一种超薄金属层的印刷线路板的制备方法与流程

文档序号:12968178阅读:568来源:国知局
一种超薄金属层的印刷线路板的制备方法与流程

本发明属于微电子技术领域,具体涉及一种超薄金属层的软板和硬板基材的制备工艺以及单面、双面、多层、软式印刷电路板、软硬复合板及多层高密度互连印刷电路板盲孔、埋孔和填孔的工艺。



背景技术:

印刷线路板(pcb-printedcircuitboard)是电子元器件电气连接的载体。印刷线路板分为硬质印刷电路板(rpc-rigidprintedcircuits)、软式印刷电路板(fpc-flexibleprintedcircuits)和软硬复合板(rfpc-rigid-flexprintedcircuits)。印刷线路板层面构造上可分成单面板、双面板和多层板(3层以上)。硬质印刷电路板具有耐热制程不变形的特点,具有更好的平整度;软式印刷电路板具有高曲折性的优点;软硬复合板兼备硬板及软板的功能与特性,大量应用于通信控制模块(ccm)、摄像模块,如笔电、平板电脑、智能型手机、可穿戴式电子手环等。单面板因为高曲折性和低成本的特点而被广泛应用在硬盘驱动器(hdd)及光学读取头等地方。双面板的电路设计比单面板的电路更为复杂,其厚度也略为增加。3层以上的多层板由于层面数增加,其电路设计拥有较多弹性。

现今的电子产品如液晶显示屏(lcd)、等离子体显示屏(pdp),贴装裸露芯片(cof)的基板等都要求线路的细线化、高密度化、高尺寸安定、耐高温及可靠性。在电子产品逐渐走向轻薄短小的趋势发展下,要求印刷电路板具有更薄的金属层和介质层。超薄无胶电路板将成为市场的主流,逐步取代三层(介质层/接着剂/铜箔)有胶基材。超薄(<5微米)意味着需要更薄的铜箔,但目前工业中能做到最薄的铜箔是12微米左右,难以实现超薄。另外一个原因是铜箔太薄导致其力学强度低,覆铜困难。实现无胶超薄的方法是在介质层上直接化学(或溅射)镀铜膜。但因介质层(聚酰亚胺、环氧树脂等)表面光滑和亲水性差(表面能低),沉积的铜膜容易从介质层上脱落,必须设法对介质层表面进行改性处理,使介质层与沉积的铜膜有较好的结合力,其剥离强度要高于7n/cm(行业标准)。

近十几年来国际上积极开展超薄无胶软式印刷电路板介质材料聚酰亚胺膜(pi)的表面改性处理的研究,主要处理方法有:酸碱处理,等离子体处理,离子束处理和表面接枝法。

1988年ruoff等利用反应性氧离子束蚀刻pi薄膜,考察了调整不同能量、离子流密度和蚀刻时间等因素来提高其与铜的粘接性能(improvementofadhesionofcopperonpolyimidebyreactiveion-beametching[j].ibmjournalofresearchanddevelopment,1988,32:5),其在最优条件下处理后的粘接强度为6.9n/cm。相比较未处理的pi薄膜,虽然提高了近25倍,但也未达到使用标准。2006年juhihong等利用psii(plasmasourceionimplantation)技术在pi膜表面沉积cu膜,结果表明cu膜和聚酰亚胺膜层的结合力也有大幅提高,但也未能满足使用要求(improvementofadhesionpropertiesforcufilmsonthepolyimidebyplasmasourceionimplantation[j].surface&coatingstechnology.2006,201:197)。专利文献cn101684554a公开了一种聚酰亚胺薄膜的化学镀铜液及其表面化学镀铜的方法,其也未提及到聚酰亚胺薄膜与铜膜的结合力这一关键问题,未能突破超薄无胶印刷电路板基材制造的技术瓶颈。专利文献cn102196904a公开了叠层体及其制造方法,该专利文献是通过电离放射线照射对含热塑性环状烯烃树脂的树脂膜的表面的进行部分改性。



技术实现要素:

本发明基于介质层材料表面光滑、表面能低的性质,根据结合力的种类及机理,提供了一种等离子体技术实现超薄金属层印刷线路板制备的方法。

影响印刷电路板的介质层与金属层的剥离强度的关键因素是介质表面的粗糙度和表面的化学活性,本发明基于此提供了一种超薄金属层的印刷线路板的制备方法。

本发明的制备方法首先对介质层进行等离子体表面改性处理,然后进行化学镀(也称化学沉铜)或真空溅射镀,镀上致密的厚度100纳米以下的铜膜,最后对铜膜进行电镀加厚到所需要的铜膜厚度,其可以用于制造剥离强度高的超薄金属层印刷电路板基材。

本发明提供的方法具体包括:

1)于真空电容耦合放电等离子体的腔室中放置待刻蚀的材料,分别利用第一等离子体和第二等离子体对待刻蚀的材料表面进行改性处理;所述第一等离子体为气态脂肪胺经真空电容耦合放电而产生,所述第二等离子体为经硫酸铜溶液鼓泡后的氮气气体经真空电容耦合放电而产生。

所述改性处理为在待处理材料的表面接枝氨基、羟基和/或磺酸根;

2)通过化学沉积铜或溅射沉积铜在刻蚀后的材料的表面选择性或全部的形成铜 膜。

优选的,所述方法进一步包括如下步骤:

3)通过电镀的方式加厚步骤2)得到的铜膜,或选择性的保护步骤2)得到的铜膜,并通过电镀的方式加厚未被保护而露出的铜膜。具体的厚度依据产品而决定。

优选的,所述第一等离子体和第二等离子体对待刻蚀的材料表面进行改性处理时,真空电容耦合放电的气压范围为30-80pa。

优选的,所述脂肪胺为碳原子数低于7的伯胺或仲胺,此类型脂肪胺一般为气态脂肪胺,所述第一等离子体处理的时间为5-20s。

优选的,所述硫酸铜溶液中硫酸铜和水的比例大于1:2,所述第二等离子体的处理时间为10-30s。

优选的,所述待刻蚀的材料表面为聚酰亚胺(pi)材质或环氧树脂材质(pp)。所述聚酰亚胺材质可以是聚酰亚胺薄膜或聚酰亚胺保护胶层,所述环氧树脂材质可以是玻璃纤维布涂布环氧树脂板。

当处理的材料为玻璃纤维布涂布环氧树脂板或者聚酰亚胺(pi)薄膜时,在对其表面处理后进行化学沉铜和电镀加厚,可以分别得到超薄金属层的印刷电路板的硬板基材和软板基材,用于制备单面、双面印刷电路板、多层电路板、软硬复合板和多层高密度互连印刷电路板,并应用到盲孔、埋孔以及填孔等工艺中。

本发明的一个典型实施例中包括了如下的处理方式:

1、将印刷电路板基材的介质材料,聚酰亚胺(pi)薄膜或玻璃纤维织物涂布环氧树脂板(pp)置于真空电容耦合放电等离子体的腔室中,利用具有碱性的含氨基化学基团的脂肪胺类的气态物质和经硫酸铜溶液鼓泡后的氮气气体分别进行真空电容耦合放电产生等离子体,对介质层表面同时进行物理与化学刻蚀及表面接枝氨基、羟基、磺酸根等活性基团的改性处理。

2、将处理后的介质材料进行化学沉铜或溅射镀铜。

3、电镀加厚到所需要的金属铜层厚度。完成超薄金属层印刷电路板基材的制备。

4、利用超薄金属层印刷电路板基材制备印刷电路板基板。

5、基板覆介质层,进行步骤1、2的处理,进行增层法制备多层板、软硬复合板。

6、利用步骤1、2,进行盲孔、埋孔、填孔、选镀的流程。

本发明的方法既适用于以聚酰亚胺薄膜为介质的柔性印刷电路板(简称软板)基材的制备,也适用于以环氧树脂为介质的硬质电路板(简称硬板)基材的制备,同时 该技术还可应用于多层印刷电路板增层法制备多层板、软硬复合板的工艺中,免去了覆铜箔的工艺。本发明在电解电镀铜层厚度上可实现自由控制,实现超薄金属层的印刷电路板的制备,在高密度线路应用上更具优势,且节省铜箔和油墨的使用,本发明能有效的降低成本进而提升产品的竞争力。

附图说明

图1是本发明的pi薄膜处理的技术方案示意图,其中11为等离子体腔体,12为聚酰亚胺薄膜,13为放卷,14为收卷,15为阳电极,16为阴电极。

图2是本发明同时处理多个pp膜的技术方案示意图,其中21为等离子体腔体,22为pp板,23为正电极,24为负电极。

图3为两层软板选镀新工艺示意图,其中31为聚酰亚胺(pi)膜,32为铜膜,33为钻孔,34为曝光显影线路刻蚀,35为化学沉积铜;36为压合膜;37为钻孔镀铜;38为去膜后,微蝕/化学铜。

图4为增层法制备四层柔性印刷线路板(fpcb)的示意图,其中41为pi膜,42为铜膜,43为刻蚀线槽,44为cl,45为通孔,46为化学沉积膜,47为电镀铜膜,48为刻蚀线槽。

图5为增层法制备四层硬质印刷电路板的示意图,其中51为玻璃纤维布涂布环氧树脂板,52为双面镀铜膜;53为刻蚀线槽;54为pp;55为通孔;56为化学沉积铜膜;57为电镀铜膜;58为刻蚀线槽。

图6为增层法制备软硬复合印刷电路板及选镀新工艺示意图,其中60为pi膜,61为电镀铜膜,62为刻蚀槽,63为pp,64为cl,65为通孔,66为表面沉铜,67为电镀铜膜,68为干膜,69为刻蚀面,70为刻蚀线槽。

图7.软硬高密度板(hdi—highdensityinterconnection)制备及选镀新工艺,其中71为聚酰亚胺薄膜(pi),72为双面镀铜膜,73为刻槽,74为cl,75为pp,76为盲孔;77为通孔;78为表面沉铜;79为电镀铜膜;80为干膜,81为刻蚀面;82为刻蚀线槽。

具体实施方式

如下为本发明的实施例,其仅用作对本发明的解释而并非限制。

参见图1,本发明采用如下方法制备pi基底的印刷电路板单面或双面基材:

(1)将聚酰亚胺(pi)薄膜卷安装到低真空等离子体发生器的腔体中的收卷装 置中,抽真空低于20pa后通入脂肪胺类的气体(如甲胺、乙胺、伯胺、仲胺等),放电产生等离子体对聚酰亚胺薄膜进行刻蚀与接枝处理,控制收卷机转速,保证聚酰亚胺薄膜经过等离子体放电区的处理时间5~20s。利用等离子体刻蚀作用提高聚酰亚胺薄膜表面的粗糙度,同时在聚酰亚胺薄膜表面接枝上氨基nh2。

(2)停止气体脂肪胺供给,继续抽气到真空度低于20pa,注入经硫酸铜溶液(硫酸铜:去离子水≧1:2)鼓泡的氮气进行等离子体放电处理10~30s。停机进空气,取出聚酰亚胺薄膜。

(3)通过化学沉铜或溅射沉铜在基体表面形成铜膜使之导电,满足电镀条件。

(4)电镀加厚铜膜,完成柔性印刷电路板单面或双面基材的制备。

(5)印刷电路板的制作。

参见图2,本发明采用如下方法制备pp基底的印刷电路板单面或双面基材:

将玻璃纤维织物涂布环氧树脂(pp)板材悬挂安装到低真空等离子体发生腔体器中的正负电极之间,按方案一中的步骤制备pp基底的印刷电路板单面或双面基材。

实施例一:参见图3,本实施例主要涉及两层软板选镀的方法,其具体包括:

a、制备由聚酰亚胺(pi)薄膜和双面电镀铜膜构成的双层软板基材;

b、激光或机械钻通孔;

c、曝光显影刻蚀线路;

d、等离子体强化除胶、刻蚀增加粗糙度及pi表面活性基团后进行化学沉铜;

e、压合干膜、曝光显影;

f、选择性只在钻孔处实施电镀;

g、微蚀/化学铜,进下一制程。

选镀的目的是导通孔镀铜,软板基材上不镀铜,使软板区更耐挠折。

实施例二:参见图4,本实施例主要涉及增层法制备四层柔性印刷线路板(fpcb)。

a、制备由聚酰亚胺(pi)薄膜和双面电镀铜膜构成的双层软板基材;

b、曝光显影印刷双层线路并刻蚀;

c、压合保护胶片(coverlayer),不覆铜箔加热真空压合;

d、钻孔并清除钻孔胶渣,等离子体刻蚀增加表面粗糙度及活性基团;

e、化学镀沉铜;

f、电镀加厚铜层;

g、曝光显影印刷线路并刻蚀,完成四层柔性印刷电路板的制作,进入检测制程。

实施例三:参见图5,该实施例为通过增层法制备四层硬质印刷线路板(rpc-rigidprinted)的方法。

a制备由玻璃纤维织物涂布环氧树脂(pp)的介质板和双面电镀铜膜构成的双层硬板基材;

b、曝光显影印刷双层线路并刻蚀;

c、不覆铜箔加热真空压合玻璃纤维布涂布的环氧树脂(pp);

d、钻孔并清除钻孔胶渣,等离子体刻蚀增加表面粗糙度及活性基团;

e、通过化学镀沉铜的方式形成铜膜;

f、电镀加厚前一步骤得到的铜膜;

g、曝光显影印刷线路并刻蚀,完成四层硬质印刷电路板的制作,进入检测制程。

实施例四:参见图6,该实施例为增层法制备软硬复合印刷电路板及选镀的方法。

a、利用本发明技术方案一制备的由聚酰亚胺(pi)薄膜和双面电镀铜膜构成的双层软板基材(统称双面铜箔基板ccl—coppercladlaminate);

b、曝光显影线路刻蚀;

c、不用铜箔高温真空直接压合保护胶片(cl—coverlayer)和玻璃纤维布涂布环氧树脂(pp—prepreg);

d、激光或机械钻孔;

e、对通孔进行等离子体强化除胶渣、增加粗糙度、pi表面接枝活性基团后化学;

f、电镀加厚铜层;

g、压合干膜;

h、曝光、显影,暴露刻蚀面;

i、刻蚀、去膜,完成软硬复合印刷电路板的制作,进入检测制程。

实施例五:参见图7,本实施例主要涉及增层法制备软硬高密度板(hdi—highdensityinterconnection)及选镀新方法。

a、利用本发明技术方案一制备的由聚酰亚胺(pi)薄膜和双面电镀铜膜构成的双层软板基材;

b、曝光显影刻蚀线路;

c、不用铜箔,高温高压真空压合保护胶片和环氧树脂(pp);

d、激光钻盲孔;

e、机械钻通孔;

f、等离子体强化除胶渣、增加粗糙度及表面接枝活性基团后进行化学沉铜;

g、电镀填盲孔86及加厚铜层;

h、贴干膜;

i、曝光显影暴露刻蚀面:

j、刻蚀去膜,完成软硬高密度板的制作,进入检测制程。

采用本发明的方法可生产超薄聚酰亚胺(pi)无胶柔性印刷线路板(fpcb)基材和超薄金属层无胶硬质印刷电路板(rpc-rigidprintedcircuits)基材,其也可以同时在增层法制备多层印刷电路板及盲孔、埋孔和选镀工艺中得到应用,得到的增层的电镀铜层薄,可用于生产更细的线路。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1