非点光源的无频闪调光电路的制作方法

文档序号:14685283发布日期:2018-06-12 23:23
非点光源的无频闪调光电路的制作方法

本发明涉及电源转换技术领域,特别涉及一种支持TRIAC(TRI-electrode AC switch,双向三极闸流体)的非点光源的无频闪调光电路。



背景技术:

为了打造舒适明亮且不失时尚品味的阅读空间或工作空间,不少人于室内天花板上装设造型简单大方的平板灯,为了驱动灯具中的灯源元件工作,必然要使用转换市电的驱动电路,以为灯源元件提供所需的电力并保证整体灯具工作平稳。以图1所示的驱动电路1为例,其为传统15.7瓦(W)平板灯普遍采用的非隔离型增压式(Boost)电源转换器,设有一电感器L、一二极管D、一电容器C、一开关10、一侦测电阻RS及一PWM控制器11,该电感器串接该二极管的阳极并耦接该开关10的汲极,该PWM控制器11耦接该开关10的闸极与源极及该侦测电阻,且该二极管的阴极耦接该电容器后电性连接至少一LED 12。该电感器承接一输入电压Vin而于该开关10导通时储存能量,且于该开关10截止时利用该电容器滤波前述该电感器储存的能量形成一驱动电压Vout或一驱动电流Iout后输出,以通过简单且低成本的该驱动电路1达到增压效果,从而于低电压供电的电路架构下成功驱动该LED 12发光。然而,该驱动电路1为非隔离型电路,从而有如图2所示的恒流效果精度极差的现象,造成安全性不足与EMC(Electromagnetic Compatibility,电磁兼容性)问题,不能满足现行平板灯的调光需求。另外,就平板灯或崁灯等具较广光源面积而非点光源的灯具而言,若该驱动电路1的输出非恒定电流时,灯具将出现明显频闪现象而影响照明质量。

另一方面,常用于传统白炽灯或卤素灯的自激式电源转换电路为隔离式电路架构而无上述问题,其通过半桥谐振电路实现能源的直接转换,从而具有启动快、不频闪及通用于大小功率电源电路中等特性,且架构简单,从而亦具有低成本的优势。然而,自激式驱动电路的架构虽简单却缺乏定功率控制机制,造成输出功率将随输入电压的升高而升高,进而导致灯具无法维持稳定的照明亮度并具有快速老化的问题。

有感于此,如何结合上述隔离式电路架构与现行LED平板灯普遍采用的非隔离式电路架构的优点,以确保具有较广光源面积的灯具于具有TRIAC调光功能的使用情况下,不会发生任何频闪现象,从而符合安全性要求,同时更提升市场适应性,即为本发明所亟欲探究的课题。



技术实现要素:

有鉴于现有技术在中的问题,本发明的目的在于提供一种非点光源的无频闪调光电路,供商用平板灯或崁灯等具有较广光源面积的灯具使用,以允许消费者能够依现行需求调整照明亮度,且确保不会有频闪问题发生,从而实现高照明质量。

为了达到上述目的,该非点光源的无频闪调光电路设有一输入模块、一转换模块及一输出模块,该输入模块电性连接一外部电源并输出一输入电压,该转换模块电性连接该输入模块与该输出模块以接收该输入电流后输出一工作电压至该输出模块,以使该输出模块输出一驱动电压而驱动至少一具较广光源面积的灯具工作,其中:该非点光源的无频闪调光电路设有一TRIAC模块以调节该输入电压的导通相位角,该转换模块采用升压式电路架构并设有一转换线圈及一转换器,以利用该转换线圈及该转换器调升该输入电压的压值至该工作电压的压值,该输出模块采用返驰式电路架构并设有一控制线圈组及一校正器,该控制线圈组感应该工作电压形成该驱动电压的同时通过该校正器校正该驱动电压的工作周期,以达到恒定的压值。

其中,该工作电压为220V。

并且,该转换器设有一感测线圈、一第一铁芯、一转换芯片与一转换开关,该转换线圈置于该第一铁芯的一次侧,该感测线圈置于该第一铁芯的二次侧并电性连接该转换芯片,且该转换开关电性连接该转换芯片与该转换线圈,于该转换线圈传递该输入电压的同时,该感测线圈通过该第一铁芯感测形成一感测电压,以供该转换芯片参考该感测电压后调节该转换开关的工作周期,以维持该输入电压的压值调升至定值。该控制线圈组至少由一一次侧线圈、一第二铁芯、一二次侧线圈及一校正线圈构成,该一次侧线圈与该校正线圈置于该第二铁芯的一次侧,该二次侧线圈置于该第二铁芯的二次侧,该校正器电性连接该一次侧线圈与该校正线圈,且该一次侧线圈电性连接该转换模块以承接该工作电压,使该二次侧线圈通过该第二铁芯磁感形成该驱动电压,同时,该校正线圈通过该第二铁芯磁感形成一校正信号,以供该校正器调节该一次侧线圈的工作周期。该校正器设有一校正芯片、一校正开关与一检测元件,该检测元件电性连接该校正线圈与该校正芯片,且该校正开关电性连接该校正芯片与该一次侧线圈,该校正线圈磁感该工作电压而得一校正电压时,该检测元件检测形成该校正信号并回馈至该校正芯片,使该校正芯片调节该校正开关的工作周期以校正该一次侧线圈接收该工作电压的周期时间,以实现定电压的功效。

综上所述,本发明通过逆向思维的方式将已知的双级隔离式电源转换电路应用至具较广光源面积的LED灯具中,以利用初级侧的升压式(Boost)电路先将该输入电压的压值提升至固定的设定值后,通过二级侧的PSR(Primary Side Regulation,一次侧校正)返驰式(Fly-back)电路恒定输出该驱动电压,能够有效降低涟波振幅,从而实现无频闪的照明效果。

附图说明

图1为现有的非隔离型驱动电路的电路示意图;

图2为现有的非隔离型驱动电路的波形图;

图3为本发明较佳实施例的方块图;

图4A、图4B为本发明较佳实施例的电路图;

图5为本发明较佳实施例的波形图。

附图标记说明:1-驱动电路;10-开关;11-PWM控制器;12-LED;2-非点光源的无频闪调光电路;20-TRIAC模块;21-输入模块;210-EMC器;211-桥式整流器;22-转换模块;220-转换线圈;221-转换器;2210-感测线圈;2211-转换芯片;2212-转换开关;23-输出模块;230-控制线圈组;231-校正器;2310-校正芯片;2311-校正开关;2312-检测元件;T1-第一铁芯;Np-一次侧线圈;T2-第二铁芯;Ns-二次侧线圈;NA-校正线圈。

具体实施方式

为使审查员能清楚了解本发明的内容,谨以下列说明搭配图式,敬请参阅。

如图3~图5所示,其分别为本发明较佳实施例的方块图、电路图与波形图。如图所示,15.7W的该非点光源的无频闪调光电路2采用双级隔离式电路架构,以驱动具有较广光源面积的灯具工作,以使得该灯具于亮度调整时仍具有无频闪的照明效果,从而符合商行卖场的高质量消费需求。该非点光源的无频闪调光电路2设有一TRIAC模块20、一输入模块21、一转换模块22及一输出模块23,该输入模块21通过该TRIAC模块20电性连接一外部电源(图未示)而承接一交流电压,且该转换模块22电性连接该输入模块21与该输出模块23,又该输出模块23电性连接该灯具中多个LED(图未示)。该输入模块21可设有一EMC器210及一桥式整流器211,该转换模块22采用升压式电路架构并至少设有一转换线圈220及一转换器221,且该转换器221设有一感测线圈2210、一第一铁芯T1、一转换芯片2211与一转换开关2212,又该输出模块23采用PSR返驰式电路架构并设有一控制线圈组230及一校正器231,该控制线圈组230至少由一一次侧线圈Np、一第二铁芯T2、一二次侧线圈Ns及一校正线圈NA构成,该校正器231则有一校正芯片2310、一校正开关2311与一检测元件2312。

该TRIAC模块20的一端电性连接该外部电源,其另一端通过该EMC器210电性连该桥式整流器211,且该桥式整流器211电性连接该转换线圈220,使该TRIAC模块20承接并调节该外部电源的交流电压的导通相位角后,供该桥式整流器211整流形成一输入电压而输出至该转换线圈220。

该第一铁芯的一次侧与二次侧分别置有该转换线圈220与该感测线圈2210,该感测线圈2210电性连接该转换芯片2211,且该转换开关2212电性连接该转换芯片2211与该转换线圈220。该转换线圈220于接收该输入电压时即进行充放电,从而使该输入电压的压值提升至一工作电压(Vwork)的压值,同时,该感测线圈2210通过该第一铁芯感测形成一感测电压,以供该转换芯片2211参考后调节该转换开关2212的工作周期,从而使该输入电压的压值维持调升至该工作电压的定值,例如220伏特(V)。

该一次侧线圈与该校正线圈置于该第二铁芯的一次侧,该二次侧线圈置于该第二铁芯的二次侧,该一次侧线圈电性连接该转换线圈220,该二次侧线圈电性连接该多个LED,且该校正芯片2310电性连接该一次侧线圈、该校正线圈、并通过该检测元件2312电性连接该校正开关2311,且该校正开关2311电性连接该一次侧线圈。于该一次侧线圈接收该工作电压后,该二次侧线圈通过该第二铁芯磁感形成一驱动电压(Vout),从而驱动该多个LED发光。同时,该校正线圈通过该第二铁芯磁感形成一校正电压,该检测元件2312接收该校正电压并检测形成一校正信号后回馈至该校正芯片2310,使该校正芯片2310调节该校正开关2311的工作周期,从而校正该一次侧线圈接收该工作电压的周期时间,进而影响该二次侧线圈磁感形成该驱动电压的大小,以达到实现稳定该多个LED所承接的电压VLED或电流ILED的目的,从而使涟波振幅比降至1.1倍。

以上所述仅为举例性的较佳实施例,而非为限制性。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包含于本案权利要求限定的保护范围内。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1