多功能生物电采集模拟前端中的增益带宽可编程放大器的制造方法

文档序号:7527166阅读:241来源:国知局
多功能生物电采集模拟前端中的增益带宽可编程放大器的制造方法
【专利摘要】本发明属于放大器【技术领域】,具体为一种多功能生物电采集模拟前端中的增益带宽可编程放大器。本发明由2个跨导放大器、4个固定值电容、4个增益选择电容阵列、2个带宽选择电容阵列和8个PMOS管组成;它具有增益可配置、带宽可配置、微功耗和低的等效输入失调电压等特点,可应用于可穿戴健康监护系统。利用本发明的多功能生物电信号采集模拟前端可以实现对脑电、心电、肌电信号的调理放大。
【专利说明】多功能生物电采集模拟前端中的增益带宽可编程放大器

【技术领域】
[0001] 本发明属于放大器【技术领域】,具体涉及一种增益带宽可编程放大器,应用于可穿 戴设备中对微弱信号进行准确测量的模拟前端中。

【背景技术】
[0002] 如今,随着人们对医疗保健越来越重视,以及人口老龄化进程的加快,未来的医疗 保健模式将从传统的"以医院为中心"转向"以病人为中心",以缓解医疗保健费用急剧增 长、医疗服务资源有限和医疗保健手续繁冗复杂等问题。基于无线体域网的穿戴式健康监 护系统已成为集成电路研究领域的热点。
[0003] 基于无线体域网的穿戴式健康监护系统中的仪表放大器和具有滤波功能的可编 程放大器合称为模拟前端,是穿戴式健康监护系统中极其重要的一个模块,其性能的优劣 直接关系到穿戴式健康监护系统的好坏。
[0004] 常见的生物电信号包括脑电信号(EEG)、心电信号(ECG)以及肌电信号(EMG)三 种,它们具有不同的频率范围和幅度范围,例如EEG信号的幅度为20-100uV,频率范围 为0. l-40Hz ;ECG信号的幅度为100uV-5mV,频率范围为0. 5-150Hz ;EMG信号的幅度为 l-10mV,频率范围为20-2KHZ。多功能生物电信号采集模拟前端需要同时具备采集上述三种 生物电信号的能力,这就要求模拟前端电路具有增益和带宽可调的功能,而这部分功能由 可编程放大器来提供。


【发明内容】

[0005] 本发明的主要目的是提供一种可应用于可穿戴健康监护系统的多功能生物电采 集模拟前端电路中的增益带宽可编程放大器,它具有增益可配置、带宽可配置和微功耗等 特点。
[0006] 为了达到上述目的,本发明的技术方案是:一种可应用于可穿戴健康监护系统的 多功能生物电采集模拟前端电路中的增益带宽可编程放大器(如图1所示),由2个跨导放 大器,4个固定值电容,4个增益选择电容阵列,2个带宽选择电容阵列和8个PM0S管组成。 其中: 外部模拟输入信号Vin和Vip分别与电容Cinll和Cinl2的一端相连;电容Cinll的 另一端、PM0S管PM0的栅极、PM0S管PM0的漏极、增益选择电容阵列gain_selll的一端、跨 导放大器Gml的反相输入端共点;电容Cinl2的另一端、PM0S管PM2的栅极、PM0S管PM2的 漏极、增益选择电容阵列gain_sell2的一端、跨导放大器Gml的同相输入端共点;PM0S管 PM0的源极、PM0S管PM1的漏极、PM0S管PM1的栅极共点;PM0S管PM2的源极、PM0S管PM3 的漏极、PM0S管PM3的栅极共点;PM0S管PM1的源极、跨导放大器Gml的同相输出端、增益 选择电容阵列gain_selll的另一端、带宽选择电容阵列BW_sell的一端、电容Cin21的一 端共点;PM0S管PM3的源极、跨导放大器Gml的反相输出端、增益选择电容阵列gain_sell2 的另一端、带宽选择电容阵列BW_sell的另一端、电容Cin22的一端共点;电容Cin21的另 一端、PMOS管PM4的栅极、PMOS管PM4的漏极、增益选择电容阵列gain_sel21的一端、跨导 放大器Gm2的反相输入端共点;电容Cin22的另一端、PM0S管PM6的栅极、PM0S管PM6的 漏极、增益选择电容阵列gain_sel22的一端、跨导放大器Gm2的同相输入端共点;PMOS管 PM4的源极、PMOS管PM5的漏极、PMOS管PM5的栅极共点;PMOS管PM6的源极、PMOS管PM7 的漏极、PMOS管PM7的栅极共点;PMOS管PM5的源极、跨导放大器Gm2的同相输出端、增益 选择电容阵列gain_sel21的另一端、带宽选择电容阵列BW_sel2的一端与增益带宽可编程 放大器的输出端Voutn相连;PMOS管PM7的源极、跨导放大器Gm2的反相输出端、增益选择 电容阵列gain_sel22的另一端、带宽选择电容阵列BW_sel2的另一端与增益带宽可编程放 大器的输出端Voutp相连。
[0007] 增益带宽可编程放大器中的增益选择电容阵列gain_selll和gain_sell2是相 同的,gain_sel21和gain_sel22也是相同的,它们采用相同的电路结构来实现,具有两个 端子A和B。图2给出了上述增益选择电容阵列的一个实施实例,由三个电容和2个开关组 成。其中: 增益选择电容阵列的一端A与电容C1的一端以及开关SW1的一端相连,电容C1的另 一端与电容C2的一端以及开关SW1的另一端相连,电容C2的另一端与电容C3的一端以及 开关SW2的一端相连,电容C3的另一端与开关SW2的另一端以及增益选择电容阵列的另一 端B相连。开关SW1和开关SW2由不同的控制信号来控制其打开和合上。
[0008] 增益带宽可编程放大器中的带宽选择电容阵列BW_sell和BW_sel2采用相同的结 构来实现,具有两个端子C和D。图3给出了上述带宽选择电容阵列的一个实施实例,由6 个电容和6个开关组成。其中: 带宽选择电容阵列的一端C与开关SW3,SW4,SW5的一端相连;开关SW3的另一端与电 容C11的一端相连;开关SW4的另一端与电容C12的一端相连;开关SW5的另一端与电容 C13的一端相连;电容C11的另一端、电容C12的另一端、电容C13的另一端与地共点;带宽 选择电容阵列的一端D与开关SW6,SW7,SW8的一端相连;开关SW6的另一端与电容C21的 一端相连;开关SW7的另一端与电容C22的一端相连;开关SW8的另一端与电容C23的一 端相连;电容C21的另一端、电容C22的另一端、电容C23的另一端与地共点。开关SW3和 开关SW6具有相同的控制信号,开关SW4和开关SW7具有相同的控制信号,开关SW5和开关 SW8具有相同的控制信号。电容Cl1与电容C21具有相同的电容值,电容C12与电容C22具 有相同的电容值,电容C13与电容C23具有相同的电容值。
[0009] 利用本发明的多功能生物电信号采集模拟前端可以实现对脑电、心电、肌电信号 的调理放大,具有以下有益效果: 1、利用本发明,可以在不占用过大片内面积的情况下获得很大的增益调节范围,如 40dB_80dB,以满足脑电、心电、肌电信号的所有调理需要。可穿戴系统中通常要求跨导放大 器Gml和Gm2仅消耗很少的电流,同时要求反馈网络具有很大的等效阻抗。采用电容反馈, 相比较电阻反馈,可节省芯片面积;与增益选择电容阵列并联的栅漏短接的PM0S串联管具 有极大的等效阻抗,为跨导放大器Gml和Gm2提供直流偏置。
[0010] 2、本发明具有很低的等效输入失调电压,以满足高增益的设计需求。该放大器的 等效输入失调为第二级放大器的等效输入失调除以第一级放大器的直流增益。
[0011] 3、利用本发明可以实现很低的高通截止频率,从而在不影响信号低频分量的前提 下,实现对电极失调电压的抑制。采用本发明的增益控制电容阵列,可以获得平滑理想的低 频高通响应。
[0012] 4、本发明中的带宽选择阵列BW_sell和BW_sel2共用一对带宽控制字,通过合理 地设计电容阵列,增益带宽可编程放大器可以等效为一个两阶低通滤波器,一方面可以更 好地滤除带宽附近频率的残余噪声;另一方面可以进一步抑制前级斩波仪表放大器的残余 纹波电压。

【专利附图】

【附图说明】
[0013] 图1为本发明增益带宽可编程放大器电路的电路图。
[0014] 图2为本发明增益带宽可编程放大器电路中的增益选择电容阵列的电路图。
[0015] 图3为本发明增益带宽可编程放大器电路中的带宽选择电容阵列的电路图。

【具体实施方式】
[0016] 下面结合附图对本发明进一步详细说明。
[0017] 图1为本发明增益带宽可编程放大器电路的电路图。增益 带宽可编程放大器由两级放大电路组成。第一级放大电路的增益 為M由增益选择电容阵列gain_selll、gain_sell2和电容Cinll、Cinl2来决定,其带宽由 带宽选择阵列BW_sell和跨导放大器Gml的跨导决定;第二级放大电路的增益^^由增 益选择电容阵列gain_sel21、gain_sel22和电容Cin21、Cin22来决定,其带宽由带宽选择 阵列BW_sel2和跨导放大器Gm2的跨导决定。
[0018] 整个增益带宽可编程放大器电路的增益A2为:

【权利要求】
1. 一种多功能生物电采集模拟前端中的增益带宽可编程放大器,应用于可穿戴健康 监护系统,其特征在于:由2个跨导放大器,4个固定值电容,4个增益选择电容阵列,2个带 宽选择电容阵列和8个PMOS管组成;其中: 外部模拟输入信号Vin和Vip分别与第一电容Cinll和第二电容Cinl2的一端相连; 第一电容Cinll的另一端、第零PMOS管PMO的栅极、第零PMOS管PMO的漏极、第一增益选 择电容阵列gain_selll的一端、第一跨导放大器Gml的反相输入端共点;第二电容Cinl2 的另一端、第二PMOS管PM2的栅极、第二PMOS管PM2的漏极、第二增益选择电容阵列gain_ sel 12的一端、第一跨导放大器Gml的同相输入端共点;第零PMOS管PMO的源极、第一 PMOS 管PM1的漏极、第一 PMOS管PM1的栅极共点;第二PMOS管PM2的源极、第三PMOS管PM3的 漏极、第三PMOS管PM3的栅极共点;第一 PMOS管PM1的源极、第一跨导放大器Gml的同相 输出端、第一增益选择电容阵列gain_selll的另一端、第一带宽选择电容阵列BW_sell的 一端、第三电容Cin21的一端共点;第三PMOS管PM3的源极、第一跨导放大器Gml的反相 输出端、第二增益选择电容阵列gain_sell2的另一端、第一带宽选择电容阵列BW_sell的 另一端、第四电容Cin22的一端共点;第三电容Cin21的另一端、第四PMOS管PM4的栅极、 第四PMOS管PM4的漏极、第三增益选择电容阵列gain_sel21的一端、第二跨导放大器Gm2 的反相输入端共点;第四电容Cin22的另一端、第六PMOS管PM6的栅极、第六PMOS管PM6 的漏极、第四增益选择电容阵列gain_sel22的一端、第二跨导放大器Gm2的同相输入端共 点;第四PMOS管PM4的源极、第五PMOS管PM5的漏极、第五PMOS管PM5的栅极共点;第六 PMOS管PM6的源极、第七PMOS管PM7的漏极、第七PMOS管PM7的栅极共点;第五PMOS管 PM5的源极、第二跨导放大器Gm2的同相输出端、第三增益选择电容阵列gain_sel21的另一 端、第二带宽选择电容阵列BW_sel2的一端与增益带宽可编程放大器的输出端Voutn相连; 第七PMOS管PM7的源极、第二跨导放大器Gm2的反相输出端、第四增益选择电容阵列gain_ sel22的另一端、第二带宽选择电容阵列BW_sel2的另一端与增益带宽可编程放大器的输 出端Voutp相连。
2. 根据权利要求1所述的增益带宽可编程放大器,其特征在于所述第一增益选择电 容阵列gain_selll和第二增益选择电容阵列gain_sell2相同,第三增益选择电容阵列 gain_sel21和第四增益选择电容阵列gain_sel22也相同,它们采用相同的电路结构,具有 两个端子A和B ;分别由三个电容和2个开关组成,其中: 增益选择电容阵列的一端A与第五电容C1的一端以及第一开关SW1的一端相连,第五 电容C1的另一端与第六电容C2的一端以及第一开关SW1的另一端相连,第六电容C2的另 一端与第七电容C3的一端以及第二开关SW2的一端相连,第七电容C3的另一端与第二开 关SW2的另一端以及增益选择电容阵列的另一端B相连;第一开关SW1和第二开关SW2由 不同的控制信号来控制其打开和合上。
3. 根据权利要求1所述的增益带宽可编程放大器,其特征在于所述第一带宽选择电 容阵列BW_sell和第二带宽选择电容阵列BW_sel2采用相同的结构,具有两个端子C和D ; 分别由6个电容和6个开关组成;其中: 带宽选择电容阵列的一端C与第三开关SW3,第四开关SW4,第五开关SW5的一端相连; 第三开关SW3的另一端与第八电容C11的一端相连;第四开关SW4的另一端与第九电容C12 的一端相连;第五开关SW5的另一端与第十电容C13的一端相连;第八电容C11的另一端、 第九电容C12的另一端、第十电容C13的另一端与地共点;带宽选择电容阵列的一端D与第 六开关SW6、第七开关SW7、第八开关SW8的一端相连;第六开关SW6的另一端与第十一电容 C21的一端相连;第七开关SW7的另一端与第十二电容C22的一端相连;第八开关SW8的另 一端与第十三电容C23的一端相连;第^ 电容C21的另一端、第十二电容C22的另一端、 第十三电容C23的另一端与地共点;第三开关SW3和第六开关SW6具有相同的控制信号, 第四开关SW4和第七开关SW7具有相同的控制信号,第五开关SW5和第八开关SW8具有相 同的控制信号;第八电容C11与第i^一电容C21具有相同的电容值,第九电容C12与第十二 电容C22具有相同的电容值,第十电容C13与第十三电容C23具有相同的电容值。
【文档编号】H03F3/45GK104410368SQ201410585909
【公开日】2015年3月11日 申请日期:2014年10月28日 优先权日:2014年10月28日
【发明者】柯可人, 秦文辉, 易婷, 洪志良 申请人:复旦大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1