使用三进制输入和离散输入的多状态开关的方法和系统的制作方法

文档序号:7509612阅读:195来源:国知局
专利名称:使用三进制输入和离散输入的多状态开关的方法和系统的制作方法
技术领域
本发明一般涉及多状态开关逻辑,更具体地说,涉及用于提供使用至少一个三态开关触点和至少一个离散触点的多状态开关的方法、系统和设备。
背景技术
现代车辆包含许多电子和电气开关。响应于由各种开关响应司机/乘客输入、传感器读数等产生的电信号来激活、去激活和调节车辆功能部件,诸如气候控制、音频系统控制以及其它电气系统等。这些电控信号一般经由铜线或其它电导体从开关传递到受控设备。目前,许多控制应用使用单线来用在该线上传输的高或低电压指示两种离散状态(例如开/关、真/假、高/低等)。
为了实现多于两种状态,一般使用附加的控制信号。例如,在常规的两/四轮驱动传送控制中,用耦合到单轴或双轴控制杆的3到5个离散(2态)开关来表示控制的四种活动状态(例如2WD模式、自动4WD模式、4WD LO模式和4WD HI模式)以及缺省模式。在控制杆启动时,各种开关识别控制杆的位置,以将车辆置于期望的模式。许多其它类型的多状态开关(例如单极或多极、瞬时、锁定位置、滑动致动器、旋转致动器等)用在汽车、航天、军事、工业、消费者以及其它应用中的大量应用中。
随着消费者对更新的车辆和其它产品中的附加电子功能部件需求的增长,用于实现这些功能部件的线路的数量也不断增加。该附加线路常常占据有用的空间、增加不希望的重量、并增加车辆的制造复杂性。因此,(特别在车辆应用中)存在减少车辆中线路数量而不牺牲功能部件的持续需求。此外,存在增加由各种开关表示的状态数而不增加通常与附加线路相关的重量、体积或复杂性、且不牺牲安全性的需要。此外,存在对能够在受控设备的四个或更多个操作状态之间可靠地选择的开关和开关系统的需求,特别在汽车和其它车辆设置中。
具体地说,希望配制能够表示四个或更多个状态而不增加额外成本、复杂性或重量的多状态开关设备。此外,根据结合附图和上述技术领域及背景技术的随后的详细描述和所附权利要求书,其它期望的特征和特性将变得明显。

发明内容
根据不同的示例性实施例,提供了用于响应于多位置致动器的位置而将受控设备置于期望操作状态的系统、方法和设备。包括至少一个三进制开关触点和至少一个离散开关触点的两个或更多个开关触点提供表示致动器位置的输入信号。然后控制逻辑基于接收的输入信号确定受控设备的期望状态。从由输入值确定的多个操作状态中确定期望的操作状态。在不同的实施例中,三进制开关可结合二进制开关使用,以有效地实现能够识别6个、12个、18个或任何其它数量可转换状态的多状态旋转或线性开关。


在下文将结合以下附图来描述本发明,其中相同的标号指示相同的元件,并且图1是示例性车辆的框图;图2是开关电路的示例性实施例的电路图;图3是开关电路的备选示例性实施例的电路图;图4是处理来自多个开关的输入信号的示例性开关系统示意图;图5是具有两个三态输入和九个输出状态的示例性开关系统的示意图;图6是具有两个三态输入和八个输出状态的示例性旋转开关系统的示意图;图7是各种示例性27和26个状态开关系统的信号映射的图表;图8是具有三进制输入和离散输入以及12个输出状态的示例性旋转开关系统的示意图;图9是示出各种示例性6状态开关系统的信号映射的图表;图10是示出各种示例性12状态开关系统的信号映射的图表;图11是示出各种示例性18状态和26状态开关系统的信号映射的图表;以及图12是可从三进制和二进制开关输入的各种示例性组合中得到的示例性状态表示的表格。
具体实施例方式
下面的详细描述实质上仅是示范性的,并不用于限制本发明或本申请以及本发明的应用。此外,并无意被前面的技术领域、背景技术、发明内容或下面详细描述中给出的任何明确或暗示的理论所限制。
根据各种示范性实施例,可用三进制开关来配制用在车辆和其它地方的单轴和/或多轴控制,以降低控制的复杂性。这种开关可用于实现各种类型控制机构的鲁棒选择方案,包括用于正常/性能/经济模式转换、巡航控制转换、动力输出(PTO)控制、“迅速加速/迅速减速(tap up/tap down)”转换等的方案。此外,通过选择某些信号输入组合来表示受控设备的操作状态,和/或通过多个开关触点的机械联锁,可保持甚至改进系统的鲁棒性。
现在参考附图,并首先参考图1,示范性车辆100适当地包括与各个开关102A、102B通信以分别接收控制信号106、112A-B的许多构件104、110。各种构件104、110可表示车辆100内存在的任何电气或电子设备,包括(不限于)2WD/4WD变速箱控制、巡航控制、动力输出选择/启动设备、多位置选择器、耦合到这些设备的数字控制器和/或车辆100内的任何其它电气系统、构件或设备。
开关102A-B是能够响应于用户命令、传感器读数或其它输入刺激而将各个逻辑信号106、112A-B提供给构件104、110的任何设备。在示范性实施例中,开关102A-B适当地响应控制杆108A-B或其它致动器的移动或启动。可用电气、电子和/或机械致动器来配制各个开关102A-B,以在一条或多条导线或其它电导体连接开关102和构件104、110上产生适当的三进制输出信号,如下面更全面描述的。这些三进制信号可由构件104、110处理,以在适当时将这些构件置于期望状态。在各种实施例中,(例如在图1中的开关102A和构件104之间)可提供单个三进制信号106,和/或(例如在图1中的开关102B和构件110之间)可提供多个信号112A-B,其中构件104(或相关控制器)中的逻辑组合或处理各个信号112A-B,以提取有意义的指令。在其它实施例中,可以任何合适的方式组合二进制、三进制和/或其它信号,以创建多个可转换状态。
许多类型的致动器或基于操纵杆的控制设备都提供了几个输出信号112A-B,这些信号可被处理,以确定单个致动器108B的状态。控制杆108B可对应于2WD/4WD选择器、电子后视镜控制、动力输出选择器或操作在一个或多个自由度内的任何其它设备中的致动器。在备选实施例中,控制杆108A-B在允许多方向移动的球窝或其它配置中移动。本文描述的概念可易于适于与任何类型的机械选择器一起操作,包括任何类型的控制杆、操纵杆或经任何可滑动、可转动或其它联轴节(例如铰链、滑动器、球窝、万向节等)来相对于车辆移动的其它致动器。
现在参考图2,示范性开关电路200适当地包括开关触点212、分压器电路216和模数(A/D)转换器202。开关触点212适当地产生三态输出信号,该三态输出信号通过导线106适当地传输,并在分压器电路216和/或A/D转换器202处被解码。虽然图2中所示电路200也可适于大量备选环境,但电路200可特别用于其中A/D转换器202的公共参考电压(Vref)可用于开关触点212和分压器电路216的实施例。
开关触点212可以是能够在导线106上产生二进制、三进制或其它适当输出的任何设备、电路或构件。在各种实施例中,用可在许多车辆中普遍找到的常规双掷开关来实现开关触点212。备选地,在适当时用多位置操作器或其它电压选择器来实现触点212。例如可用在许多车辆中普遍找到的常规三位置低电流开关来实现触点212。各个这些开关可选地包括弹簧部件(未示出)或其它机构,以将致动器106(图1)偏置到缺省位置,虽然并不是在所有实施例中都找得到偏置机构。开关触点212概念上对应于图1中所示的各个开关102A-B。
开关触点212一般提供从两个参考电压(诸如高参考电压(例如Vref)和低参考电压(例如地))以及中间值中选择的输出信号。在示范性实施例中,Vref是提供给车辆100(图1)中数字电路的同一参考电压,并可以是提供给A/D转换器202的同一参考电压。在各种实施例中,Vref大约是5伏左右,虽然其它实施例可广泛使用变化的参考电压。触点212提供的中间值可对应于开路(例如都不连接到参考电压),或者可反映较高和较低参考电压之间的任何中间值。对于许多应用,中间开路可能是必要的,因为当开关处于中间状态时,开路通常不会获得信号线106上的寄生电流,这将在下面更全面描述。此外,使用常规的低电流三位置开关触点212比较容易实现开路状态。
因此触点212可操作用于提供从两个参考信号(例如图2示例中的Vref和地)和中间状态中选择的三进制信号106。该信号106在适当时被提供给一个或多个车辆构件(例如图1中的构件104、110)中的解码器电路。在各种实施例中,三态开关触点212只是仅在两个参考电压(例如电源和地)和开路位置或其它中间状态之间选择的多位置设备。该触点不需要提供任何分压,并因此不需要除简单选择装置以外的电阻器、电容器或其它信号处理构件。在各种实施例中,开关212可选择地包括机械联锁能力,以便可在任一给定时间只选择一个状态(例如电源、地、中间状态)。
在分压器电路216或构件104、110(图1)处接收触点212产生的信号106。如图2中所示,示范性分压器电路216适当包括分别耦合到提供给触点212的同一高参考信号和低参考信号的第一电阻器206和第二电阻器208。这些电阻器206、208在公共节点218处连接,该公共节点还在适当时接收来自开关212的三进制信号106。在图2中所示的示范性实施例中,电阻器206被示为连接到高参考电压Vref214,而电阻器208连接到地。因此当信号106对应于地和Vref时,电阻器206和208分别用作下拉和上拉电阻。虽然电阻器206、208的值随实施例的不同而不同,但这些值可选择为彼此近似相等,以便在触点212创建开路时,公共节点被拉到近似Vref电压一半的电压。因此,适当时可在公共节点218处提供三个不同的电压信号(即,地、Vref/2、Vref)。备选地,可通过选择电阻器206、208的各个值来相应地调节中间电压的大小。在不同的实施例中,电阻器206、208都被选择为具有大约1-50k欧姆(例如大约10k欧姆)的阻抗,虽然在大量备选实施例中也可用任何其它值。虽然备选实施例可使用不同值的电阻器206、208,但相对高的电阻值可通过降低从Vref流到地的电流量来帮助节省功率和热量。
在公共节点218处存在的三进制电压然后被提供给模数转换器202,以在适当时解码和处理信号204。在各种实施例中,A/D转换器202与处理器、控制器、解码器、远程输入/输出箱等相关联。备选地,A/D转换器202可以是比较器电路、流水线A/D电路或能够提供接收的模拟信号204的数字表示214的其它转换电路。在示范性实施例中,A/D转换器202识别出高参考电压和低参考电压,并假设中间值与中间状态有关。例如在Vref大约等于5伏的实施例中,A/D转换器可将低于大约1伏的电压识别为“低”电压,将高于大约4伏的电压识别为“高”电压,而将1伏和4伏之间的电压识别为中间电压。在其它实施例中,A/D转换器202处理的特定公差和值可以改变。
如上所述,那么三进制信号106可由触点212产生,通过单个载体传输,并由A/D转换器202结合分压器电路216解码。分压器电路216定标不对应于触点212的传统“高”或“低”输出的中间信号,以在适当时产生可由A/D转换器202检测和处理的已知中间电压。以这种方式,常规开关触点212和电缆可用于传输代替二进制信号(或除二进制信号之外)的三进制信号,从而增加可在单个导体上传送的信息量。可在大范围的汽车和其它应用上采用该概念。
现在参考图3,除了以上结合图2描述的触点212、分压器电路216和A/D转换器202以外,开关电路300的备选实施例还适当地包括附加的分压器308。当不可或不便将提供给A/D转换器202的一个或多个参考电压(例如Vref)提供给触点212时,图3所示的电路可提供附加的优点。在此情况下,可将另一个方便的参考电压(例如车辆电池电压B+、运行/曲柄信号等)提供给如图所示的触点212和/或分压器电路216。使用上述概念,该配置在公共节点204处提供了三个不同的电压(例如地、B+/2和B+)。然而这些电压可能与常规A/D电路202所预期的电压不合规定比例,因为示范性车辆电池电压可能是大约12伏左右。因此,在公共节点204处存在的电压用第二分压器308定标,以提供在A/D转换器202的敏感范围内的输入信号306。
在示范性实施例中,分压器308包括在公共节点218和到A/D转换器202的输入306之间电配置的两个或更多个电阻器302和304。在图3中,电阻器302显示在节点218和306之间,电阻器304显示在节点306和地之间。然而,可用欧姆定律的简单应用来配制各种备选分压器电路308。类似地,虽然将两个电阻器302和304设计为近似相等的值可为电路300提供改进的信噪比,但可基于节点218和306之间电压的期望比例来将这两个电阻器的值设计为任何值。
用以上阐述的概念,可配制广范的控制电路和控制应用,特别在汽车和其它车辆设置中。如上所述,触点212产生的二进制和/或三进制信号106可用于将控制数据提供给许多车辆构件104、110(图1)。现在参考图4,触点212A-B的各个位置404、406、408可适当地映射到提供给构件104的各个状态、状况或输入405。如上所述,构件104适当地包括处理器或其它控制器402(或至少与之通信),该处理器或其它控制器402包括A/D转换器202和分压器电路210,或与之通信,以便接收来自触点212的三进制信号112A-B。在适当时由控制器402处理A/D转换器202产生的数字信号214,以响应在触点212处接收的三态输入。因此,虽然备选实施例可包括系统400的附加或备选部分中的信号处理,但状态404、406和408之间的映射通常由控制器402处理。可以任何适当的方式处理从触点212接收的信号214,并在另一实施例中,可在适当时将该信号214存储在数字存储器403中。虽然在图4中存储器403和处理器402被示为分离构件,但可以任何方式在逻辑上和/或物理上集成该存储器和处理器。备选地,存储器403和处理器402可在适当时简单地经由总线或其它通信链路通信。
虽然图4示出了控制器402与两个开关212A-B通信的示范性实施例,但备选实施例可使用许多开关触点212的配置,下面将更详细描述。可由控制器402、单独的处理逻辑、或者以任何其它方式来组合或处理开关电路的各个输出214A-B,以获得提供给设备104的合适命令。由该处理产生的命令可用于例如将设备104置于期望状态,或者调节该设备的性能或状态。在各种实施例中,通过比较(分别)从触点212A-B接收的各个输入信号214A-B来确定设备104的期望状态。然后可由各个输入信号214A-B的共同状态来确定设备104的状态。
本文所用的输入状态404被任意称为“1”或“高”,并对应于对Vref、B+或另一个高参考电压的短路。类似地,输入状态408被任意称为“0”或“低”,并对应于对地或另一个适当的低参考电压的短路。中间输入状态406被任意描述为“值”或“V”,并可对应于开关212的开路或其它中间状态。虽然在此为了理解的连贯和容易而采用这些命名,但也可使用其它标识符诸如“0”、“1”和“2”、“A”、“B”和“C”或以任何其它方便的方式来等效地描述三进制状态。因此,在大量等效实施例上可以任何方式更改本文所用的命名和信号约定。
在许多实施例中,触点212的中间状态406最适于用作设备104的“断电”、“缺省”或“无改变”状态,因为开路导致很少电流或没有电流从触点212流出,从而节省了电力。此外,“开路”故障一般比对任一参考电压的短路故障更可能发生;因此,最可能的故障(例如开路)情况可用于表示设备104的破坏性最小的状态,以保持鲁棒性。例如,短路情况可用于表示设备104的“关”状态。在这种系统中,错误的短路将导致断开设备104,而不是不正常地将设备104维持在“导通”状态。另一方面,在适当时,一些与安全有关的功能部件(例如前灯)可配置为在故障发生时保持有效。因此,可以任何方式重新分配本文所描述的触点212的各种状态,以适当地表示构件104的各个输入和/或操作状态。
使用三进制开关的概念,可按如下所述来定义特定汽车和其它应用的触点212的各种示范性映射。上述概念可容易地实现为创建多状态控制,该多状态控制例如可用于控制动力输出、动力系构件、气候或音频系统构件、巡航控制、其它机械和/或电气构件、和/或任何其它汽车或其它设备。在这些实施例中,两个或更多个开关触点212通常配置为接近致动器108,其中开关的输出对应于致动器108的各个状态/位置。然而,备选地,各个开关触点212可与分离的致动器108相互作用,其中各个输入状态表示不同致动器的各个位置。换言之,公共控制器402可用于以任何方式对多个独立开关触点212A-B的各个状态进行解码。此外,可互连或混合多个二进制、三进制和/或其它类型的开关触点212,以创建任何类型的开关配置。
参考图5,例如,适于表示9个不同操作状态的示范性开关系统500适当地包括多个配置为创建致动器108的9个唯一位置501-509的电极、电触点或其它导电部件514、516、518、520。位置501-509中的一些或全部适当地对应于受控设备104/110的操作模式。当致动器108通过各个操作位置501-509时,致动器108上的两个单独的输入510、512与各个触点514、516、518、520及522相互作用,以产生指示致动器108的位置501-509的电信号112A和112B。如图5中所示,电极514和516适当与输入510合作,以提供第一输入信号(输入1)112A,并且电极518、520和522与输入512合作,以提供第二输入信号(输入2)112B。各个电触点被适当地耦合到适当的参考电压(例如地、电池电压B+等),以产生可在A/D转换器202处接收并在控制器402处正确解码的期望的电信号112A-B。可通过任何离散或集成的处理电路、数字处理(例如使用查找表或其它数据结构)或任何其它技术来实现解码。
通过电触点相对于致动器108的正确配置,可为致动器108的每个位置501-509创建信号112A和112B的唯一组合。在图5中的插入表550中示出了配置各个触点的一个示范性方案。如表550所示,各个操作状态可被配置为最大化相邻状态中的相似性,并利用该相似性,从而减少用于实现系统500的电触点数,这又降低了开关的成本、重量和复杂性。例如,通过将输入1为“低”值的每个状态放在一起,可给所有三个状态503-505提供单个触点514。类似地,单个触点520为状态505-507提供公共“高”参考电压。此外,将相邻致动器状态中的公共信号值集合在一起减少了在变到致动器相邻状态期间发生的信号变换的数量。因为每个相邻状态变换都有至少一个信号112A或112B的公共值,因此简化了开关操作。可在大量备选实施例上以多种方式运用该概念,并在下面更全面地描述该概念。
此外,在“中间”或“值”信号设计为对应于开路的实施例中,不需要为与中间值相关的那些位置提供外部电参考,因为缺少输入触点可用于在输入510和/或输入512处产生开路。例如,图5中的状态501在输入510和512处产生开路情况,因为致动器108不与任何电触点接触,并因此在该位置不提供输入参考电压。如上所述,该状态501可为许多实施例提供适当的“缺省”或“无操作”状态,因为当致动器108处于位置501时,很少或没有电流流过开路。
可将不同的附加效能结合在其它实施例中。例如,具有共同电特性的触点可配制为电路板、基底或其它表面上的单个电节点。例如,触点514、518和522可相互连接,或形成为单个电触点,从而进一步减少系统500内的电连接数。类似地,触点516和520可形成为公共电节点。此外,可以任何方式,通过以任何合适的物理配置放置各个触点来修改图5中所示的半球形配置。例如可以线性方式配置各个操作状态501-509,其中滑动致动器108提供信号112A和112B。可提供操作状态501-509的任何子集,其中开关系统500提供多个输出状态。此外,表550中所示的信号映射是示范性的,并且任何操作状态501-509都可由以任何方式编制的信号112A-B的任何值来表示。
可从不同实施例(包括图5中所示的示范性实施例)中得到的另一个优点是信号触点的改进的物理和电隔离。也就是说,通过在触点之间设置参考值的“值”或“开路”输入,两个参考值彼此愈加隔离。通过增加触点间的间隔,降低了触点彼此无意中接触的机会,以及由此的接触燃烧的可能性。
现在参考图6,根据图5中阐述的一般概念,可形成示范性8状态旋转开关系统600。在图6所示的示范性实施例中(与图5中所示的实施例相比),已组合了触点518和522,以圆形方式排列各个操作状态502-509,并已省略了状态501。虽然该省略将可用状态数从9减到8,但其并没考虑旋转开关600的有效布局。从表650可看出,当致动器108的输入510失去与触点514的连接性并进入开路状况时,从状态509到状态502致动器108的移动仅涉及输入1112A从“高”值到“中间”值的变换。因此,从旋转开关中去除“双开路”状态(图5中的状态501)使各个致动器位置502-509之间的信号变换成流线型,从而简化了旋转开关600中的变换。还可配制会产生类似结果的其它信令方案650。
关于图5和图6描述的一般概念还可应用于具有多于两个三进制开关触点的开关系统。参考图7,示出了具有3个三进制信号输入的开关系统的4个示范性信号分配方案。图7(a)示出了逻辑上可用3个三进制输入表示的27个状态的数字上有序的列表,其中高和低参考电压信号的分组用不同级别的阴影显示。虽然可根据图7(a)中所示的方案配制控制、指示器或其它开关系统,但为了实现所示的顺序,这种方案通常将包括大约26个独立的电触点。因此,图7(b)示出了具有3个三进制输入的开关系统的更优化的信号表。虽然图7(a)和图7(b)都描述了27个状态实现,但由于具有作为相邻状态的公共信号值的分组状态中的效率,图7(b)表可用16个电触点实现。虽然在多个备选实施例中可用其它的配置,但图7中用阴影框示出了采用相邻和公共信号的电触点的示范性配置。
用以上结合图6描述的概念,图7(c)和7(d)提供了可以旋转方式使用的26个状态实现的示范性状态表。在这些表的每一个中,配置每个状态,以使到先前或随后状态的变换由单个信号变换引起。在大量等效实施例中可使用类似概念来配制其它表格。
类似概念可应用到由三进制和离散(例如二进制)输入的组合构成的混合开关系统。现在参考图8,能够表示6个状态501-506的示例性开关系统800适当地包括分别由离散开关和三进制开关提供的离散输入112A和三进制输入112B。和上面所示的实施例类似,每个开关都可由多个触点构成,诸如离散开关中的触点514和516,以及三进制开关中的触点518和520。如上所述,致动器108上的触点510和512与各个固定触点相互作用,以分别创建离散开关和三进制开关。虽然图8示出了具有位置506与位置501相邻的旋转型开关系统800,但可用以任何方式配置的开关和开关触点来配制许多其它线性、旋转及其它开关配置。
开关系统800以任何合适的方式操作,诸如以类似于上述三进制系统的方式。在示例性实施例中,致动器108具有对应于由电触点514、516、518和520提供的各个电信号的各个位置501-506,其中当输入512不与触点518或520通信时,三进制输入512进入中间/开信号模式。由于输入112A被示为配置为只有两个可能状态(例如“低”和“高”)的二进制/离散输入,因此适当时可从系统800中去掉两个离散触点518或520中的任一个,并用偏压电阻器802代替。如果去掉“低”触点514,则电阻器802应连接到低参考电压(例如地),以使电阻器802用作“下拉”电阻。备选地,可去掉“高”触点516,并且电阻器802连接到高参考电压(例如电池或B+),以使电阻器802用作使用传统电原理的“上拉”电阻器。在大量备选实施例中可配制各种等效的电配置。
现在参考图9,示出了各种示例性信令配置,其中图9(b)配置一般与图8中所示的开关电路800有关。图9(a)示出了可从一个离散输入和一个三进制输入得到的6个有序状态,其中图9(b)示出了配置用于电触点的有效分组和/或上述旋转开关操作的这些状态。图9(c)示出了与图9(b)类似的配置,但去掉了一个电触点514,并用上述下拉电阻器802代替。图9(d)类似地对应于由“上拉”电阻器802代替的“高”电触点516。
还可根据需要通过添加一个或多个离散和/或三进制开关输入来利用图8和图9中给出的概念。例如,图10示出了具有两个离散输入和一个三进制输入的各种开关系统的示例性信令方案。这些方案能够表示多达12个独立状态。虽然图10(a)示出了12个状态的有序配置,但图10(b)示出了为有效触点放置优化的配置。图10(c)和图10(d)分别示出了使用上述概念可通过使用上拉或下拉电阻器802而进一步优化的示例性配置。
图11类似地示出了具有一个离散输入和两个三进制输入的各种开关系统的示例性信令方案,其能够表示多达18个唯一状态。图11(a)以简单数字顺序示出了这些状态,其中图11(b)示出了电触点数减少的更优化配置。图11(c)和图11(d)分别示出了通过使用“下拉”或“上拉”电阻器802来进一步优化的相似配置。
可以多种不同方式修改本文描述的一般概念,以便实现大量等效的多状态开关、致动器和其它控制。可通过任何类型的处理逻辑,例如包括离散构件、集成电路和/或软件的任意组合,来提取和解码致动器108的各个位置。此外,可以任何方式更改和/或补充本文包含的附图和表格中所示的各个位置和开关结构。也就是说,在大量备选实施例中可以任何顺序和任何组合来配置各种输入信号。
此外,本文提出的概念可应用到多个三进制和/或离散开关、或三进制和离散开关的任意组合,以创建多个潜在或实际的鲁棒和非鲁棒状态表示。与上述那些概念类似的概念例如可应用到4个或更多个输入信号,这考虑到在大量等效实施例中能够处理多个状态的控制系统。可用4个或更多个三进制和/或离散输入来实现本文所用的概念,以产生例如能够表示24个(例如1个三进制输入和4个离散输入)、36个(例如2个三进制输入和2个离散输入)、54个(例如3个三进制输入和1个离散输入)或任何其它数量状态的开关系统。在图12中示出了可从离散和三进制开关输入的各种示例性组合中得到的可能状态表示的表格1200。备选或附加地,用于定义各个状态的某些或所有输入可用于冗余目的,从而改进所实现开关系统的可靠性和鲁棒性。
虽然最频繁地描述了关于汽车应用的各种实施例,但本发明并不局限于此。实际上,本文描述的概念、电路和结构可容易地应用在任何商业、家庭、工业、消费电子和其它设置中。三进制开关和概念可用于实现例如常规的操纵杆、或基于四个或更多个方向的任何其它定点/定向设备。因此本文所描述的概念可容易地应用在航空、航天、国防、航海或其它车辆设置以及汽车环境中。
虽然已在前面的详细描述中给出了至少一个示范性实施例,但还存在大量的变形。在不脱离本文所描述概念的前提下,本文描述的各种电路例如可通过常规的电气和电子原理来修改,或可在多个等效实施例中逻辑上改变。本文所描述的示范性实施例仅用作示例,并不用于以任何方式限制本发明的范围、适用性或配置。相反,前面的详细描述将为本领域技术人员提供实现一个或多个示范性实施例的方便路线图。因此,在不脱离所附权利要求书及其合法等价物所阐述的本发明范围的前提下,可在本文阐述的单元功能和配置上进行各种改变。
权利要求
1.一种用于响应于致动器的位置而将控制信号提供给受控构件的开关系统,所述开关系统包括离散开关触点,配置为提供作为所述致动器函数的第一输入值;三进制开关触点,配置为提供作为所述致动器位置函数的第二输入值;以及解码电路,配置为接收第一和第二输入值,并响应于第一和第二值而产生所述控制信号。
2.如权利要求1所述的开关系统,其中从低参考值、高参考值和中间值中选择第二输入值。
3.如权利要求2所述的开关系统,还包括绕所述致动器配置的多个电触点,以与所述三进制开关触点和所述离散开关触点可转换地相互作用。
4.如权利要求3所述的开关系统,其中所述多个电触点中的每个都电耦合到对应于所述低参考值或所述高参考值的参考电压。
5.如权利要求4所述的开关系统,其中所述三进制开关触点配置为在不与所述多个电触点中的任一个接触时,提供作为第二输入值的中间值。
6.如权利要求5所述的开关系统,其中所述中间值对应于开路情况。
7.如权利要求2所述的开关系统,其中所述控制信号与所述致动器的多个状态中的一个相关联,所述多个状态中的每一个都对应于所述致动器的多个相邻位置中的一个。
8.如权利要求7所述的开关系统,其中所述多个位置由接近所述致动器布置的多个电触点定义。
9.如权利要求8所述的开关系统,其中所述多个相邻位置由第一和第二输入值(输入1和输入2)定义如下
10.如权利要求9所述的开关系统,其中所述多个电触点包括第一触点,配置为提供状态3和4的输入2;以及第二触点,配置为提供状态1和6的输入2。
11.如权利要求9所述的开关系统,其中所述多个电触点还包括配置为提供状态1、2和3的输入1的第三触点。
12.如权利要求11所述的开关系统,其中所述解码电路包括上拉电阻器。
13.如权利要求9所述的开关系统,其中所述多个电触点还包括配置为提供状态4、5和6的输入1的第三触点。
14.如权利要求11所述的开关系统,其中所述解码电路包括下拉电阻器。
15.一种用于响应于致动器的位置而将控制信号提供给受控构件的开关系统,所述开关系统包括第一离散开关触点,配置为提供作为所述致动器函数的第一输入值(输入1);第二离散开关触点,配置为提供作为所述致动器位置函数的第二输入值(输入2);三进制开关触点,配置为提供作为所述致动器位置函数的第三输入值(输入3);以及解码电路,配置为接收第一、第二和第三输入值,并响应于第一和第二值而产生所述控制信号。
16.如权利要求15所述的开关系统,其中从低参考值、高参考值和中间值中选择第三输入值。
17.如权利要求16所述的开关系统,其中所述控制信号对应于第一、第二和第三输入值的多个状态中的一个,并且其中所述多个状态中的每一个都对应于所述致动器的多个相邻位置中的一个。
18.如权利要求17所述的开关系统,其中所述多个相邻位置由接近所述致动器布置并配置为向所述开关触点提供第一、第二和第三输入值的多个电触点定义。
19.如权利要求18所述的开关系统,其中所述多个相邻位置由第一、第二和第三输入值(输入1、输入2和输入3)定义如下
20.如权利要求19所述的开关系统,其中所述多个电触点包括第一触点,配置为提供状态3和4的第三输入(输入3);第二触点,配置为提供状态6和7的第三输入(输入3);第三触点,配置为提供状态9和10的第三输入(输入3);以及第四触点,配置为提供状态1和12的第三输入(输入3)。
21.如权利要求20所述的开关系统,其中所述多个电触点还包括第五触点,配置为提供状态4-9的第二输入(输入2);以及第六触点,配置为提供状态7-12的第一输入(输入1)。
22.如权利要求21所述的开关系统,其中所述解码电路包括至少一个下拉电阻器。
23.如权利要求20所述的开关系统,其中所述多个电触点还包括第五触点,配置为提供状态1-3和10-12的第二输入(输入2);以及第六触点,配置为提供状态1-6的第一输入(输入1)。
24.如权利要求11所述的开关系统,其中所述解码电路包括至少一个上拉电阻器。
25.如权利要求19所述的开关系统,其中以旋转方式绕所述致动器配置所述多个相邻位置。
26.如权利要求25所述的开关系统,其中状态1配置为与状态12相邻。
27.一种用于响应于致动器的位置而将控制信号提供给受控构件的开关系统,所述开关系统包括离散开关触点,配置为提供作为所述致动器函数的第一输入值(输入1);第一三进制开关触点,配置为提供作为所述致动器位置函数的第二输入值(输入2);以及第二三进制开关触点,配置为提供作为所述致动器位置函数的第三输入值(输入3);以及解码电路,配置为接收第一、第二和第三输入值,并响应于第一和第二值而产生所述控制信号。
28.如权利要求27所述的开关系统,其中从低参考值、高参考值和中间值中选择第二和第三输入值。
29.如权利要求28所述的开关系统,其中所述控制信号对应于第一、第二和第三输入值的多个状态中的一个,并且其中所述多个状态中的每一个都对应于所述致动器的多个相邻位置中的一个。
30.如权利要求29所述的开关系统,其中所述多个相邻位置由接近所述致动器布置并配置为向所述开关触点提供第一、第二和第三输入值的多个电触点定义。
31.如权利要求30所述的开关系统,其中所述多个相邻位置由第一、第二和第三输入值(输入1、输入2和输入3)定义如下
32.如权利要求31所述的开关系统,其中所述多个电触点包括第一触点,配置为提供状态3和4的第三输入(输入3);第二触点,配置为提供状态6和7的第三输入(输入3);第三触点,配置为提供状态9和10的第三输入(输入3);第四触点,配置为提供状态12和13的第三输入(输入3);第五触点,配置为提供状态15和16的第三输入(输入3);以及第六触点,配置为提供状态1和18的第三输入(输入3)。
33.如权利要求32所述的开关系统,其中所述多个电触点还包括第七触点,配置为提供状态7-12的第二输入(输入2);以及第八触点,配置为提供状态1-3和16-18的第二输入(输入2)。
34.如权利要求33所述的开关系统,其中所述多个电触点还包括提供状态1-9的第一输入(输入1)的第九触点。
35.如权利要求34所述的开关系统,其中所述解码电路包括至少一个上拉电阻器。
36.如权利要求33所述的开关系统,其中所述多个电触点还包括提供状态10-18的第一输入(输入1)的第九触点。
37.如权利要求36所述的开关系统,其中所述解码电路包括至少一个下拉电阻器。
38.如权利要求31所述的开关系统,其中以旋转方式绕所述致动器配置所述多个相邻位置。
39.如权利要求38所述的开关系统,其中状态1配置为与状态18相邻。
40.一种确定致动器位置的方法,所述方法包括以下步骤接收具有由所述致动器位置确定的低、中或高值的三进制信号;接收具有由所述致动器位置确定的低或高值的离散信号;以及对所述三进制和离散信号进行解码,从而确定作为第一和第二三进制值的函数的所述致动器的位置。
41.如权利要求40所述的方法,还包括如下步骤响应于所述致动器的位置接收具有选择的所述低、中或高值的第二三进制信号。
42.如权利要求41所述的方法,其中所述解码步骤还包括解码第二三进制值。
43.如权利要求40所述的方法,还包括如下步骤响应于所述致动器的位置接收具有选择的所述低或高值的第二离散信号。
44.如权利要求43所述的方法,其中所述解码步骤还包括解码第二离散值。
45.一种用于确定致动器位置的设备,所述设备包括用于接收具有低、中或高值的三进制信号和具有低值或高值的离散信号的装置,其中所述三进制和离散信号中的每一个都由所述致动器的位置确定;以及用于解码所述三进制和离散信号从而确定作为所述三进制和离散信号函数的所述致动器位置的装置。
46.如权利要求45所述的设备,还包括用于将所述三进制信号从所述低、中或高值转换为相应数字值的装置。
47.如权利要求45所述的设备,其中所述接收装置还接收具有所述低、中或高值的第二三进制信号,并且其中所述解码装置还解码第二三进制信号,以确定所述致动器的位置。
48.如权利要求45所述的设备,其中所述接收装置还接收具有所述低或高值的第二离散信号,并且其中所述解码装置还解码第二离散信号,以确定所述致动器的位置。
全文摘要
描述了用于响应于多位置致动器的位置而将受控设备置于期望操作状态的系统、方法和设备。两个或更多个开关触点提供表示致动器位置的输入信号。然后控制逻辑基于接收的输入信号确定受控设备的期望状态。期望的操作状态是从输入值定义的多个操作状态中确定。在不同的实施例中,三进制开关可与二进制开关结合使用,以便有效地实现能够识别6个、12个、18个或任何其它数量可转换状态的多状态旋转或线性开关。
文档编号H03M1/12GK1790911SQ200510124699
公开日2006年6月21日 申请日期2005年11月9日 优先权日2004年11月9日
发明者K·K·卡特拉克, P·A·鲍尔勒 申请人:通用汽车公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1