3c的振幅变为最小值Wmin反复进行上述一连操作,能够求出使输出信号S3c的振幅为最小值Wmin的延迟量系数。该求出的延迟量系数(抽头系数a0,a1)保持在数字滤波器18,并用于双点调制之间的输入定时差的调整。
于是,检测并保持使双点调制之间的输入定时差最小的最佳抽头系数a0,a1。在实际上的双点调制处理时(通常模式时),信号输入部12将要发送的基带信号输入到分频比生成部13和数字滤波器18的两者。
在图11表示数字滤波器18的频率特性。在图11中,横轴表示抽样频率[fs],而竖轴表示增益[dB]。频率特性D是设定为延迟量系数「4」,也就是抽头系数a0「4/8」,抽头系数a1「4/8」的数字滤波器18的频率特性。频率特性E是设定为延迟量系数「5」,也就是抽头系数a0「3/8」,抽头系数a1「5/8」的数字滤波器18的频率特性。另外在本实施例中,用于第二数字基带信号S2的延迟调整的数字滤波器18的对象是对于抽样频率的频率十分低的频率。因为在图11中,在以斜线表示的抽样频率较低的范围呈示平坦的特性,不会使通过数字滤波器18的第二数字基带信号S2的绝对幅度产生偏离。
在图12表示将本实施例的双点调制式调频装置10装备在采用极性调制发送方式的无线发送装置的结构。如图12所示,无线发送装置20包括振幅相位分离部21、振幅调制信号放大器22、上述双点调制式调频装置(频率合并器)10、高频功率放大器24、以及天线25。由I(同相)成分和Q(正交)成分构成的基带调制信号被输入到振幅相位分离部21。在该振幅相位分离部21中,将基带调制信号的振幅成分(即,√(I2+Q2))作为振幅调制信号输出到振幅调制信号放大器22的同时,将基带调制信号的相位成分(例如调制码元和I轴形成的角度)作为基带相位调制信号输出到双点调制式调频装置10。
双点调制式调频装置10以基带相位调制信号(第一数字基带信号S1)对载波信号(载波频率数据)进行调制来生成RF调制信号(高频相位调制信号),并将其输出到高频功率放大器24。具体来说,如上所述在数字滤波器18保持使双点调制之间的输入定时差最小的最佳抽头系数a0、a1的状态下,将要发送的基带信号S1被输入到分频比生成部13和数字滤波器18,进行双点调制式的调频。
高频功率放大器24由非线性放大器组成,并且高频功率放大器24的电源电压值根据振幅调制信号放大器22放大的振幅调制信号的值被设定。由此,对电源电压值乘以双点调制式调频装置10输出的RF调制信号所得的信号以高频功率放大器24的增益被放大,并作为发送信号由高频功率放大器24输出。发送信号经天线25被发送。
如上所述,在采用极性调制发送方式的无线发送装置20,可以将输入到高频功率放大器24的RF调制信号变为不含振幅方向的变动成分的定包络线的信号,因此作为高频功率放大器24可以利用高效率的非线性放大器。
如上所述,根据实施例1的双点调制式调频装置10,通过检测环路滤波器113的输出信号加上滤波器15的输出信号所得的信号(加法器114的输出信号)的振幅变化量,并根据该振幅变化量移位第二数字基带信号S2的相位(进行延迟调整),来减少第一数字基带信号S1和第二数字基带信号S2之间的相位差。因此,在双点调制式调频装置10可以减少双点调制之间的输入定时差,并提高调制精度。
再者,根据实施例1的双点调制式调频装置10,因为检测环路滤波器113的输出信号加上滤波器15的输出信号所得的信号的振幅变化量,根据该振幅变化量调整数字滤波器18的抽头系数并移位第二数字基带信号S2的相位,可以不管时钟信号的频率速度设定相位移位量,可以以比时钟信号的频率速度细微的相位移位量移位第二数字基带信号S2的相位,可以减少第一数字基带信号S1和第二数字基带信号S2之间的相位差。因此,在双点调制式调频装置10可以进一步地减少双点调制之间的输入定时差,并进一步地提高调制精度。
(实施例2)在本发明的实施例2说明在实施例1的双点调制式调频装置10中改变用于双点调制的输入定时调整模式的数字基带信号的反转法的例子。
如图13所示,根据实施例2的双点调制式调频装置10包括信号输入部12,对分频比生成部13和数字滤波器18输出第一数字基带信号S1;以及数字滤波器18(延迟调整部),在输入定时调整模式生成将第一数字基带信号S1反转的第二数字基带信号S2的同时,通过相位移位对该第二数字基带信号S2进行延迟调整并输出。
如图14所示,数字滤波器18的基本结构与实施例1的双点调制式调频装置10中的数字滤波器18相同,它还包括定时调整模式切换部185和乘法器186、187。定时调整模式切换部185基本上由选择器组成。在该定时调整模式切换部185输入定时调整控制信号和「+1」、「-1」的反转控制信号,该定时调整控制信号用于切换定时调整模式,并该「+1」、「-1」的反转控制信号用于在定时调整模式中乘以相当于抽头系数a0、a1各自的输出信号,以生成反转第一数字基带信号S1的第二数字基带信号S2。在通常模式,定时调整模式切换部185将输出信号「1」输出到乘法器186、187。
由此,根据实施例2的双点调制式调频装置10,即使信号输入部12不具备数字基带信号的反转功能,也能够以在数字滤波器18中配备定时调整模式切换部185和乘法器186、187的简单结构来生成数字基带信号的反转信号。
(实施例3)在本发明的实施例3对于在实施例2的双点调制式调频装置10中在输入定时调整模式不使数字基带信号反转的例子进行说明。
如图15所示,根据实施例3的双点调制式调频装置10包括,其基本结构与实施例2的双点调制式调频装置10中的信号输入部12相同的信号输入部12,和其基本结构与实施例1的双点调制式调频装置10中的数字滤波器18相同的数字滤波器18。在本实施例,信号输入部12将第一数字基带信号S1输出到分频比生成部13和数字滤波器18。在输入定时调整模式和通常模式中,数字滤波器18生成并输出与第一数字基带信号S1相同的、没有被反转的第二数字基带信号S2。
在此,在双点调制式调频装置10中,双点调制之间的输入定时为一致的情况下,如图16所示,对环路滤波器113的输出信号(+sin波)S1a加上滤波器15的输出信号(+sin波)S2a时,因为输出信号S1a和输出信号S2a之间没有相位差,加法器114的输出信号S3a则为双方的输出信号S1a和S2a相加所得的最大值的振幅的信号。也就是说,输出信号S3a的振幅与实施例1的图5所示的输出信号S3a的振幅相反。相对于此,在输入定时为不一致的情况下,如图17所示,对环路滤波器113的输出信号S1b加上滤波器15的输出信号S2b时,输出信号S1b和输出信号S2b的相位差引起加法器114的输出信号S3b的振幅减少。
根据如上所述的PLL电路11的加法器114的输出信号S3的振幅变化量,在延迟量系数计算部(滤波器系数计算部17)可以利用与实施例1相同的步骤来计算延迟量系数(抽头系数),并且延迟量调整部(数字滤波器18)可以根据该延迟量系数(抽头系数)对第二数字基带信号S2进行延迟控制。
因此,根据本实施例的双点调制式调频装置10,可以减少双点调制之间的输入定时差,并提高调制精度。再者,在双点调制式调频装置10中不需要使第二数字基带信号S2对第一数字基带信号S1反转,因此可以削减生成该反转信号的电路结构。
(实施例4)本发明的实施例4说明将图13所示的实施例2的双点调制式调频装置10的数字滤波器18插入在信号输入部12和分频比生成部13之间的例子。也就是说,如图18所示,实施例4的双点调制式调频装置10包括输入由信号输入部12输出的第一数字基带信号S1、并将该第一数字基带信号S1输出到分频比生成部13的数字滤波器18。在实施例1至3中的各个双点调制式调频装置10都在第二数字基带信号S2的供给路径配备了数字滤波器18,在实施例4的双点调制式调频装置10在第一数字基带信号S1的供给路径配备了数字滤波器18。
如上所述,根据实施例4的双点调制式调频装置10,通过在输入定时调整模式对第一数字基带信号S1进行延迟控制,检测并保持使双点调制之间的输入定时之差最小的最佳抽头系数。而在实际上的双点调制处理时(通常模式时),通过有数字滤波器18使用上述最佳抽头系数对输入到分频比生成部13的数字基带信号进行延迟调整,能够减少双点调制之间的输入定时差,并提高调制精度。
(实施例5)本发明的实施例5说明将如图13所示的实施例2的双点调制式调频装置10和如图18所示的实施例4的双点调制式调频装置10结合的例子。也就是说,如图19所示,实施例5的双点调制式调频装置10包括插入在信号输入部12和分频比生成部13之间的第一数字滤波器18A和插入在信号输入部12和数字模拟转换器14之间的第二数字滤波器18B。第一数字滤波器18A被配备在第一数字基带信号S1的供给路径上,并对该第一数字基带信号S1进行延迟控制。第二数字滤波器18B被配备在第二数字基带信号S2的供给路径上,并对该第二数字基带信号S2进行延迟控制。
如上所述,根据实施例5的双点调制式调频装置10,通过在输入定时调整模式对第一数字基带信号S1和第二数字基带信号S2进行延迟控制,检测并保持使双点调制之间的输入定时之差最小的最佳抽头系数。而在实际上的双点调制处理时(通常模式时),通过第一数字滤波器18A使用上述最佳抽头系数对输入到分频比生成部13的数字基带信号进行延迟调整的同时,而且第二数字滤波器18B使用上述最佳抽头系数对输入到D/A转换器14的基带信号进行延迟调整,来能够减少双点调制之间的输入定时差,并提高调制精度。
(实施例6)在上述实施例1的图12说明了将本发明的双点调制式调频装置10装备在采用极性调制发送方式的无线发送装置中的例子,但本发明的双点调制式调频装置不限于采用极性调制发送方式的无线发送装置,可以用于其他各种无线发送装置中,甚至可以用于包括接收功能的各种无线通信装置中。
图21表示装备了本发明的双点调制式调频装置10的无线发送装置的结构的例子。无线发送装置30包括上述双点调制式调频装置(频率合并器)10、放大器31以及天线25。如上所述,双点调制式调频装置10检测使双点调制之间的输入定时之差最小的最佳抽头系数并将其保持之后,在通常发送模式时由数字滤波器使用上述最佳抽头系数对基带信号进行延迟调整,并且以基带信号对载波信号(载波频率数据)进行调制来生成RF调制信号(高频相位调制信号),并将其输出到放大器31。由放大器31放大的发送信号经天线25被发送。由此,在无线发送装置30,通过利用改善了调制精度的双点调制式调频装置10,能够发送高质量的发送信号。
图22表示装备了本发明的双点调制式调频装置的无线通信装置的结构的例子。无线通信装置40包括具有上述双点调制式调频装置10和放大器31的无线发送部41、对接收信号进行解调处理等预定接收处理的无线接收部42、切换发送信号和接收信号的共用器43、以及天线25。由此,在无线通信装置40,通过利用改善了调制精度的双点调制式调频装置10,能够发送高质量的发送信号。
本发明不限于上述实施例,在本发明的范围内可以实现各种应用和修改。
本申请基于在2004年3月2日申请的日本专利申请第2004-57523号,其全部内容都包含于此以资参考。
权利要求
1.一种双点调制式调频装置,包括PLL电路;分频比设定部,根据第一数字基带信号和载波信号设定上述PLL电路的分频器的分频比;信号加法部,在上述环路滤波器的输出信号上加上第二数字基带信号;延迟量系数计算部,根据对上述输出信号加上第二数字基带信号所得的信号的振幅变化量,计算延迟量系数;延迟调整部,根据上述延迟量系数移位上述第一数字基带信号和第二数字基带信号中的其中之一的相位,减少上述第一数字基带信号和第二数字基带信号之间的相位差。
2.如权利要求1所述的双点调制式调频装置,其中,上述延迟量系数计算部包括用于存储上述延迟量系数的信息的存储表。
3.如权利要求1所述的双点调制式调频装置,其中,上述延迟调整部是一种数字滤波器,将上述延迟量系数计算部计算出的延迟量系数作为抽头系数,并根据该抽头系数来移位上述第一数字基带信号或上述第二数字基带信号中的其中之一的相位。
4.如权利要求1所述的双点调制式调频装置,其中,上述延迟量系数计算部和上述延迟调整部将上述第一数字基带信号和上述第二数字基带信号相加,通过检测出该加法结果的振幅值为最大值的点来将延迟差调整为最小。
5.如权利要求1所述的双点调制式调频装置,其中,上述延迟量系数计算部和上述延迟调整部将上述第一数字基带信号和反转上述第一数字基带信号的上述第二数字基带信号相加,通过检测出该加法结果的振幅值为最小值的点来将延迟差调整为最小。
6.如权利要求1所述的双点调制式调频装置,其中,还包括信号反转部,使上述第二数字基带信号对上述第一数字基带信号反转。
7.如权利要求6所述的双点调制式调频装置,其中,上述信号反转部被配备在供给上述第一数字基带信号和上述第二数字基带信号的信号输入部内,或者被配备在上述延迟调整部内。
8.如权利要求1所述的双点调制式调频装置,其中,上述延迟调整部被配备在上述第一数字基带信号的供给路经或上述第二数字基带信号的供给路经的任一者中,或者被配备在上述第一数字基带信号的供给路经和上述第二数字基带信号的供给路经的两者中。
9.一种具备如权利要求1所述的双点调制式调频装置的无线发送装置。
10.一种具备如权利要求1所述的双点调制式调频装置的无线通信装置。
全文摘要
提供一种能够减少双点调制之间的输入定时差,并能够提高调制精度的双点调制式调频装置。双点调制式调频装置(10)包括PLL电路(11);分频比生成部(13),根据第一数字基带信号S1和载波信号设定分频器(111)的分频比;加法器(114),在环路滤波器(113)的输出信号上加上第二数字基带信号S2;延迟量系数计算部(滤波系数计算部(17)),根据加法器(114)的输出信号的振幅变化量计算延迟量系数;以及延迟调整部(数字滤波器(18)),根据延迟量系数移位第一数字基带信号S1或第二数字基带信号S2的相位,减少相位差。
文档编号H03D3/24GK1665140SQ20051005295
公开日2005年9月7日 申请日期2005年3月2日 优先权日2004年3月2日
发明者吉川博幸, 平野俊介, 冈达人 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1