D类放大器的制作方法

文档序号:7539383阅读:235来源:国知局
专利名称:D类放大器的制作方法
技术领域
本发明涉及适于作为音频系统功率放大器的D类放大器。
背景技术
D类放大器是一种生成脉冲序列并通过脉冲序列驱动负载的放大器,脉冲序列的脉冲宽度或时间密度被根据输入信号进行调制。D类放大器常常用作驱动音频系统中扬声器的功率放大器。在此类型的功率放大器中,在输入信号的电平超过适当的范围时在输出信号波形中出现削波。必须防止这样的削波,因为一旦向作为负载的扬声器发出削波时,那么该削波从扬声器输出为令人不快的声音。在现有技术中,在功率放大器之前布置电平调整器,以优化功率放大器输入信号的幅度,从而防止出现削波。此技术在JP-A-2003-332867中的“背景技术”作为示例公开。
在现有技术中,功率放大器输入信号的幅度根据其电平进行压缩,从而防止削波。问题是输入功率放大器的信号伴随有由电平调整器的非线性特性导致的非线性失真,并且在输出信号波形上出现的非线性失真降低通过扬声器再现的声音质量。
根据在JP-B-3,130,919中公开的技术,在D类放大器的PWM(脉冲宽度调制)调制器的前级中提供可变增益放大装置。如果可能生成削波的输入信号被发到PWM调制器,那么在该PWM放大器之后布置的开关放大级的源电压被切换至高电压,并且降低PWM调制器之前的可变增益放大装置的增益以防止削波。专利文献1中公开的技术的问题在于需要控制开关放大级来防止削波,这样导致较大的电路。当可能发生削波时,专利文献1中公开的技术将开关放大级的源电压切换至高电压。从而,D类放大器输出信号的峰值电平可能变得不必要地高。这并未完全满足对于以适当的音量和降低的失真再现音频的需要。

发明内容
考虑到前述情况完成了本发明。本发明的目标是提供一种能够防止出现削波而不生成非线性失真的D类放大器。
本发明的另一目标是提供一种能够在输入信号动态范围的整个区域上降低失真地放大输入信号并且获得适当电平的输出信号的D类放大器。
为了实现上面的目标,本发明的特征在于具有下面的布置。
(1)一种D类放大器,包括放大器,根据输入信号生成驱动负载的数字信号;衰减器,根据衰减命令信号衰减所述输入信号;以及削波防止控制器,当所述数字信号进入削波状态或者近削波状态时,该削波防止控制器输出衰减命令信号以间歇地衰减所述输入信号。
(2)根据(1)的D类放大器,其中所述放大器根据周期同步信号输出具有对应于所述输入信号的脉冲宽度的所述数字信号,以及所述削波防止控制器根据所述同步信号输出所述衰减命令信号。
(3)根据(2)的D类放大器,还包括用于输出周期三角波信号的三角波发生器,其中所述放大器包括用于积分并输出所述输入信号和所述数字信号之间误差的误差积分器,以及用于输出根据所述误差积分器的输出信号电平并基于所述误差积分器的输出信号与所述三角波信号之间的比较进行脉冲宽度调制的数字信号的脉冲宽度调制器,以及其中当所述误差积分器的输出信号超过参考电平时,所述削波防止控制器认为所述数字信号处于削波状态或者近削波状态,并且输出所述衰减命令信号。
(4)根据(3)的D类放大器,其中所述削波防止控制器包括用于生成处于某电平的比较电压的比较电压发生器,其中当所述误差积分器的输出信号超过所述参考电平时所述比较电压与所述三角波信号相交,并且包括用于比较所述比较电压与所述三角波信号以输出所述衰减命令信号的比较器。
(5)根据(3)的D类放大器,其中所述削波防止控制器根据所述三角波信号的峰值时刻或者就在峰值时刻之前的所述数字信号的电平来检测所述数字信号处于所述削波状态或者近削波状态。
(6)根据(3)的D类放大器,其中所述削波防止控制器保持表示所述脉冲宽度调制器中所述误差积分器的输出信号与所述三角波信号的峰值时刻或者就在所述峰值时刻之前的三角波信号之间的比较结果的信号,并且根据所述保持的信号检测所述数字信号处于所述削波状态或者近削波状态。
(7)根据(1)至(6)中任一的D类放大器,其中所述输入信号是模拟信号。
(8)根据(1)至(6)中任一的D类放大器,其中所述输入信号是数字信号。
(9)一种D类放大器,包括放大器,根据输入信号生成驱动负载的数字信号;增益控制器,根据所述输入信号的电平增加来降低所述放大器的增益,使得当所述数字信号进入削波状态或者近削波状态时,所述数字信号波形的峰值电平保持在预定电平。
(10)根据(9)的D类放大器,其中所述增益控制器包括衰减器,根据衰减命令信号衰减所述输入信号,所述衰减器提供在所述放大器的输入部分;以及削波防止控制器,通过监控所述放大器中预定节点的信号来检测所述数字信号进入所述削波状态或者近削波状态,并且输出所述衰减命令信号。
(11)根据(10)的D类放大器,其中所述放大器根据周期同步信号输出具有对应于所述输入模拟信号的脉冲宽度的数字信号,以及所述削波防止控制器根据所述同步信号输出所述衰减命令信号。
(12)根据(11)的D类放大器,还包括输出周期三角波信号的三角波发生器,其中所述放大器包括用于积分并输出所述输入模拟信号和所述数字信号之间误差的误差积分器,以及用于输出根据所述误差积分器的输出信号电平并基于所述误差积分器的输出信号与所述三角波信号之间的比较进行脉冲宽度调制的数字信号的脉冲宽度调制器,以及其中当所述误差积分器的输出信号超过参考电平时,所述削波防止控制器认为所述数字信号处于削波状态或者近削波状态,并且输出所述衰减命令信号。
(13)根据(12)的D类放大器,其中所述削波防止控制器包括用于生成处于某电平的比较电压的比较电压发生器,其中当所述误差积分器的输出信号超过参考电平时所述比较电压与所述三角波信号相交,并且包括用于比较所述比较电压与所述三角波信号以输出所述衰减命令信号的比较器。
(14)根据(12)的D类放大器,其中所述削波防止控制器根据所述三角波信号的峰值时刻或者就在峰值时刻之前的所述数字信号的电平来检测所述数字信号处于所述削波状态或者近削波状态。
(15)根据(12)的D类放大器,其中所述削波防止控制器保持表示所述脉冲宽度调制器中所述误差积分器的输出信号与所述三角波信号的峰值时刻或者就在所述峰值时刻之前的三角波信号之间的比较结果的信号,并且根据所述保持的信号来检测所述数字信号处于所述削波状态或者近削波状态。
(16)根据(9)的D类放大器,其中所述放大器包括脉冲发生器,用于输出具有通过调制信号调制的脉冲宽度或者脉冲密度的脉冲作为所述数字信号,所述增益控制器形成所述放大器的一部分,并且包括动态范围压缩器,用于对从前级给出的压缩目标信号执行动态范围压缩,以向所述脉冲发生器输出产生的信号作为所述调制信号,所述动态范围压缩器在所述压缩目标信号的峰值电平低于预定门限的线性区内利用预定增益放大所述压缩目标信号,并且根据所述压缩目标信号的峰值电平的增加来降低所述增益,使得输出至所述脉冲发生器的所述调制信号的峰值电平保持在所述压缩目标信号的峰值电平超过所述预定门限的饱和区中的预定电平。
(17)根据(16)的D类放大器,其中所述增益控制器包括布置在所述动态范围压缩器的前级中的可变增益放大器,以及所述可变增益放大器利用对应于从外部提供的音量调整信号的增益放大所述输入信号,并且向所述动态范围压缩器输出产生的信号作为所述压缩目标信号。
(18)根据(9)至(17)中任一的D类放大器,其中所述输入信号是模拟信号。
(19)根据(9)至(17)中任一的D类放大器,其中所述输入信号是数字信号。
根据本发明,生成衰减命令信号以在数字信号进入削波或者近削波状态时间歇地衰减输入模拟信号。结果,放大器部分的输入模拟信号在时间轴上间歇地弱化,从而防止数字信号的削波。此时,该输入模拟信号被间歇地弱化,但是它的波形基本不变。这防止削波而不产生波形失真。
进一步地,根据本发明,当数字信号进入削波或者近削波状态时,增益控制装置根据输入信号电平中的增加降低放大器的增益,因此该数字信号所示波形的峰值电平将保持在特定电平。从而可以在输入信号动态范围的整个区域上降低失真地放大输入信号,并且获得处于适当电平的输出信号。


图1是表示根据本发明第一实施例的D类放大器配置的电路图。
图2是表示根据第一实施例的电流输出比较器的示例配置的电路图。
图3是表示第一实施例操作的波形图。
图4A和4B是表示第一实施例操作的波形图。
图5是表示根据本发明第二实施例的D类放大器配置的电路图。
图6是表示根据本发明第三实施例的D类放大器配置的电路图。
图7A和7B是表示第三实施例操作的波形图。
图8是表示根据本发明第四实施例的D类放大器配置的电路图。
图9是表示第四实施例操作的波形图。
图10是表示根据本发明第五实施例的D类放大器配置的框图。
图11是表示第五实施例操作的波形图。
图12是表示根据本发明第六实施例的D类放大器配置的框图。
图13是表示第六实施例操作的波形图。
具体实施例方式
将参考

本发明的实施例。
第一实施例图1是表示根据本发明第一实施例的D类放大器配置的电路图。D类放大器大致包括放大器部分100、削波防止控制器200以及三角波发生器300。三角波发生器300是生成恒定周期的三角波信号TR的电路,该信号的形状为线性斜率并且在0V至+VB的电压范围之间变化,该三角波发生器300还向放大器部分100和削波防止控制器200提供该三角波信号TR。放大器部分100是根据输入模拟信号生成数字信号以驱动负载的器件。具体地,放大器部分100是用于生成正相数字信号VOp和负相数字信号VOn并且从输出端子102p和102n输出数字信号的电路,其中根据提供至输入端子101p和101n的正相模拟输入信号VIp和负相模拟输入信号VIn的电平对正相数字信号VOp和负相数字信号VOn进行脉冲宽度调制。削波防止控制器200是用于监控从放大器部分100中的预定节点取得的信号的电路。当信号电平偏离预定范围时,削波防止控制器200认为输出信号VOp或者Von处于削波或者近削波状态,并且生成衰减命令信号SW以命令间歇地衰减输入模拟信号,并且向放大器部分100提供该衰减命令信号SW。三角波信号TR用作同步信号,以确定数字信号VOp和Von的生成定时,以及放大器部分100和削波防止控制器200中衰减命令信号SW的生成定时。下面将按照此顺序说明放大器部分100和削波防止控制器200的配置。
在放大器部分100中,电阻器R1、R3、R5串联在输入端子101p和输出端子102n之间。电阻器R2、R4、R6串联在输入端子101n和输出端子102p之间。电阻器R3和R5的公共连接点连接至误差积分器110的正相输入端子111p。电阻器R4和R6的公共连接点连接至误差积分器110的负相输入端子111n。利用MOSFET(由金属氧化物半导体构成的场效应晶体管)的开关130插入在电阻器R1和R3的公共连接点与电阻器R2和R4的公共连接点之间。开关130起到根据从削波防止控制器200提供的衰减命令信号SW间歇地衰减输入模拟信号的衰减器的作用。开关130和削波防止控制器200起到根据输入信号VIp和VIn的每一个的电平增加来降低放大器部分100的整个增益的增益控制器的作用,以使当数字信号VOp或Von进入削波或者近削波状态时,数字信号VOp或Von所示波形的峰值电平将保持在特定电平。
在误差积分器110中,正相输入模拟信号VIp通过电阻器R1和R3被提供至正相输入端子111p,而负相输入模拟信号VIn通过电阻器R2和R4被提供至正相输入端子111n。负相数字信号VOn被反馈至误差积分器110的正相输入端子111p。正相数字信号VOp被反馈至误差积分器110的负相输入端子111n。误差积分器110是用于积分这样提供的输入模拟信号VIp和VIn以及数字信号VOp和VOn之间的误差并且分别从正相输出端子112p和负输出端子112n输出正相信号VDp和负相信号VDn的电路。可使用各种类型的误差积分器110。所示示例使用二阶误差积分器110,包括差分放大器113、四个电容器C1至C4以及两个电阻器R11和R12。差分放大器113的正相输入端子(正输入端子)和负相输入端子(负输入端子)分别起到误差积分器110的正相输入端子111p和负相输入端子111n的作用。差分放大器113的正相输出端子(正输出端子)和负相输出端子(负输出端子)分别起到误差积分器110的正相输出端子112p和负相输出端子112n的作用。用于积分误差的电容器C1和C2串联插入在差分放大器113的正相输入端子和负相输出端子之间。这些电容器的公共连接点通过电阻器R11接地。用于积分误差的电容器C3和C3串联插入在差分放大器113的负相输入端子和正相输出端子之间。这些电容器的公共连接点通过电阻器R12接地。
脉冲宽度调制器120的正相输入端子121p和负相输入端子121n分别连接至误差放大器110的正相输出端子112p和负相输出端子112n。从三角波发生器300输出的三角波信号TR被提供至脉冲宽度调制器120的三角波输入端子。脉冲宽度调制器120的正相输出端子123p和负相输出端子123n分别起到放大器部分100的输出端子102p和102n的作用。脉冲宽度调制器120是用于利用提供至三角波输入端子122的三角波信号TR生成具有对应于误差积分器110的输出信号VDp和VDn电平的脉冲宽度的正相数字信号VOp和负相数字信号VOn并且用于从正输出端子123p和负输出端子123n输出这些数字信号的电路。可以使用各种类型的脉冲宽度调制器120。所示示例使用一种脉冲宽度调制器,包括比较器124p和124n,它们的正相输入端子接收三角波信号TR,而它们的负相输入端子从误差积分器110分别接收正输出信号VDp和负输出信号VDn;倒相器125p和125n,用于将比较器124p和124n的输出信号VEp和Ven的每一个的电平进行倒相,并且输出产生的信号NAND门126p,向其输入比较器124n的输出信号VEn和倒相器125p的输出信号NAND门126n,向其输入比较器124p的输出信号VEp和倒相器125n的输出信号;以及倒相器127p和127n,用于将NAND门126p和126n的输出信号的每一个的电平进行倒相,并且从正相输出端子123p和负相输出端子123n输出产生的信号作为信号VOp和VOn。
现在结束对于放大器部分100配置的说明。
下面将说明削波防止控制器200的配置。电流输出比较器201是用于比较误差积分器110的输出信号VDp和VDn的每一个的电平与参考电平VLEV并且在输出信号VDp和VDn中至少一个超过参考电平VLEV的情况下向电容器C21和电阻器R21的并联电路输出恒定电流的电路。参考电平VLEV被设置为三角波信号TR的峰值电压VB或者略低于VB的电压。在此示例中,为了不使数字输出信号VOp和Von产生削波,通常将参考电平VLEV设置为三角波信号TR的高峰值电压或者略低于该高峰值电压的电压。根据该实施例的削波防止控制器200将输出信号VDp(或者VDn)的高峰值电压与参考电平VLEV进行比较,并且根据比较结果生成用于削波防止的衰减命令信号SW,因此如上所述设置参考电平VLEV。削波防止控制器200可比较输出信号VDp(或者VDn)的低峰值电压与参考电平VLEV,并且根据该比较结果生成用于削波防止的衰减命令信号SW。在这种情况下,参考电平VLEV被设置为三角波信号TR的低峰值电压或者略高于该低峰值电压的电压。可以根据输出数字信号VOp和VOn的脉冲宽度调制因子的变化范围来设置参考电平VLEV。在有必要最大化输出数字信号VOp和VOn的脉冲宽度调制因子的变化范围的情况下,那么必须将参考电平VLEV设置得尽可能接近VB或者0V。否则,可将参考电平VLEV设置得远离VB或者0V。为了使削波防止特征生效,可在VB/2<VLEV<VB或者0V<LVEV<VB的范围内任意设置参考电平VLEV。
图2是表示电流输出比较器201的示例配置的电路图。在图2中,N沟道FET 221使其源极接地,并且使其漏极和栅极连接至恒流源220。N沟道FET 222至224使它们的源极接地,并且使它们的栅极获得与N沟道FET 221相同的栅电压。也就是,N沟道FET 221至224构成电流反射镜。与流经N沟道FET 221的漏电流成比例的漏电流流经N沟道FET 222至224。
N沟道FET 231和232使它们的漏极连接至电压+VB的电源。每一栅极获得来自误差积分器110的输出信号VDp和VDn。源极共同连接至N沟道FET 222的漏极。也就是,N沟道FET 231和232构成源极跟随器,它们的公共负载是N沟道FET 222。在N沟道FET 222的漏极生成比来自N沟道FET 231和232的栅极电压VDp和VDn中的较大一个低预定量(对应于N沟道FET门限的电压)的电压。N沟道FET 233使其漏极连接至电压+VB的电源,使其栅极获得参考电平VLEV并且使其源极连接至N沟道FET 224的漏极。N沟道FET 233构成源极跟随器,它的负载是N沟道FET 224。在N沟道FET 224的漏极生成比栅电压VLEV低预定量的电压。
N沟道FET 241和242形成FET对,该FET对与N沟道FET 223一起构成差分放大器。N沟道FET 241通过P沟道FET 243使其漏极连接至电压+VB的电源,并且使其栅极获得N沟道FET 222的漏电压。N沟道FET 242使其漏极直接连接至电压+VB的电源,并且使其栅极获得N沟道FET 224的漏电压。N沟道FET 241和242的源极共同连接至N沟道FET 223的漏极。
P沟道FET 243使其源极直接连接至电压+VB的电源,并且使其漏极和栅极连接至N沟道FET 241的漏极。P沟道FET 250使其栅极获得与P沟道FET 243相同的栅电压,并且使其源极直接连接至电压+VB的电源。电容器C21和电阻器R21的并联电路插入在其漏极和地线之间。也就是,P沟道FET 243和250构成电流反射镜并且与P沟道FET 243的漏电流成比例的漏电流流经P沟道FET 250。
在此配置中,如果误差积分器110的输出信号VDp和VDn的每一个低于参考电平VLEV,那么N沟道FET 242的栅极偏置大于N沟道FET的栅极偏置,并且在N沟道FET 241处于OFF时N沟道FET 242处于ON。从而,当P沟道FET 250处于OFF时P沟道FET 243处于OFF。如果误差积分器110的输出信号VDp和VDn中的至少一个超过参考电平VLEV,那么N沟道FET 241的栅极偏置大于N沟道FET 242的栅极偏置,并且当N沟道FET 242处于OFF时N沟道FET 241处于ON。从而,当P沟道FET 250也处于ON时P沟道FET 243处于ON。流经P沟道FET 250的漏电流与流经P沟道FET 243和P沟道FET 223的漏电流成比例,也就是,与恒流源220的输出电流成比例。
参考图1,从电流输出比较器201至比较器204和205的前级的部分构成用于生成比较电压的比较电压发生器,该比较电压具有当误差积分器110的输出信号超过参考电平VLEV时,该输出信号与三角波信号TR相交的电平。为了更加精确,包括电容器C21和电阻器R21的并联电路构成用于对从电流输出比较器201输出的电流进行积分的积分器21。运算放大器202构成电压跟随缓冲器,它的输出端子和负相输入端子短接,并且该电压跟随缓冲器从积分器21向后级发送输出信号VC1作为第一比较电压。从电压跟随缓冲器输出的第一比较电压VC1经过电阻器R22被提供至运算放大器203的负相输入端子。与电阻器22具有相同电阻值的电阻器23插入在运算放大器203的负相输入端子和输出端子之间。向运算放大器203的正相输入端子提供参考电压+VB/2。假设运算放大器203的输出电压是VC2,那么可以得到下式(VC1+VC2)/2=VB/2 (1)对上式解出VC2,得到VC2=VB-VC1 (2)也就是,包括电阻器R22、R23以及运算放大器203的电路当作反相放大器,用于当从运算放大器202输出第一比较电压VC1时,输出比电压VB低电压VC1的第二比较电压VC2。
比较器204比较第一比较电压VC1和三角波信号TR。如果后者高于前者,那么比较器204输出高电平(High signal)。否则,比较器204输出低电平(Low signal)。比较器205比较第二比较电压VC2和三角波信号TR。如果后者高于前者,那么比较器205输出高电平(Highsignal)。否则,比较器205输出低电平(Low signal)。当比较器204和205的输出中的至少一个是低电平(Low signal),低激活OR门206输出被设置为High(激活)的衰减命令信号SW。
现在结束对于根据本发明的D类放大器的详细说明。
下面将说明实施例的操作。图3是表示放大器100每一部分波形的波形图。误差积分器110对放大器100的输入模拟信号与输出模拟信号之间的误差进行积分。从而,输出信号VDp和VDn的波形类似输入模拟信号VIp和VIn的波形,具有对应于叠加其上的输出数字信号的波纹。脉冲宽度调制器120比较误差积分器110的输出信号VDp和VDn与三角波信号TR。在VDp>VDn的时段中,如图3的左半部所示,在从三角波信号TR的电平超过信号VDn的电平时至三角波信号TR的电平到达信号VDp的电平时的时段,以及在从三角波信号TR的电平低于信号VDp的电平时至三角波信号TR的电平降低至信号VDn的电平时的时段,数字信号VOp保持High,而数字信号VOn一直保持Low。在VDn>Vdp的时段中,如图3的右半部所示,在从三角波信号TR的电平超过信号VDp的电平时至三角波信号TR的电平到达信号VDn的电平时的时段,以及在从三角波信号TR的电平低于信号VDn的电平时至三角波信号TR的电平降低至信号VDp的电平时的时段,数字信号VOn保持High,而数字信号VOp一直保持Low。按照这种方式,脉冲宽度调制器120生成数字信号VOp和VOn,这些数字信号具有与误差积分器110的正相和负相输出信号VDp和VDn之间的电平差成比例的脉冲宽度。
在此实施例中,三角波信号在0V和+VB间的范围变化。为了获得输出信号VOp和VOn作为脉冲序列而不生成削波,误差积分器110的两个输出信号VDp和VDn必须处于端子输出与三角波信号TR相交的信号的范围内。如果输入模拟信号VIp和VOn的幅度处于适当的范围内,那么误差积分器110的输出信号VDp和VDn落入三角波信号TR的幅度范围。如果幅度相当大地偏离该适当范围的输入模拟信号VIp和VOn被提供至D类放大器,那么误差积分器110的输出信号VDp或者VDn偏离三角波信号TR的幅度范围,从而导致输出数字信号VOp或者VOn持续保持High的削波状态。注意,在此实施例中,通过削波防止控制器200防止了削波。将参考图4A和4B说明此操作。顺便提及,输入模拟信号VIp和VIn的适当幅度范围是在输出数字信号VOp和VOn处不出现削波的范围,并且是小于通过将D类放大器输出部分(例如,图1的反相器127p和127n)电压的一半除以该D类放大器增益获得的值的范围。
如图4A所示,如果输入模拟信号VIp和VIn的每一个的幅度处于适当的范围内并且输出信号VDp和VDn的每一个的最大值低于参考电平VLEV,那么电流输出比较器201的输出电流是0,第一比较电压VC1是0V,并且第二比较电压VC2是+VB。从而,三角波信号TR并未与比较电压VC1和VC2相交,并且衰减命令信号SW被持续地设置为作为未激活电平的Low。因此,开关130保持OFF。开关130的端子处的模拟信号VIp’和VIn’的波形类似于图4A中所示的输入模拟信号VIp和VIn的波形。
如图4B所示,如果输入模拟信号VIp和VIn的每一个的幅度增加,并且误差积分器110的输出信号VDp和VDn中的至少一个超过参考电平VLEV,那么在VDp和VDn超过参考电平VLEV的同时从电流输出比较器201输出恒定电流。该恒定电流对电容器C21进行充电。每次信号VDp或者VDn超过参考电平时,由电流输出比较器201进行恒定电流的输出和电容器C21的充电。结果,第一比较电压VC1以下述脉动形式变化。当信号VDp或者VDn已超过参考电平时,第一比较电压VC1升高。以后,随着存储的电荷通过电阻器R21放电,第一比较电压VC1降低,直到信号VDp或者VDn下一次超过参考电平。由于第一比较电压VC1表现出这样的方式,所以第二比较电压VC2(=VB-VC1)从VB降低,并且与电压VC1重复相同的脉动。结果,三角波信号TR与比较电压VC1和VC2相交。从低激活OR门206输出衰减命令信号SW,该衰减命令信号SW在三角波信号TR低于电压VC1的时段以及三角波信号TR高于电压VC2的时段中被设置为High。
当衰减命令信号SW处于Low时开关130变为OFF,而当衰减命令信号SW处于High时变为ON。在衰减命令信号SW处于Low的时段中,开关130的端子处的模拟信号VIp’和VIn’表现出对应于原始输入模拟信号VIp和VIn的信号值。在衰减命令信号SW处于High的时段中,模拟信号VIp’和VIn’是0V。如所示,模拟信号VIp’和VIn’在预定时间间隔内表现出弱化的波形。输入至误差积分器110的模拟信号得到相当地衰减,并且误差积分器110的输出信号电平落入0V至+VB的适当范围内,从而防止在输出数字信号VOp和VOn上的削波。
具体地,在输入模拟信号VIp和Vin的幅度大并且进行这样的弱化的情形中,随着输入模拟信号VIp和Vin幅度的增大,并且误差积分器100的输出信号VDp和VDn也相应地变大,弱化率增加而整个D类放大器的增益降低,也就是,进行所谓的负反馈控制。作为这种负反馈控制的结果,输入模拟信号VIp和VIn被放大,而不生成失真。当输入模拟信号VIp和VIn均达到峰值电平时,将整个D类放大器的增益调整至优化值,使得输出数字信号VOp或者VOn的脉冲宽度调制因子将达到特定上限值。从而,在此实施例中,在输入模拟信号VIp和VIn的幅度大于适当范围的区域中,给予负载的输出信号波形(对输出数字信号VOp和VOn进行积分得到的波形)并未失真,并且即使在输入模拟信号VIp和Vin幅度已经增加的情况下,该输出信号波形的峰值也可保持在一定值。
输出数字信号VOp或者VOn的脉冲调制因子的上限值取决于参考电平VLEV。原因如下所述。在此实施例的D类放大器中,根据误差积分器110的输出信号VDp和VDn的每一个的电平确定输出数字信号VOp和VOn的每一个的脉冲调制因子。当误差积分器110的输出信号VDp和VDn超过参考电平VLEV时,生成处于与三角波信号TR相交的电平的比较电压,并且然后生成用于弱化的衰减命令信号SW。这抑制误差积分器110的输出信号VDp和VDn的电平增加以及脉冲宽度调制因子的对应增加。
通过调整电容器C21的电容值和电阻器R21的电阻值可以在此实施例中调整对于削波的响应特性。当有必要响应削波的出现而在短时间内生成衰减命令信号SW时,电容器C21的较小电容值是有用的。当有必要延长时间直到在消除削波后停止衰减命令信号SW时,电阻器R21的较大电阻值是有用的。
如上所述,根据本实施例,如果D类放大器的输入模拟信号的幅度增大,并且偏离适当的范围时,输入至误差积分器110的模拟信号在时间轴上间歇地弱化,从而防止出现削波。在这种情况下,输入至误差积分器110的模拟信号仅被间歇地弱化,使得形成的波形基本不变。按照这种方式,根据此实施例,可以防止削波的出现而不生成非线性失真。
在此实施例中,如上所述,通过在输入模拟信号的幅度大于适当范围的区域中执行弱化来进行负反馈控制。理想地,即使输入模拟信号VIp和VIn的幅度达到无限大,也可以放大该输入模拟信号VIp和Vin,而不削波输出信号波形。但实际上,如果D类放大器被实现为半导体集成电路,那么需要提供输入保护电路。如果输入模拟信号VIp和VIn的幅度超过源电压范围,那么当这些信号通过输入保护电路时,输入模拟信号VIp和VIn被削波。此时,D类放大器放大削波的输入模拟信号VIp和VIn。与此同时,D类放大器通过基于弱化的负反馈控制执行放大,使得D类放大器没有向输入模拟信号VIp和VIn引入额外的失真。
第二实施例图5是表示根据本发明第二实施例的D类放大器配置的电路图。在第一实施例(图1)中,电流输出比较器201的输出电流用于生成在高压侧和低压侧上与三角波信号TR相交的两个比较电压VC1和VC2。通过向比较器204提供第一比较电压VC1和三角波信号TR并且向比较器205提供第二比较电压VC2和三角波信号TR,生成衰减命令信号SW作为脉冲序列。
在此实施例中,第一实施例中的三角波发生器300被替换为用于输出正相和负相三角波信号TRp和TRn的三角波发生器300A。相应地,第一实施例中的脉冲宽度调制器120被替换为用于利用正相和负相三角波信号TRp和TRn执行脉冲宽度调制的脉冲宽度调制器120A。在脉冲宽度调制器120A中,当三角波信号TRp的瞬时值低于误差积分器110的输出信号VDp的瞬时值时,比较器141p输出High信号。当三角波信号TRp的瞬时值高于误差积分器110的输出信号VDn的瞬时值时,比较器142p输出High信号。在比较器141p和142p的输出信号被设置为High,即VDp>VDn的时段中,AND门143p在从三角波信号TRp的瞬时值超过信号VDn至它达到信号VDp的时段中,并且在从三角波TRp的瞬时值降低至信号VDp之下至它到达VDn的时段中,将数字信号VOp保持在High。当三角波信号TRn的瞬时值低于误差积分器110的输出信号VDn的瞬时值时,比较器141n输出High信号。当三角波信号TRn的瞬时值高于误差积分器110的输出信号VDn的瞬时值时,比较器142n输出High信号。在比较器141n和142n的输出信号被设置为High,即VDn>VDp的时段中,AND门143n在从三角波信号TRn的瞬时值超过信号VDp至它达到信号VDn的时段中,并且在从三角波信号TRn的瞬时值降低至信号VDn之下至它到达VDp的时段中,将数字信号VOn保持在High。也就是,在脉冲宽度调制器120A中,与第一实施例中的脉冲宽度调制器120相同,数字信号VOp和VOn均具有与误差积分器110的正相和负相输出信号VDp和VDn之间电平差成比例的脉冲宽度。
在此实施例中,由于引入了用于输出正相和负相三角波信号TRp和TRn的三角波信号发生器300A,所以第一实施例中的削波防止控制器200被替换为较简单的削波防止控制器200A。在此实施例中,电流输出比较器201的输出电压VC被给予比较器204和205的反相输入端子。比较器204的正相输入端子被给予负相三角波信号TRn,而比较器205的正相输入端子被给予正相三角波信号TRp。
通过此配置,当误差积分器110的输出信号VDp或者VDn超过参考电平VLEV,并且电流输入比较器201的输出电压升高时,在三角波信号TRp的电平低于电压VC的时段中将比较器204的输出信号设置为Low,而将衰减命令信号SW设置为High,并且在三角波信号TRn的电平低于电压VC的时段中将比较器205的输出信号设置为Low,而将衰减命令信号SW设置为High。这获得与第一实施例相同的功效。第二实施例的优势在于,第一实施例中为获得两个比较电压VC1和VC2所需的放大器202、电阻器R22与R23以及放大器203不再必需,并且电路尺寸可以相应地减小。
第三实施例图6是表示根据本发明第三实施例的D类放大器配置的框图。在此实施例中,第一实施例中的削波防止控制器200被替换为削波防止控制器200B。在此实施例中,从三角波发生器300向削波防止控制器200B提供脉冲成形定时信号S,具有在三角波信号TR处于正峰值时的定时以及在三角波信号TR处于负峰值时的定时。
如果不存在削波,如图3所示,利用三角波信号TR处于正峰值的定时和三角波信号TR处于负峰值的定时获得的输出数字信号VOp和VOn处于Low。当出现削波时,利用三角波信号TR处于正峰值的定时和三角波信号TR处于负峰值的定时获得的输出数字信号Vop或VOn处于High。根据此实施例的削波防止控制器200B使用这样的方式基于输出数字信号VOp和VOn来检测削波的存在/不存在,并且生成衰减命令信号SW,该信号在检测到削波时消除该削波。
图7A和7B是表示此实施例操作的波形图。在图7A所示的示例中,生成定时信号S时获得的输出数字信号VOp和VOn处于Low。削波防止控制器200B从而确定不存在削波,并且将衰减命令信号SW设置为Low。在图7B所示的示例中,生成定时信号S时获得的输出数字信号VOp或VOn处于High。削波防止控制器200B从而确定存在削波,并且输出与三角波信号TR同步的脉冲序列作为衰减命令信号SW。结果,与第一实施例相同,放大器部分100的输入模拟信号在时间轴上被间歇地弱化,从而防止出现削波。
第三实施例可具有下面的变化。也就是,比三角波信号TR处于其正峰值和定时信号S处于其负峰值略微提前地生成定时信号S,通过这种途径,在削波出现于输出数字信号VOp和VOn上之前,放大器部分100的输入模拟信号在时间轴上被间歇地弱化,从而可靠地防止削波的出现。
第四实施例图8是根据本发明第四实施例的D类放大器配置的框图。在此实施例中,与第二实施例(图5)相同,使用用于生成正相和负相三角波信号TRp和TRn的三角波发生器300A。放大器部分100中三角波发生器300A与脉冲宽度调制器120的连接与第二实施例中相同。在此实施例中,第二实施例中的削波防止控制器200被替换为削波防止控制器200C。在削波防止控制器200C中,削波防止控制器200A(图5)中的电流输出比较器201被替换为包括恒流源261、开关262、触发器263与264以及OR门265的电路,使得从恒流源261经由开关262提供的电流将对电容器C21进行充电。
时钟CK被提供至触发器263和264的每一时钟端子。时钟CK是用于定时三角波发生器300A中三角波信号TRp和TRn的控制的信号。在时钟CK的上升沿,三角波信号TRp(TRn)处于其正峰值(负峰值)。在时钟CK的下降沿,三角波信号TRp(TRn)处于其负峰值(正峰值)。触发器263在时钟CK的上升沿从脉冲宽度调制器120A中的比较器141p取得并保持输出信号VEpa。触发器264在时钟CK的下降沿从脉冲宽度调制器120A中的比较器141n取得并保持输出信号VEnp。当由触发器263和264保持的信号中的至少一个处于Low时,OR门265导通开关261。
图9是表示此实施例操作的波形图。在脉冲宽度调制器120A中,在三角波信号TRp超过信号VDn的电平的时段中将比较器142p的输出信号VEpb设置为High。在三角波信号TRp超过信号VDp的电平的时段中将比较器141p的输出信号VEpa设置为Low。在脉冲宽度调制器120A中,在三角波信号TRn超过信号VDp的电平的时段中将比较器142n的输出信号VEnb设置为High。在三角波信号TRp超过信号VDn的电平的时段中将比较器141n的输出信号VEna设置为Low。
从而,如果误差积分器110的输出信号VDp和VDn的电平处于适当的范围并且VDp>VDn,那么在脉冲宽度调制器120A中,AND门143p在从三角波信号TRp超过信号VDn至它达到信号VDp的时段以及从三角波信号TRp降低到信号VDp之下至它达到信号VDn的时段中,将数字信号VOp保持在High。如果误差积分器110的输出信号VDp和VDn的电平处于适当的范围并且VDn>VDp,那么在脉冲宽度调制器120A中,AND门143n在从三角波信号TRn超过信号VDp至它达到信号VDn的时段以及从三角波信号TRn降低到信号VDn之下至它达到信号VDp的时段中,将数字信号VOn保持在High。
如图9的左部所示,当误差积分器110的输出信号VDp的电平到达接近三角波信号TRp正峰值的电平VDp’时,信号VEpa使其脉冲宽度变窄,如图中的信号VEpa’所示。当放大器100处于削波或者近削波状态,并且在时钟CK的上升沿将信号VEpa设置为High时,从触发器263输出高电平信号(High signal)。开关262导通,并且电容器C21的充电电压升高,如所示,并且输出脉冲成形衰减命令信号SW,从而防止出现削波。
如图9的右部所示,当误差积分器110的输出信号VDn的电平到达接近三角波信号TRn正峰值的电平VDn’时,信号VEna使其脉冲宽度变窄,如图中的信号VEna’所示。当放大器100处于削波或者近削波状态,并且在时钟CK的下降沿将信号VEna设置为High时,从触发器264输出高电平信号(High signal)。开关262导通,并且电容器C21的充电电压升高,如所示,并且输出脉冲成形衰减命令信号SW,从而防止出现削波。
此实施例与前述每一实施例获得相同的功效。第四实施例可具有下面的变化。也就是,相对于三角波信号TRp或者TRn的尖峰略为延迟提供至触发器263和264的时钟CK的上升定时和下降定时。通过此途径,就在出现削波之前,或者换言之,当与三角波信号TRp和TRn的峰值时刻同步的作为信号VEn和VEp的负脉冲的脉冲宽度变得极窄时,生成衰减命令信号SW。这提前避免削波的出现。此时同样,作为类似于前面实施例中负反馈的结果,输入模拟信号VIp和VIn被没有失真地放大。当输入模拟信号VIp和VIn均到达峰值电平时,将整个D类放大器的增益调整至优化值,使得输出数字信号VOp或者VOn的脉冲宽度调制因子将达到略低于100%的一定上限值(就在出现削波前)。
第五实施例图10是表示本发明第五实施例的D类放大器配置的电路图。图11是表示第五实施例操作的波形图。在前述各实施例中,向D类放大器给予正相和负相输入模拟信号VIp和VIn。在此实施例中,如图11所示,均为单比特数字信号的正相和负相比特流作为输入信号VIp和VIn被给予D类放大器。在此实施例中,如图10所示,为了适当地处理比特流VIp和VIn,向第一实施例的D类放大器添加同步电路310,用于将从三角波信号发生器300输出的三角波信号TR的相位与比特流VIp和VIn进行同步。
在此实施例中,如果输入信号是比特流,那么误差积分器110对输出信号VOp和VOn与输入信号VIp和VIn之间的误差进行积分,并且脉冲宽度调制器120根据表明积分结果的信号VDp和VDn,以类似于第一实施例的方式生成脉冲宽度调制数字信号VOp和VOn。在此实施例中,可以向负载(未示出)施加具有与比特流VIp和VIn的模拟信号波形相同波形的信号。在比特流VIp和VIn的信号波形峰值升高并且有可能发生削波的情况下,与第一实施例一样,第一比较电压VC1和第二比较电压VC2重复脉动,并且间歇地生成衰减命令信号SW。按照这种方式,给予至误差积分器110的输入信号VIp’和VIn’变为输入信号VIp’和VIn’被比特流VIp和VIn弱化的信号,从而防止发生削波。尽管修改第一实施例的D类放大器来形成此实施例的D类放大器,但是可可以类似地修改任何其它实施例的D类放大器来形成此实施例的D类放大器。
第六实施例图12是表示根据本发明第六实施例的D类放大器配置的电路图。该D类放大器包括DSP(数字信号处理器)400,用于利用数字信号处理根据输入信号生成脉冲宽度调制数字信号;开关放大级410,通过从DSP 400输出的数字信号进行开关,用于根据电源+VB提供的电力驱动包括滤波器和扬声器的负载420。作为输入信号,从音频源获得的模拟音频信号可被给予A/D转换器,并且从A/D转换器获得的数字信号可被给予DSP 400,或者从外部设备接收的数字音频信号可被直接给予DSP 400。
DSP 400执行可变增益放大处理401作为增益控制器,执行DRC(动态范围压缩)处理402以获得脉冲宽度调制数字信号,以及执行PWM处理403作为脉冲发生器。这些处理是属于预定比特数(例如m比特)的数字处理的信号处理。
图13表示具有各种峰值电平的正弦波信号A1至A6作为DSP 400的输入信号时从可变增益放大处理401输出的压缩目标信号B1至B6以及由DRC处理402输出的调制信号C1至C6的波形。在图13中,示出了模拟信号,其等于经过DSP 400处理的数字信号。为了防止复杂的说明,仅在半个周期上示出每一信号的波形。将参考图13说明这些由DSP 400执行的处理。
在可变增益放大处理401中,利用可变增益放大输入信号,并将形成的信号传递至DRC处理402。根据音量调整信号设置可变增益放大处理401中的增益,该音量调整信号根据操作器的操作(例如音量控制)生成。通过可变增益放大处理401获得的压缩目标信号是m比特数字信号,并且可由该信号表示的值具有上限。为了在可变增益放大处理401中从输入信号获得无失真压缩目标信号,当放大输入信号时在输入信号的峰值电平和所使用的增益之间必须存在适当的关系,使得输入信号的放大结果将不超过由m比特数字信号表示的最大值,例如是由m比特全为“1”的数字信号表示的瞬时值。如果输入信号的峰值电平落入适于根据音量调整信号的增益集进行放大的适当范围内,那么输入信号被无失真地放大,并且获得与输入信号具有类似波形的压缩目标信号(在示出的示例中,压缩目标信号B1至B4对应于输入信号A1至A4)。如果输入信号的峰值电平超过适当的范围,那么通过可变增益放大处理401获得的压缩目标信号将在由m比特数字信号表示的最大值处饱和并被相应地削波(在示出的示例中,压缩目标信号B5和B6对应于输入信号A5和A6)。
在DRC处理402中,通过作为前面处理的可变增益放大处理401获得的压缩目标信号经历动态范围压缩,并且将产生的信号作为调制信号输出至作为脉冲发生器的PWM处理403。该调制信号是m比特数字信号。该m比特数字信号可在0至100%的范围中表示调制因子。在PWM处理403中,利用由调制信号表示的调制因子生成脉冲宽度调制信号,并且将该脉冲作为数字信号输出至开关放大级410。
图13表示作为给予至DRC处理402的压缩目标信号的峰值电平与通过DRC处理402获得的调制信号的峰值电平之间关系的输入/输出特性。如同所示,DRC处理402的输入/输出特性被划分为线性区和饱和区。线性区是压缩目标信号的峰值电平低于门限th的区域。在线性区中,利用预定增益放大压缩目标信号,以生成具有与压缩目标信号的峰值电平成比例的峰值电平的调制信号(在示出的示例中,调制信号C1和C2对应于压缩目标信号B1和B2)。在此实施例中,确定线性区中的增益使得可在给出具有对应于门限th的峰值电平的压缩目标信号时,可以获得具有表示100%调制因子的峰值电平的调制信号。饱和区是压缩目标信号的峰值电平等于或高于门限th的区域。在饱和区中,调制信号的峰值电平达到表示100%调制因子的值。在DRC处理402中,放大压缩目标信号时采用的增益根据该压缩目标信号峰值电平的增加而被降低,使得通过放大该压缩目标信号获得的调制信号的峰值电平保持在表示100%调制因子的值(在所示的示例中,调制信号C3至C6对应于压缩目标信号B3至B6)。为了更加精确,将通过使表明100%调制因子的调制信号的值除以压缩目标信号的峰值电平获得的值用作放大压缩目标信号时使用的增益。
在图13所示的示例中,调制信号C5和C6均使其波形削波。该削波并不是在DRC处理402中产生,而是被给予DRC处理402的压缩目标信号B5和B6所固有。DRC处理402利用对应于将要输入的压缩目标信号的峰值电平的适当增益放大压缩目标信号,并且生成与该压缩目标信号具有类似波形的调制信号。结果,DRC处理402并没有带来失真。
在此实施例中,作为音量调整单元提供可变增益放大处理401。在普通的功率放大器中,在功率放大器的最后一级中提供这样的音量调整单元(在D类放大器的情况下,开关放大级在PWM调制器之后)。在此实施例中。在DRC处理402之前提供作为音量调整单元的可变增益放大处理401。这是此实施例的特征之一。在此实施例中,通过调整在DRC处理402之前提供的可变增益放大处理401的增益,可以采用D类放大器执行下述各种操作。
(1)调整可变增益放大处理401的增益来允许利用线性区和饱和区进行放大。通过这样调整增益,当输入信号的音量相对较小时,在线性区中执行DRC处理402,并且通过扬声器再现反映音量缩小的声音。当输入信号的音量相对较大时,在饱和区中执行DRC处理402,通过扬声器以舒适的音量并且没有削波地再现声音。
(2)在从来自多个源的音频信号进行选择并且在D类放大器上再现音频声音时,在将被再现的多个源之间进行切换时增加/降低可变增益放大处理401的增益,使得当再现开始时在饱和区中进行DRC处理402。通过这种途径,不管目标源的音频信号,D类放大器输出信号的峰值电平保持恒定,因此吸收各个源之间的声音水平差。
(3)如果需要以一定程度的失真为代价来增强D类放大器的最大输出,那么在可变增益放大处理401中提高增益并且在可允许的范围内生成失真,以利用线性区和饱和区使D类放大器执行放大。此时,在给予PWM处理403的调制信号的波形以及最终从D类放大器输出的信号的波形上发生削波。那么D类放大器的输出信号比没有削波的信号具有更高的能量。从而,D类放大器的最大输出高于没有发生削波的时候。
同样在根据第一至第五实施例的D类放大器中,当输入信号的峰值电平超过源电压的范围时,在输出波形上发生削波。从而,同样在根据第一至第五实施例的D类放大器中,以可允许范围内的失真为代价增强D放大器的最大输出。
(4)EIAJ(日本电子工业协会)规定,当失真因子在任意负载电阻时为10%时,放大器呈现的输出被表示为最大商用输出。在由EIAJ规定的条件下,进行测量以获得D类放大器的最大输出。为了更加具体,1kHz的正弦波作为输入信号给予D类放大器,并且调整可变增益放大处理401的增益,使得压缩目标信号的失真因子将为10%,并且测量随后获得的D类放大器的输出。按照这种方式,根据此实施例,可以在由EIAJ规定的条件下测量D类放大器的最大输出,并且指示该测量的输出。这向用户提供关于D类放大器的最大输出的客观的并且有说服力的信息。
<其它实施例>
尽管已经说明本发明第一至第六实施例,但是本发明具有下述其它实施例。
尽管已经说明本发明第一至第五实施例,但是本发明具有下述其它实施例。
尽管已经说明本发明第一至第四实施例,但是本发明具有下述其它实施例。
(1)尽管本发明适用于前述实施例中输出根据输入模拟信号进行脉冲宽度调制的数字信号的D类放大器,但是本发明还适用于向输入模拟信号应用Δ∑调制以生成具有对应于该输入模拟信号电平的时间密度的脉冲宽度的D类放大器。
(2)尽管本发明适用于前述实施例中的差分D类放大器,但是本发明还适用于非差分D类放大器。
(3)当在第一实施例中时,电流输出比较器201的源电压是+VB(参见图2),并且将参考电压+VB/2给予运算放大器203的正相输入端子(参考图1)。对于根据第一实施例的D类放大器,至少三角波信号TR的中心电压必须等于给予运算放大器203的正相输入端子的电压。电流输出比较器201的源电压和给予该正相输入端子的电压可分别具有任意值。
(4)尽管在第五实施例中将单通道正相和负相比特流给予输入端子101p和101n,但是可以将多通道正相比特流给予输入端子101p并且将多通道负相比特流给予输入端子101n。从而可以提供具有混合特征的D类放大器。在这种情况下,这样的配置是可以的,其中在输入端子101p和101n之前布置对应于多通道的可变电阻器,并且将每一通道上的比特流通过对于特定通道的可变电阻器给予输入端子101p和101n,并且在通过调整每一可变电阻器的电阻值进行混合时执行每一通道上的加权。
(5)尽管在第五实施例中将单比特正相和负相比特流给予输入端子101p和101n,但是可以将多比特正相比特流给予输入端子101p并且将多比特负相比特流给予输入端子101n。在这种情况下,这样的配置是可以的,其中在输入端子101p和101n之前布置对应于多个比特的加权电阻器,并且可将每一比特的比特流通过对应的加权电阻器给予输入端子101p和101n。
(6)可以采用任何形式利用D类放大器输入部分处的开关130进行弱化程度的控制。尽管在上面的实施例中进行负反馈控制,其中输入模拟信号VIp和VIn的幅度变大,并且误差积分器的输出信号电平增加,弱化率增加,但是可以采用除过负反馈控制之外的形式进行弱化率的控制。例如,这样的形式可以的,其中提前确定弱化率以避免各种峰值电平的输入信号VIp和VIn上的削波,并且在D类放大器的操作中检测输入信号VIp和VIn的每一个的峰值电平,并且选择适当的弱化率来避免在特定电平出现削波,以弱化输入信号VIp和VIn。在弱化输入模拟信号VIp和VIn的操作区中,如果输入模拟信号VIp和Vin已增加,那么输出数字信号VOp和VOn的每一个的脉冲宽度调制因子的上限值需要保持在某一定值。例如,脉冲宽度调制因子的上限值可根据输入模拟信号VIp和VIn的每一个的幅度增加而略为降低。
(7)尽管在第六实施例中DSP 400执行PWM处理403,但是可以代之以执行PDM(脉冲密度调制)处理,以生成具有对应于调制信号电平的时间密度的脉冲。
尽管在第六实施例中由DSP 400执行可变增益放大处理401、DRC处理402以及PWM处理403,但是可在开关放大级410之前布置用于分别执行可变增益放大处理401、DRC处理402以及PWM处理403的数字电路或模拟电路,而不是安排DSP 400。
权利要求
1.一种D类放大器,包括放大器,根据输入信号生成驱动负载的数字信号;衰减器,根据衰减命令信号衰减所述输入信号;以及削波防止控制器,当所述数字信号进入削波状态或者近削波状态时,该削波防止控制器输出衰减命令信号以间歇地衰减所述输入信号。
2.根据权利要求1的所述D类放大器,其中所述放大器根据周期同步信号输出具有对应于所述输入信号的脉冲宽度的所述数字信号,以及所述削波防止控制器根据所述同步信号输出所述衰减命令信号。
3.根据权利要求2的所述D类放大器,还包括用于输出周期三角波信号作为同步信号的三角波发生器,其中所述放大器包括用于积分并输出所述输入信号和所述数字信号之间误差的误差积分器;以及用于输出根据所述误差积分器的输出信号电平并基于所述误差积分器的输出信号与所述三角波信号之间的比较进行脉冲宽度调制的数字信号的脉冲宽度调制器,以及其中当所述误差积分器的输出信号超过参考电平时,所述削波防止控制器认为所述数字信号处于削波状态或者近削波状态,并且输出所述衰减命令信号。
4.根据权利要求3的所述D类放大器,其中所述削波防止控制器包括用于生成比较电压的比较电压发生器,其中该比较电压具有当所述误差积分器的输出信号超过所述参考电平时所述比较电压与所述三角波信号相交的电平;以及用于比较所述比较电压与所述三角波信号以输出所述衰减命令信号的比较器。
5.根据权利要求3的所述D类放大器,其中所述削波防止控制器根据所述三角波信号的峰值时刻或者就在峰值时刻之前的所述数字信号的电平来检测所述数字信号处于所述削波状态或者近削波状态。
6.根据权利要求3的所述D类放大器,其中所述削波防止控制器保持表示所述脉冲宽度调制器中所述误差积分器的输出信号与所述三角波信号的峰值时刻或者就在所述峰值时刻之后的三角波信号之间的比较结果的信号,并且根据所述保持的信号检测所述数字信号处于所述削波状态或者近削波状态。
7.根据权利要求1至6中任一权利要求的所述D类放大器,其中所述输入信号是模拟信号。
8.根据权利要求1至6中任一权利要求的所述D类放大器,其中所述输入信号是数字信号。
9.一种D类放大器,包括放大器,根据输入信号生成驱动负载的数字信号;增益控制器,根据所述输入信号的电平增加来降低所述放大器的增益,使得当所述数字信号进入削波状态或者近削波状态时,所述数字信号波形的峰值电平保持在预定电平。
10.根据权利要求9的所述D类放大器,其中所述增益控制器包括衰减器,根据衰减命令信号衰减所述输入信号,所述衰减器提供在所述放大器的输入部分;以及削波防止控制器,通过监控所述放大器中预定节点的信号来检测所述数字信号进入所述削波状态或者近削波状态,并且输出所述衰减命令信号。
11.根据权利要求10的所述D类放大器,其中所述放大器根据周期同步信号输出具有对应于所述输入信号的脉冲宽度的数字信号,以及所述削波防止控制器根据所述同步信号输出所述衰减命令信号。
12.根据权利要求11的所述D类放大器,还包括输出周期三角波信号作为同步信号的三角波发生器,其中所述放大器包括用于积分并输出所述输入模拟信号和所述数字信号之间误差的误差积分器,以及用于输出根据所述误差积分器的输出信号电平并基于所述误差积分器的输出信号与所述三角波信号之间的比较进行脉冲宽度调制的数字信号的脉冲宽度调制器,以及其中当所述误差积分器的输出信号超过参考电平时,所述削波防止控制器认为所述数字信号处于削波状态或者近削波状态,并且输出所述衰减命令信号。
13.根据权利要求12的所述D类放大器,其中所述削波防止控制器包括用于生成比较电压的比较电压发生器,其中该比较电压具有当所述误差积分器的输出信号超过参考电平时所述比较电压与所述三角波信号相交的电平;用于比较所述比较电压与所述三角波信号以输出所述衰减命令信号的比较器。
14.根据权利要求12的所述D类放大器,其中所述削波防止控制器根据所述三角波信号的峰值时刻或者就在峰值时刻之前的所述数字信号的电平来检测所述数字信号处于所述削波状态或者近削波状态。
15.根据权利要求12的所述D类放大器,其中所述削波防止控制器保持表示所述脉冲宽度调制器中所述误差积分器的输出信号与所述三角波信号的峰值时刻或者就在所述峰值时刻之后的三角波信号之间的比较结果的信号,并且根据所述保持的信号来检测所述数字信号处于所述削波状态或者近削波状态。
16.根据权利要求9的所述D类放大器,其中所述放大器包括脉冲发生器,用于输出具有通过调制信号调制的脉冲宽度或者脉冲密度的脉冲作为所述数字信号,所述增益控制器形成所述放大器的一部分,并且包括动态范围压缩器,用于对从前级给出的压缩目标信号执行动态范围压缩,以向所述脉冲发生器输出产生的信号作为所述调制信号,所述动态范围压缩器在所述压缩目标信号的峰值电平低于预定门限的线性区内利用预定增益放大所述压缩目标信号,并且根据所述压缩目标信号的峰值电平的增加来降低所述增益,使得输出至所述脉冲发生器的所述调制信号的峰值电平保持在所述压缩目标信号的峰值电平超过所述预定门限的饱和区中的预定电平。
17.根据权利要求16的所述D类放大器,其中所述增益控制器包括布置在所述动态范围压缩器的前级中的可变增益放大器,以及所述可变增益放大器利用对应于从外部提供的音量调整信号的增益放大所述输入信号,并且向所述动态范围压缩器输出产生的信号作为所述压缩目标信号。
18.根据权利要求9至17中任一权利要求的所述D类放大器,其中所述输入信号是模拟信号。
19.根据权利要求9至17中任一权利要求的所述D类放大器,其中所述输入信号是数字信号。
全文摘要
一种D类放大器,包括根据输入信号生成驱动负载的数字信号的放大器;根据衰减命令信号衰减输入信号的衰减器;以及当数字信号进入削波状态或者近削波状态时,输出衰减命令信号以间歇地衰减输入信号的削波防止控制器。
文档编号H03F3/217GK1941613SQ20061014150
公开日2007年4月4日 申请日期2006年9月28日 优先权日2005年9月28日
发明者前岛利夫, 岩松正幸 申请人:雅马哈株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1