多源空间功率放大器的制作方法

文档序号:7537293阅读:122来源:国知局
专利名称:多源空间功率放大器的制作方法
技术领域
本发明涉及半导体微波放大器领域,更具体地,涉及功率组合系统。在各种组合 (combination)技术中,本发明的领域涉及空间功率组合系统。
背景技术
半导体元件的输出功率的降低以及放大装置的工作频率的升高,导致需要组合多 个单独的半导体放大器,从而获得微波领域中某些应用所需的输出功率。 在需要很多个放大器来获得所需的功率水平的情况下,放射结构最适于满足这种 需要。另一方面,如果数量有限的放大器就足够了,那么其他的组合技术在实现、性能和封 装方面可能更有利。目前的基于树状线或波导结构的功率组合系统在具有能够与下游装置结合的矩 形波导输出接口的受限环境中,不能够有效地组合单独的放大器。图IA显示了用于Ka波段应用的基于树状结构的示例性功率组合装置,其采用 了 ·在输入端,采用平面工艺的功率分配器103,该功率分配器具有微带线端口来限 定封装。·具有微带线端口的两个放大器模块101,每个包括放大器102和偏置电路107 ;·矩形波导工艺的混合耦合器106,用于最小化组合损耗;·两个转换器105,从微带传输模式转换到矩形波导传输模式;·矩形波导截线(sections) 100,用于将放大器模块101连接到混合耦合器106。在本示例中,为了最小化位于功率分配器103的输出端的微带线104的长度,选择 了放置两个互相垂直的放大器模块101来使该结构倾斜。这一方案的优点是减小了位于功 率分配器103的输出端的微带线104的长度,从而减小了分配器的插入损耗,但是由于矩形 波导截线100的长度以及矩形波导工艺的混合耦合器106的尺寸,还是具有体积大的缺点。在例如超过30GHz的高频上使用这种组合类型,还会出现其他的缺点。特别是,放 大器模块的相位匹配很难,且组合损耗不是可忽略的,因为有信号通过的众多元件形成的 插入损耗,且这些损耗随着工作频率的升高而增加。针对组合四个放大器的实施例来着重描述这种结构的弱点。专利US5736908中提出的空间组合技术是另一种方案。其特征在于放大装置包括 多个放大器模块,这些放大器模块放置在卡座(deck)上,堆叠于矩形波导中。通过空间分 配信号的能量将由单个源产生的输入信号在放大器模块上分配,且根据相同的原理,在放 大之后在输出端重新组合该信号。该方案能够实现在一个步骤中一方面组合信号,另一方 面在平面工艺线和矩形波导输出接口之间进行转换。根据这些特征,其确实能够最小化组 合损耗以及结构的封装。然而,如背景技术所述,这种组合技术具有缺点和局限性。在实践中,堆叠在矩形波导中的卡座的数量和位于同一卡座上的相关联的放大器 的数量随着矩形波导的尺寸的减小而减少,而矩形波导的尺寸因工作频率的增加而减小。
因此很难想象能够在Q波段WR22标准矩形波导中放置一个以上的卡座。此外,在 如图IB所示的具体情况中,标准矩形波导200、200’的宽度比放大器模块101的宽度小的 多,放大器模块101包括放大器102和偏置电路107,偏置电路107包括退耦电容和偏置端这样的结果是必须采用平面工艺的长连接线201、201,,从而将放大器模块101 的端口连接到由单个源激励的空间分配器的转换器202,以及连接到空间组 合器的转换器 203。这些线在这些频段中造成的大量损耗导致对空间功率组合用于减少组合损耗的关注 下降。对于Q波段以下的工作频率,例如X波段或Ku波段,由于矩形波导更大,可以在标 准矩形波导中放置多个卡座,且连接放大器的线的长度减小。但是,在这些频段中,如背景 技术所述,这种技术仍存在缺点。特别是·输入端是矩形波导工艺,而非平面工艺;·卡座通常很薄,从而能够在矩形波导中堆叠多个卡座。这可能导致热量管理困 难;·放大器被放置在矩形波导的传输轴上,这意味着必须采用额外的平面工艺线将 放大器连接到转换器。尽管平面工艺线的损耗随着频率的减小而减小,减小其长度仍然有 利于最小化其对组合损耗的贡献;·由于放大器不在分离的腔中,对不稳定风险的管理可能很困难;·需要将退耦电容尽量放置在靠近放大器的位置从而使之稳定,这一需要与减小 放大器模块的宽度从而最小化将放大器的端口连接到分配器和组合器的端口的平面线的 长度的需要是矛盾的。

发明内容
本发明的一个目的在于减少上述缺点。本发明提出了一种多源空间放大装置,该装置将从输入微波信号的分配得来的分 量发送到连接波导中,这些分量在单个输出波导中被放大并组合。有利地,该放大装置组合工作在微波范围的多个放大器模块有利地,该装置包括·功率分配器,具有输入端和至少两个输出端,用于将输入微波信号分配为多个微 波信号; 连接波导,能够与功率分配器的输出端结合,用于传输由功率分配器提供的微波 信号;·至少一个平面工艺的输入转换元件,被放置在每个连接波导的输出端,用于接收 在连接波导中传输的微波信号;·放大器模块,连接到每个输入转换器,用于放大由每个输入转换器接收的信号, 且包括至少一个放大器; 平面工艺的输出转换元件,连接到每个放大器模块,且能够与所有输出转换元件 共用的输出波导结合,以此将从放大器模块获得的放大信号组合,这些组合的信号构成了 输出微波信号。
有利地,每个放大器模块及其输入转换元件和输出转换元件在同一个平面上。有利地,放大器模块及其输入转换元件和输出转换元件在彼此平行的平面上。有利地,转换元件是鳍状线(firmed lines),用于在连接波导、放大器模块和输出 波导之间提供电匹配。有利地,该装置包括构成输出波导的一部分的至少两个外部半壳(half-shells), 在所述至少两个外部半壳上接触有至少一个放大器模块,从而促进放大器模块和装置的外 部之间的热交换。有利地,放大器模块的轴垂直于由组合的信号获得的微波信号的传输轴。有利地,分配器的输入端可由金属波导工艺或平面工艺制造。有利地,连接波导和输出金属波导是矩形或圆形金属波导。有利地,每个连接波导具有用于校正在每个连接波导中传输的信号的相位的元 件。有利地,与放大器模块相关联的输入转换器和输出转换器在同一印刷电路上实 现。有利地,与放大器模块相关联的输入转换元件和输出转换元件,以及功率分配器 在同一印刷电路上实现。有利地,输出转换器在输出波导内部通过金属壁分开。有利地,金属壁通过电阻膜延伸。有利地,所述装置能够减少组合损耗和分配损耗。有利地,所述装置的结构是紧凑的。有利地,所述装置在连接波导中具有相位校正元件,从而补偿放大器模块的相位 离差(phase dispersion)。有利地,所述装置能够处理微波域的高频,特别是高于30GHz的高频。


根据以下附图及说明,本发明的特征和优点将更加明显,其中附图如下·图IA 现有技术中具有树状结构的第一放大装置;·图IB 针对单个卡座的,现有技术的具有功率空间组合的第二放大装置;·图2 根据本发明的多源空间放大装置的示意图;·图3 本发明的多源空间放大装置;·图4A 从印刷电路的上面看到的转换元件的实施例的视图;·图4B 从印刷电路的底面看到的图4A所示的实施例的视图;·图5A:所述装置的第一实施例的第一视图,包括两个放大器,上半壳显示为透 明;·图5B 从上面看到的图5A所示的装置的实施例的分解视图;·图5C 从下面看到的图5A所示的装置的实施例的分解视图;·图6A 从上面看到的包括四个放大器的所述装置的实施例的分解视图;·图6B 从下面看到的图6A所示的装置的实施例的分解视图;·图6C 显示了组合的图 6A所示的装置的实施例的组合器端口的视·图6D 显示了组合的图6A所示的装置的实施例的分配器端口的视图·图6E 显示了组合的图6A所示的装置的实施例的信号分配部分的横截面视图; 图6F 显示了组合的图6A所示的装置的实施例的在放大器模块层面的横截面视 图;·图7A 具有分离两个输出转换元件的金属壁的实施例的视图;·图7B 具有上半壳的图7A所示的实施例的视图; 图8A和8B 实施例的两个视图,其中分离两个输出转换元件的金属壁通过电阻 膜延伸;·图9 实施例的视图,其中电阻膜结合于两个输出转换元件之间;·图IOA 包括两个堆叠的放大器模块的所述装置的实施例的外部视图; 图IOB 图IOA所示的实施例的横截面视图。
具体实施例方式图2表示了根据本发明的装置的示意图,其包括四个组合的放大器模块30。所示 的装置包括前面接有功率分配器27的两个连接波导4。功率分配器27用来将输入微波信 号1分配为在两个连接波导4中传输的两个分量25。功率分配器27可以是平面工艺,或例 如金属波导工艺,诸如“隔膜分配器”,这种“隔膜分配器(s印turn divider) ”是指一种包含 输入端和两个矩形波导输出端的分配器。通常在这种类型的分配器中,两个输出波导在分 配点由薄壁(即拉丁文中的“隔膜”)分离,薄壁可以是金属性的或电阻性的。在一个实施例中,平面工艺的分配器27与未在图2中示出的两个转换器相关联, 使得信号的传输模式在平面结构和连接波导4之间转换。在每个连接波导4中,平面工艺 的两个输入转换元件5将输入微波信号25的分量分配到放大模块30中,每个放大模块包 括至少一个放大器6。然后,适当放大的信号通过平面工艺的四个输出转换元件7传输到输 出波导8中,输出波导8用来重新组合出输出微波信号26。图3表示了根据本发明的装置的一个实施例,其包括功率分配器2,通过微带型输 入端来访问该功率分配器2。功率分配器2用来将输入微波信号1分配为两个分量,从而通 过两个转换器3、3’射入两个矩形连接波导4。信号在连接矩形波导4中传输,从分配器的 输出转换器3、3’传输到放大器模块30的输入转换元件5。在该实施例中,转换器5位于每 个连接波导4的输出端。每个放大器模块30包括放大器6,具有退耦电容10的偏置电路。输出转换元件7 在放大器模块30和矩形波导8之间提供电匹配。在优选的实施例中,两个放大器模块30 的输入轴和输出轴与输出微波信号26的传输轴垂直。这种配置能够减小将放大器模块30 连接到输出转换元件7以及连接到输入转换元件6的平面线的长度,从而线的长度被最小 化。因此使组合损耗和分配损耗最小化。在另一实施例中,根据本发明的装置包括位于连接波导4中的相位校正元件15, 用来控制在连接波导4中传输的信号25之间的相对相位,从而确保输出波导8中的这些信 号在通过放大器模块30放大之后即被同相重新组合。这一功能使得能够通过除去由组合 的信号中的相位失衡造成的损耗,来最小化组合损耗。在一个实施例中,相位校正元件15可由弓丨入到连接波导中的介电元件实现。这些介电元件插入连接波导4的深度能够影响在连接波导4中传输的信号25的相位。在其他实施例中,可用转换器网络代替转换器,可用放大器网络代替放大器。此外,可用与微带线相关联的鳍状线或狭槽线来实现转换元件。多个转换器可放 置在同一个印刷电路中,从而制造转换网络。电路可制造在有机衬底上,例如R04003 。图4A和4B表示在印刷电路41上位于构成矩形波导49的两个半壳44之间的转 换元件的实施例。两个半壳44显示为透明。图4A和图4B分别显示了印刷电路41的 顶面和底面。 印刷电路41两面的金属平面43和48由一组金属化的孔连接,在图4A和4B中未示出,以 在半壳44和44’之间提供电连续性。在底面,利用逐步缩短分离金属平面48的两个内部 边缘45的距离,来逐渐地从矩形波导49中的传输模式转换为狭槽47中的狭槽传输模式。 通过狭槽线50和金属化孔46进行在狭槽47中传输的狭槽模式和在线42与镀金平面48 之间传输的微带模式之间的转换,狭槽线50的长度为λ /4,通过短路截止,金属化孔46连 接线42和金属平面48。在图4Α和4Β中表示的实施例中,印刷电路41被切割,从而消除所有导致转换元 件的插入损耗恶化的印刷电路部分,以及对观察转换器的电和机械应力无用的印刷电路部 分。然后在金属平面48的两个内部边缘45之间切割电路。图5Α表示了组合两个放大器6的根据本发明的实施例。在该实施例中,在下半壳 13和上半壳14之间插入印刷电路9。在图5Α中上半壳14显示为透明。半壳13、14可以由金抛光的铝制成。印刷电路9可由例如R04003 的有机衬底制 成。两个半壳13、14以及印刷电路9的组合构成两个连接波导4以及输出波导8。印刷电 路9包括微带功率分配器2,功率分配器2的输出转换器3,输入转换元件5和输出转换元 件7以及镀金平面31。印刷电路9每一面的镀金平面31通过一组金属化孔连接,从而在与 两个半壳13、14接触的印刷电路的两面之间提供电连续性。这些金属化孔,以及用于将放 大器模块连接到平面输入和输出转换元件以及偏置端口的线没有在该图或后续图中示出。 放大器6的偏置电压通过偏置端口 11传输,并通过退耦电容10来退耦。两个相位校正元 件15用来控制在输出波导8中组合的信号的相位。放大器和退耦电容安装在具有高热传 导率的元件32上,且它们构成了用于该实施例的放大器模块30。在另一实施例中,放大器模块30仅包括放大器。该放大器模块30被放置为直接 与放大装置的主体接触,该装置的主体包括下半壳13。该配置具有促进放大器模块30和该 装置的外部之间的热交换的优点。图5Β是图5Α所示的本发明的实施例的从上面看到的分解视图,其包括印刷电路 9,具有相位校正元件15的上半壳14以及具有放大器模块30和偏置端口 11的下半壳。该 图显示了一种简化,本发明的该实施例可以通过将半壳14、15以及电路9堆叠,以及在一个 印刷电路9上实现功率分配器2和输入转换元件5及输出转换元件7来构成。图5C是图5Α所示的本发明的实施例从下面看到的分解视图。其表示了导向下半 壳13的外部的偏置端口 11,以及电路9的下金属平面33,以及容纳放大器模块30和偏置 端口 11所需的上半壳14的腔32。图6Α和图6Β表示了组合了四个放大器的本发明的实施例的两个分解视图,分别 为平面图和下视图。在该实施例中,堆叠了三个电路22、23、23’,两个半壳20、20’以及两个光栅21、21’。这些元件的组合构成了两个连接波导和输出波导。在图6A和6B中,半壳 20,、电路23,以及光栅21,组合在一起,且两个半壳20、20,具有放大器模块30和偏置端口 11。半壳20、20,以及光栅21、21,可由金抛光的铝制成。电路22、23、23,可由例如R04003 的衬底制成。电路22包括微带功率分配器2,功率分配器3的输出转换器,以及镀金平面 34、35。电路23、23’包括输入转换元件5和输出转换元件7以及镀金平面36、37。电路的 每一面上的镀金平面通过一组金属化孔连接,从而提供与半壳或光栅接触的电路的两面之 间的电连续性。放大器6的偏置电压通过偏置端口 11发送并通过退耦电容10退耦。
在一个变化实施例中,可添加相位校正元件来控制在输出波导中组合的信号的相 位。在另一变化实施例中,放大器和退耦电容安装在具有高导热率的元件32上,这些 元件构成了用于本实施例的放大器模块。在另一变化实施例中,放大器模块可只包括一个放大器。该放大器模块30放置为 直接与放大装置的主体接触,主体由半壳20、20’构成,从而促进放大器模块30和装置外部 的热交换。图6C和图6D表示了由图6A和6B的实施例组合而成的本发明的实施例的两个视 图。图6C表示了从输出波导8与输出转换元件7在一起的一侧看到的视图。图6D表示了 从功率分配器2所在一侧看到的视图。这些视图6C和6D显示了三个电路22、23、23 ’,两个 光栅21、21,和与偏置端口 11相结合的两个半壳20、20,。图6E表示了图6C和6D所示的本发明的实施例在功率分配器2层面的横截面视 图。该图示出了功率分配器2的输出端跟随有两个转换器3,所述转换器3用于将分配的输 入微波信号的分量发射到连接波导4。图6F表示了图6C和6D中的本发明的实施例在放大器模块层面的横截面视图。在 每个连接波导4中,平面工艺的两个输入转换元件6用来将输入微波信号的分量分配到放 大模块30。然后适当放大的信号通过平面工艺的四个输出转换元件7发送到用来重新组合 输出微波信号的输出波导8中。每个放大器模块30及其相关联的平面工艺的输入转换元 件5和输出转换元件7被放置在同一平面中。放大器模块30被分开在两个平行的平面中, 每个平面包括两个放大器模块30。在一个实施例中,转换元件5和7是鳍状线,用来提供连接波导4、放大器模块30 和输出波导8之间的电匹配。放大器模块30的轴垂直于由组合的信号得来的微波信号的 传输轴。放大器模块30被放置为直接与放大装置的主体接触,从而通过放大器的面向布置 (facingarrangement)来促进放大器模块和装置外部的热交换。可采用电路22的镀金平面 使放大器模块30在分离的腔中绝缘。图7A和7B表示了本发明的另一实施例,包括具有和不具有上半壳的输出波导的 视图。在本实施例中,根据本发明的该装置包括元件38,该元件构成将两个输出转换元件7 从输出波导8分离开的分离金属壁。在另一实施例中,金属壁可通过电阻表面延伸,从而提高组合的放大路径之间的 绝缘性。在图8A和8B所示的实施例中,电阻膜39安装在电路51上。在这些图中没有表 示上半壳。尺寸和电路51 —样但没有电阻膜的电路40被放置为与电路51接触,从而使该 结构平衡。电路50和51可由例如铝或AIN构成。
在图9所示的另一实施例中,电阻表面直接结合在分离转换元件7的壁中。图IOA和IOB表示了组合两个堆叠的放大器模块的根据本发明的另一实施例。图 IOA和IOB分别为该实施例的外部视图和横截面视图。在本实施例中,堆叠了三个电路56、 56’、57,两个半壳58、58’和两个光栅59、59’。这些元件的组合构成了两个连接波导4、输 出波导8和输入波导55。两个连接波导通过衬底57任一面上的镀金平面53分离。电路 57还包括转换器54,用来提供装置的微带端口和输入波导55之间的匹配。电路56、56’包 括输入转换元件5和输出转换元件7,放大器模块30的偏置端口 11,以及鳍状线转换元件 52。功率分配器27通过两个鳍状线转换器52实现,两个鳍状线转换器52用于获取在输入 矩形波导55中传输的信号并发射到两个堆叠的连接波导4。采用两个相位校正元件15独 立地控制在输出波导8中组合的信号的相位。最后一个实施例也可以在图6A,6B,6C,6D,6E和6F的实施例中实现,从而能够分 别控制在四个连接波导中传输的信号的相位。
本说明书中提出的方案可用于组合二到四个放大器模块甚至更多,这取决于工作 频率,其具有·非常低的组合器插入损耗,从而不降低装置的附加功率效率;·矩形波导输出,从而直接与位于下游的电路接口兼容;·平面工艺的输入端,使得与位于上游的电路的兼容性更好;·放大器周围足够的空间,以能够放置放大器的电稳定性所需的退耦电容;·使易于补偿两个放大器模块的相位离差的装置,从而最小化组合损耗;·非常好的热管理,以观察半导体节温度的空间约束;·缩减的封装,以使装置的重量最小化;·将放大器放置在分离的腔中的可能性,从而避免谐振和耦合问题;·低分配损耗;·易于组装,使得能够提供廉价的方案。
权利要求
一种放大装置,其组合了多个放大器模块,所述放大器模块工作在微波范围,其特征在于,该放大装置包括功率分配器(27),具有输入端和至少两个输出端,用于将输入微波信号(1)分配为多个微波信号(25);连接波导(4),能够与功率分配器(27)的输出端结合,用于传输由功率分配器(27)提供的微波信号(25);至少一个平面工艺的输入转换元件(5),被放置在每个连接波导(4)的输出端,用于接收在连接波导(4)中传输的微波信号(25);放大器模块(30),连接到每个输入转换器(5),用于放大由每个输入转换器(5)接收的信号,并且包括至少一个放大器(6);平面工艺的输出转换元件(7),连接到每个放大器模块(30),并能够与所有输出转换元件(7)共用的输出波导(8)结合,以此将从放大器模块获得的放大信号组合,这些组合的信号构成输出微波信号(26)。
2.根据权利要求1所述的放大装置,其特征在于,每个放大器模块(30)及其输入转换 元件(5)和输出转换元件(7)位于同一个平面上。
3.根据权利要求2所述的放大装置,其特征在于,放大器模块(30)及其输入转换元件 (5)和输出转换元件(7)位于彼此平行的平面上。
4.根据权利要求1到3中任意一项所述的放大装置,其特征在于,转换元件(5,7)是鳍 状线,用于提供连接波导(4)、放大器模块(30)和输出波导(8)之间的电匹配。
5.根据权利要求1到4中任意一项所述的放大装置,其特征在于,所述装置包括构成输 出波导(8)的一部分的至少两个外部半壳,在所述至少两个外部半壳上接触有至少一个放 大器模块(30),从而促进放大器模块(30)和该装置的外部之间的热交换。
6.根据权利要求1到5中任意一项所述的放大装置,其特征在于,放大器模块(30)的 轴垂直于由组合的信号获得的微波信号(26)的传输轴。
7.根据权利要求1到6中任意一项所述的放大装置,其特征在于,分配器(27)的输入 端是金属波导工艺的。
8.根据权利要求1到6中任意一项所述的放大装置,其特征在于,分配器(27)的输入 端是平面工艺的。
9.根据权利要求1到8中任意一项所述的放大装置,其特征在于,连接波导(4)和输出 金属波导(8)是矩形或环形金属波导。
10.根据权利要求1到9中任意一项所述的放大装置,其特征在于,每个连接波导(4) 具有用于校正在每个连接波导(4)中传输的信号的相位的元件(15)。
11.根据权利要求1到10中任意一项所述的放大装置,其特征在于,与放大器模块相关 联的输入转换器(5)和输出转换器(7)在同一个印刷电路上实现。
12.根据权利要求11所述的放大装置,其特征在于,与放大器模块(30)相关联的输入 转换元件(5)和输出转换元件(7),以及功率分配器(27)在同一个印刷电路上实现。
13.根据权利要求1到12中任意一项所述的放大装置,其特征在于,输出转换器(7)在 输出波导(8)内通过金属壁(28)被分离。
14.根据权利要求13所述的放大装置,其特征在于,金属壁(28)通过电阻膜(39)延伸。
全文摘要
一种放大器,包括多个放大模块并且工作在微波范围,其特征在于该放大器包括功率分配器,具有输入端和至少两个输出端,用于将输入微波信号1分配为多个微波信号25;连接波导4,用于传输由功率分配器27提供的微波信号25;至少一个输入转换元件5,放置在每个连接波导4的输出端,用于接收所述微波信号25;放大模块30,连接到每个输入转换器5,用于放大由每个所述输入转换器5接收的信号;以及平面工艺的输出转换元件7,连接到每个所述放大模块30,组合从放大模块输出的放大信号。
文档编号H03F3/60GK101971490SQ200980108583
公开日2011年2月9日 申请日期2009年2月26日 优先权日2008年3月11日
发明者J-P·弗雷斯 申请人:泰勒斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1