接近传感器的制作方法

文档序号:17298117发布日期:2019-04-03 04:37阅读:194来源:国知局
接近传感器的制作方法

本发明涉及一种接近传感器。



背景技术:

在工厂自动化(factoryautomation,fa)的技术领域,利用有接近传感器,所述接近传感器将检测体的有无或距检测体的距离作为检测结果进行输出。关于接近传感器提出有多种检测方式,例如在高频振荡式接近传感器中,是从一次线圈放射高频,并基于二次线圈(有时与一次线圈共通)产生的波形的变化,来进行检测。

关于此种接近传感器,例如在日本专利特开平05-218845号公报(专利文献1)公开有以下构成:为了相应于希望的作动距离来调整接近开关,而搭载编程单元(programmingunit)。

此外,众所周知,接近传感器根据周围温度变化而其检测特性会受到影响。例如,日本专利特开平01-233913号公报(专利文献2)中公开了一种学习型温度补偿电路。

[现有技术文献]

[专利文献]

[专利文献1]日本专利特开平05-218845号公报

[专利文献2]日本专利特开平01-233913号公报



技术实现要素:

[发明欲解决的课题]

存在提高接近传感器的检测精度、或者扩大接近传感器的可检测范围等需求。在日本专利特开平05-218845号公报(专利文献1)公开的构成中,虽然能够设定各个接近开关的作动距离,但只靠这样的构成并不能满足如上所述的需求。

日本专利特开平01-233913号公报(专利文献2)虽然能够利用温度补偿电路来提高检测精度,但是无法降低因制造工序、零件特性的偏差的影响。

本发明的目的之一在于提供一种能够提高检测精度或扩大可检测范围的接近传感器。

[解决课题的手段]

根据本发明的一实施方式,提供将检测体的有无或位置作为检测结果进行输出的接近传感器。接近传感器包含:检测部,包含检测线圈及电容器;振荡电路,对检测部进行激振;模拟数字变换电路,对检测部产生的信号变化进行检测,将表示检测出的信号变化的数字信号进行输出;温度检测部,对接近传感器的壳体内的温度进行检测;存储部,将接近传感器固有的特性参数预先储存;以及控制运算部,通过对来自模拟数字变换电路的数字信号进行处理,算出表示距检测体的距离的信号,并使用所述存储部中储存的特性参数,对算出的所述信号进行补偿,然后作为检测结果进行输出。

优选为,接近传感器还包含接口部,所述接口部将表示温度检测部检测出的温度的信号向外部输出。

更优选为,接口部受理被写入所述存储部的特性参数。

更优选为,存储部包含能够再写入的非易失性存储装置,写入由所述接口部受理的特性参数。

优选为,温度检测部包含第一温度传感器和第二温度传感器,所述第一温度传感器和控制运算部配置在同一基板上,所述第二温度传感器配置在比第一温度传感器更靠近检测部的位置上。

优选为,所述特性参数是一次系数。

优选为,控制运算部基于检测线圈的两端产生的电压波形,算出相当于检测线圈的电导(conductnnce)的大小的值。

[发明的效果]

根据本发明的实施方式,可提供能够提高检测精度或扩大可检测范围的接近传感器。

附图说明

图1是本实施方式相关的接近传感器的立体图。

图2是图1所示的接近传感器的从a-a线箭头方向看的截面图。

图3是表示构成本实施方式相关的接近传感器的处理电路的构成例的框图。

图4(a)、图4(b)、图4(c)是用来对本实施方式相关的接近传感器的动作原理进行说明的图。

图5是表示本实施方式相关的接近传感器的主电路的功能构成的示意图。

图6(a)、图6(b)是用来对检测特性变化中产生的检测特性的温度变化及针对温度变化的补偿进行说明的图。

图7是用来对本实施方式相关的接近传感器的特性参数的决定方法进行说明的示意图。

图8是表示图7所示的设定装置的硬件构成的一个例子的示意图。

图9是表示包含本实施方式相关的接近传感器的特性参数的决定及设定的制造方法的处理顺序的流程图。

图10是表示本实施方式相关的制造系统的设定装置中储存的收集数据的数据结构的一个例子的图。

[符号的说明]

1:接近传感器;

2:主体部;

4:引线;

6:壳体;

8:检测面;

10:垫片;

12、14:螺母;

16:检测线圈;

17:电容器;

18:铁氧体磁芯;

20:处理电路;

22:检测部;

30:主电路;

32:控制运算电路;

34:振荡电路;

36:a/d变换电路;

38:内部温度传感器;

40:存储部;

42:特性参数;

44:外部温度传感器;

50:电源电路;

60:保护电路;

62:接口电路;

82:电导运算处理部;

84:补偿部;

86:阈值处理部;

100:制造系统;

200:设定装置;

202:处理器;

204:光学驱动器;

205:记录介质;

206:主存储装置;

208:网络控制器;

210:总线;

212、214:通讯控制器;216:输入部;

218:显示部;

220:二次存储装置;

222:数据收集程序;

224:特性参数决定程序;

226:特性参数设定程序;

228:收集数据;

300:恒温槽;

302:槽内温度传感器;

304:信号变换装置;

310:端子台;

312:集线装置;

314:控制装置;

2280:表;

2281:通道编号;

2282:识别编号;

2283:槽内温度;

2284:壳体内温度;

2285:检测值;

m:中心軸;

w:检测体。

具体实施方式

一边参照附图,一边详细说明本发明的实施方式。另外,关于图中的相同或相当部分,标注相同符号,不重复其说明。

<a.接近传感器的构成>

首先,说明本实施方式相关的接近传感器1的构成。本实施方式相关的接近传感器1将检测体w的有无或位置作为检测结果输出。作为检测体w假设是金属等导电性物体。

图1是本实施方式相关的接近传感器1的立体图。图2是图1所示的接近传感器1的从a-a线箭头方向看的截面图。

参照图1,接近传感器1具有主体部2和引线4,所述引线4连接于主体部2。接近传感器1中还可以安装螺母12、螺母14及垫片10,所述垫片10配置在螺母12和螺母14之间。

主体部2具有筒状壳体6和圆形检测面8,所述圆形检测面8配置在所述壳体6的一端。检测面8也可以作为嵌入壳体6的盖(cap)的一部分而构成。在壳体6的表面,形成有螺母12、螺母14用的螺纹槽。而且,也可以在主体部2上配置未图示的动作显示灯等。

螺母12、螺母14及垫片10用于将主体部2安装到装置等的支撑部件。例如,通过将安装配件(例如l字状配件)的一部分夹入螺母12与螺母14之间,可以将主体部2固定于支撑部件。

参照图2,在主体部2的壳体6内,具有检测线圈16、铁氧体磁芯18及处理电路20,所述处理电路20在基板上配置有元件。在壳体6内填充树脂,从外部进行密封。

检测线圈16是使用环状或大体环状的线圈。以检测线圈16的实质的中心位于壳体6的中心軸m上的方式构成。检测线圈16和处理电路20电连接。处理电路20经由引线4接受电力供给,并将检测结果等向外部输出。

还可以在检测线圈16附近,配置外部温度传感器44。将外部温度传感器44检测出的温度向处理电路20输出。

另外,在图1中表示的构成是引线4直接连接于主体部2,但也可以用可装卸连接器将两者之间连接。此外,作为用来将主体部2配置于规定位置的构成,不仅可使用如图1所示的利用螺母12、螺母14及垫片10的构成,还可以使用任意支撑部件。依照本实施方式的接近传感器1主要在主体部2具有不同于以往技术的构成,向支撑部件的安装方式等可以采用任意结构。

<b.处理电路的构成>

接下来,对构成接近传感器1的处理电路20的构成例进行说明。图3是表示构成本实施方式相关的接近传感器1的处理电路20的构成例的框图。

参照图3,处理电路20包含主电路30、接口电路62及保护电路60。主电路30连接于检测部22,所述检测部22包含检测线圈16及电容器17。

主电路30使检测线圈16振荡,并对检测线圈16的振荡状态进行监视。更具体来说,主电路30包含控制运算电路32、振荡电路34、模拟数字变换电路(下面也记作“a/d(analogtodigital)变换电路”)36、内部温度传感器38、存储部40、及电源电路50。

控制运算电路32是在处理电路20中执行主要处理的电路。更具体来说,控制运算电路32对振荡电路34输出振荡控制信号,并接受来自a/d变换电路36的检测信号(数字信号)输入,且执行以下处理:检测检测体w的有无和/或检测距检测体w的距离。此时,控制运算电路32参照内部温度传感器38和/或外部温度传感器44检测出的温度、及存储部40中储存的特性参数42,对检测部22的电气特性的温度相依性进行补偿。

在本实施方式中,作为特性参数42,储存各个接近传感器1的固有值。即,在存储部40中预先储存接近传感器1固有的特性参数42。关于此种特性参数42的决定处理及使用特性参数42的补偿处理将在下文叙述。

如上所述,控制运算电路32通过对来自a/d变换电路36的数字信号进行处理,算出表示距检测体w的距离的信号,并使用存储部40中储存的特性参数42,对算出的所述信号进行补偿,然后作为检测结果进行输出。

振荡电路34依照来自控制运算电路32的振荡控制信号,产生高频激振电流,对检测部22进行激振。来自振荡电路34的激振电流的频率是考虑检测部22的谐振频率等进行决定的。

检测部22包含检测线圈16及电容器17,所述电容器17和检测线圈16并联连接。检测部22利用检测线圈16的l分量及电容器17的c分量构成lc并联谐振电路(lc储能电路(tankcircuit))。通过使振荡电路34激振,若不存在检测体w,则检测部22的lc并联谐振电路会变成谐振状态。另外,在图3中,为了便于说明,表示的是检测线圈16及电容器17的并联电路,但并不限定于此,只要是包含检测线圈16的谐振电路,就可以采用任意电路。

a/d变换电路36对检测部22的两端产生的电压(模拟信号)进行a/d变换,输出数字信号。将a/d变换电路36输出的数字信号提供给控制运算电路32。即,a/d变换电路36对检测部22产生的信号变化进行检测,并将表示检测出的信号变化的数字信号进行输出。

存储部40是能够再写入的非易失性存储装置,例如使用电可擦可编程只读存储器(electricallyerasableprogrammableread-onlymemory,eeprom)等。存储部40中除了储存特性参数42外,还储存控制运算电路32执行处理时需要的程序及数据。

在接近传感器1中设有温度检测部,所述温度检测部对接近传感器1的壳体6内的温度进行检测。

更具体来说,将作为温度检测部的一个例子的内部温度传感器38和控制运算电路32配置在同一基板上(第一温度传感器)。通过将内部温度传感器38和控制运算电路32一起作为主电路30的一部分进行安装,可以降低温度检测部的配置相关的成本。

而且,将作为温度检测部的另一个例子的外部温度传感器44配置在比内部温度传感器38更靠近检测部22的位置上。即,外部温度传感器44配置在接近传感器1的壳体6内的不同于处理电路20的位置上。外部温度传感器44优选配置在远离电源电路50等发热源、且靠近检测部22的位置上。外部温度传感器44也可以为了降低处理电路20所含的电源电路50等带来的发热影响,并以更高精度测定检测部22的温度而配置。

作为内部温度传感器38和/或外部温度传感器44,例如可以使用热敏电阻(thermistor)、含有铂等的测温电阻体、或热电偶。

另外,也可以无需安装内部温度传感器38及外部温度传感器44的两者,而是只安装其中任意一个温度传感器。

下面,将温度检测部(内部温度传感器38和/或外部温度传感器44)检测的温度统称为“壳体内温度”。

电源电路50从外部电源接受电力供给,产生用来驱动主电路30及周边电路的电力。电源电路50采用例如包含开关调节器(switchingregulator)的电路。

接口电路62是用来在主电路30和外部装置之间居中进行数据交换的电路,例如将控制运算电路32中算出的检测结果向外部装置输出,并将来自外部装置的控制信号提供给控制运算电路32。

此外,接口电路62将表示温度检测部(内部温度传感器38及外部温度传感器44)检测出的温度的信号向外部输出。接口电路62还受理被写入存储部40的特性参数42。即,存储部40中写入有由接口电路62受理的特性参数。关于这些表示温度的信号及特性参数42的交换将在下文叙述。

保护电路60对可能侵入经由构成引线4的各信号线传输的信号的电涌、噪声等进行抑制。

另外,也可以将未图示的显示装置等和接近传感器1连接。这种情况下,也可以从处理电路20对显示装置提供控制信号。

例如,主电路30可以使用专用集成电路(applicationspecificintegratedcircuit,asic)等进行封装化。处理电路20的安装方式并无特别限定,可以采用任意的安装方式。

<c.动作原理>

接下来,说明本实施方式相关的接近传感器1的动作原理。

在动作状态下,是利用接近传感器1的处理电路20的振荡电路对检测线圈16进行激振。利用振荡电路的激振对检测线圈16供给高频激振电流,由此从检测线圈16产生高频磁场。另一方面,在检测线圈16产生的高频磁场中若有作为金属物体的检测体w接近,就会因电磁感应现象而在检测体w中流动感应电流,检测体w内会产生热损耗(电阻损耗)。

因检测体w产生的热损耗变大,振荡电路对检测线圈16的振荡状态的影响变大,振荡振幅会衰减、或不能维持振荡本身。基于此种振荡状态的变化,可以检测检测体w的有无、或距检测体w的距离。

图4(a)、图4(b)、图4(c)是用来对本实施方式相关的接近传感器1的动作原理进行说明的图。图4(a)是当接近传感器1的可检测范围内不存在检测体w时,由主电路30的a/d变换电路36检测的检测信号的时间波形的一个例子。如图4(a)所示,当接近传感器1的可检测范围内不存在检测体w时,检测部22处于振荡状态。

图4(b)及图4(c)是当接近传感器1的可检测范围内存在检测体w时,由主电路30的a/d变换电路36检测的检测信号的时间波形的一个例子。可知图4(b)所示的时间波形虽然维持振荡状态,但其振幅相比图4(a)所示的振荡波形来说,振幅变小。图4(c)所示的时间波形对应于检测体w更靠近接近传感器1的状态。图4(c)所示的时间波形表示不再维持振荡状态。

如图4(a)~图4(c)所示,因检测体w接近接近传感器1,而检测部22的振荡状态发生变化。即,可以基于检测部22的振荡状态的变化,来检测检测体w的有无或距检测体w的距离。

<d.检测处理及温度补偿>

接下来,说明本实施方式相关的接近传感器1的检测处理及温度补偿。

图5是表示本实施方式相关的接近传感器1的主电路30的功能构成的示意图。参照图5,利用a/d变换电路36将检测部22(包含检测线圈16及电容器17,参照图3)的两端产生的电压值变换成数字值进行输出。

主电路30中作为可进行数值运算的模块而包含电导运算处理部82、补偿部84、及阈值处理部86。

电导运算处理部82基于从a/d变换电路36输出的电压值的时间变化,算出检测线圈16的电导的大小。即,电导运算处理部82基于检测线圈16的两端产生的电压波形,算出相当于检测线圈16的电导的大小的值。所述电导的大小表示检测线圈16中电流的流动容易度。若因检测体w接近检测部22,则检测部22中流动的感应电流相对变大,则检测线圈16自身难以流动电流,结果,检测线圈16的电导变小。即,表示电流向检测线圈16的流动困难度。

作为电导的算出方法,例如可使用检测部22的两端产生的振幅和基准振幅的比等来算出。或者,还可以基于检测部22的两端产生的电压的时间变化(振幅及相位)来算出。

下面,将从电导运算处理部82输出的电导的算出结果,记载为表示距离(distance)的“dist”。距离输出dist的大小和电导的算出结果成比例。即,距离输出dist表示检测部22和检测体w的距离的大小。

补偿部84对依赖于检测部22产生的温度的检测特性的变化进行补偿。更具体来说,补偿部84基于存储部40中储存的特性参数42,对距离输出dist进行补偿。也将从补偿部84输出的补偿距离记载为“distcomp”。

例如,可以将特性参数42设为一次系数k,将α、β设为预先规定的常数,按照如下(1)式算出补偿距离输出distcomp。

distcomp=k(dist+α)+β…(1)

另外,温度补偿处理并不限于所述数式,可以采用任意数式。而且,特性参数42也并不限于一维常数,还可以采用多维常数。此外,也可以反映内部温度传感器38检测出的温度来算出补偿量。

在本实施方式相关的接近传感器1中,存储部40中作为特性参数42而储存有各个接近传感器1的固有值。通过采用各个接近传感器1的固有的特性参数42,即便检测部22之间检测特性变化出现偏差时,也能实现适合各个接近传感器1的补偿。

补偿距离输出distcomp可以直接作为表示距检测体w的距离(位置)的检测结果进行输出,也可以输入阈值处理部86经二值化处理,将结果作为表示检测体w的有无的检测结果进行输出。

阈值处理部86对比来自补偿部84的补偿距离输出distcomp及预先规定的阈值,如果补偿距离输出distcomp低于阈值,就输出表示检测体w存在的检测结果。

图6(a)、图6(b)是用来对检测特性变化中产生的检测特性的温度变化及针对温度变化的补偿进行说明的图。图6(a)、图6(b)中表示检测距离相对于温度的变化率的一个例子。理想的是,无论温度如何检测距离的变化率均为零。

图6(a)中表示例如一接近传感器1的检测线圈16(线圈1)产生的检测特性的温度变化、及另一接近传感器1的检测线圈16(线圈2)产生的检测特性的温度变化的一个例子。如图6(a)所示,即便制造条件等相同,电磁特性也难以完全一致。

因此,即便使用相同的补偿参数,也无法使补偿后的检测特性一致。所以,此种检测特性的偏差成为阻碍检测精度提高或可检测范围扩大的主因素。即,检测处理需要在检测特性存在偏差的前提下进行,精度不得不降低。

相对于此,本实施方式相关的接近传感器1使用各个接近传感器1的固有的特性参数42进行补偿。通过使用此种各个接近传感器1固有的特性参数42,如图6(b)所示,例如对线圈1利用线圈1固有的特性参数1进行补偿,对线圈2利用线圈2固有的特性参数2进行补偿。

如图6(b)所示,通过采用各个接近传感器1固有的特性参数42,补偿后的各自的检测特性变得大体相同。结果,能够使温度补偿后的检测特性一致,因此可以缩小检测特性偏差带来的容限(margin),进一步提高检测精度及检测灵敏度。结果,可以提高检测精度或扩大可检测范围。

<e.特性参数的决定(制造方法)>

接着,说明用来决定本实施方式相关的接近传感器1中储存的特性参数42的系统构成及处理顺序等。此种处理可以作为接近传感器1的制造工序的一部分来实施。

在本实施方式中,是使接近传感器1的周围温度实际地发生变化,并测定因周围温度变化产生的接近传感器1的距离输出dist,基于所述测定值来决定特性参数42的值。基本上来说,接近传感器1为工业产品,相同种类的产品被大量制造。因此,实际上很难逐个测定接近传感器1,对多个接近传感器1同时进行测定,对各个接近传感器1决定特性参数42的值。

(e1:特性参数决定系统)

图7是用来说明本实施方式相关的接近传感器1的特性参数的决定方法的示意图。参照图7,接近传感器1的制造系统100决定一个或多个接近传感器1的特性参数。

具体来说,制造系统100包含设定装置200、恒温槽300、槽内温度传感器302、信号变换装置304、端子台310、集线装置312及控制装置314。

设定装置200基于来自一个或多个接近传感器1的测定结果(壳体内温度及检测值)及槽内温度,算出各个接近传感器1的特性参数,并将算出的特性参数设定给各个接近传感器1。

图8是表示图7所示的设定装置200的硬件构成的一个例子的示意图。作为一个例子,本实施方式相关的设定装置200使用符合通用架构的硬件(例如通用计算机)执行程序而实现。

参照图8,设定装置200包含cpu或mpu等处理器202、光学驱动器204、主存储装置206、网络控制器208、通讯控制器212、通讯控制器214、输入部216、显示部218及二次存储装置220。这些组件是经由总线210而连接。

处理器202将二次存储装置220中储存的各种程序读出,在主存储装置206中展开并执行,由此实现如后所述的各种处理。

二次存储装置220由例如硬盘驱动器(harddiskdrive,hdd)或固态驱动器(solidstatedrive,ssd)等构成。二次存储装置220中储存着数据收集程序222、特性参数决定程序224及特性参数设定程序226,其中,所述数据收集程序222用来收集来自一个或多个接近传感器1的数据,所述特性参数决定程序224用来基于收集数据对接近传感器1决定特性参数,所述特性参数设定程序226用来将决定的特性参数设定给接近传感器1。二次存储装置220中还可以储存操作系统(operatingsystem,os)及其它必要程序。此外,二次存储装置220中,在决定特性参数42时还储存收集数据228。

设定装置200具有光学驱动器204,从非临时储存着程序的计算机可读记录介质205(例如数字多功能光盘(digitalversatiledisc,dvd)等光学记录介质),读出储存在其中的程序,并安装到二次存储装置220等。

设定装置200执行的各种程序可以经由计算机可读记录介质205进行安装,但也可以从网络上的服务器装置等下载的方式进行安装。而且,本实施方式相关的设定装置200提供的功能有时是利用os提供的模块的一部分来实现的。

输入部216由键盘、鼠标等构成,受理用户操作。显示部218由显示器、各种指示器(indicator)、打印机等构成,输出来自处理器202的处理结果等。

网络控制器208对经由任意网络和其它装置之间的数据交换进行控制。

通讯控制器212经由控制装置314及集线装置312(参照图7),在一个或多个接近传感器1之间交换数据。通讯控制器214经由信号变换装置304取得槽内温度传感器302检测出的槽内温度。

图8中表示了处理器202执行程序来提供必要功能的构成例,但也可以将这些提供功能的一部分或全部使用专用硬件电路(例如asic或fpga等)进行安装。

再次参照图7,恒温槽300可以将一个或多个接近传感器1收纳到槽内,并改变槽内的温度。即,恒温槽300是提供温度可变环境的装置的一个例子。恒温槽300的槽内温度可以按照预先设定的样式变化,也可以按照来自设定装置200的指令变化。

在恒温槽300的槽内配置一个或多个槽内温度传感器302,对槽内温度进行检测。将槽内温度传感器302的检测结果向信号变换装置304输出。信号变换装置304将来自槽内温度传感器302的检测结果变换成规定的数据格式,以便向设定装置200发送。另外,当槽内温度传感器302具有通讯功能时,也可以省略信号变换装置304。

在恒温槽300的槽内,一个或多个接近传感器1是由未图示的支架(rack)或固定部件支撑。此外,为了使周围温度均匀地变化,接近传感器1优选以预先规定的间隔均等地配置。

将从一个或多个接近传感器1延伸的信号线连接于端子台310。端子台310上还连接着集线装置312,将接近传感器1和集线装置312之间电连接。集线装置312是将和多个接近传感器1的信号交换集中实施的装置,由通讯模块及多工器(multiplexer)等构成。

控制装置314配置在集线装置312和设定装置200之间,根据来自设定装置200的要求,将通过集线装置312收集的信号向设定装置200输出,并将来自设定装置200的设定值等通过集线装置312提供给接近传感器1等。

另外,当集线装置312可以和设定装置200直接通讯时,并非必须配置控制装置314。

在图7所示的制造系统100中,作为一个例子,利用通用的工业用控制器,例如作为控制装置314可以采用plc(可编程控制器)。这种情况下,可以通过连接于plc的现场网络来连接集线装置312。而且,集线装置312和各个接近传感器1之间也可以通过现场网络来连接。

作为此种现场网络,可以使用io-link、cc-link、devicenet、ethercat(注册商标)、ethernet/ip等。

接近传感器1和集线装置312之间虽然可以通过传输模拟信号的信号线来连接,但通过使用现场网络,可以使双向通讯更容易化。

(e2:特性参数决定及设定顺序)

接下来,说明用来决定及设定本实施方式相关的接近传感器1中储存的特性参数42的处理顺序。

图9是表示包含本实施方式相关的接近传感器1的特性参数的决定及设定的制造方法的处理顺序的流程图。图9所示的步骤的一部分可以通过让设定装置200的处理器202执行程序来实现。

参照图9,在恒温槽300的槽内配置一个或多个接近传感器1,并通过端子台310和集线装置312电连接(步骤s100)。即,接近传感器1配置在温度可变环境中。

受到测定开始的触发(步骤s102),使恒温槽300的槽内变成预先规定的温度(步骤s104)。若恒温槽300的槽内温度稳定在预先规定的温度(步骤s106中,是),设定装置200就会从恒温槽300的槽内配置的一个或多个接近传感器1分别取得壳体内温度及检测值并进行储存(步骤s108)。

判断是否实施了预先指定次数的测定(步骤s110),若并未实施预先指定次数的测定(步骤s110中,否),则重复执行步骤s104以下的处理。

以这种方式,将接近传感器1的环境分别设定成多种不同温度,并将各温度下由接近传感器1的温度检测部(内部温度传感器38和/或外部温度传感器44)检测的壳体内温度与控制运算电路32输出的检测结果相关联地储存。

另一方面,若已经实施了预先指定次数的测定(步骤s110中,是),设定装置200就基于储存的壳体内温度及检测值,决定一个或多个接近传感器1的各者的特性参数42(步骤s112)。即,基于储存的温度及检测结果,决定对象接近传感器1固有的特性参数42。

最后,向对应的接近传感器1设定决定的特性参数42(步骤s114)。即,执行将决定的特性参数42设定给对象接近传感器1的处理。

按照如上所述的处理顺序,完成特性参数42的决定及向接近传感器1的设定。

从接近传感器1取得的壳体内温度及检测值的组合数,是根据如后所述的特性参数的近似式的次数来决定。

(e3:特性参数决定处理)

接下来,说明用来决定本实施方式相关的接近传感器1中储存的特性参数42的处理。

特性参数42用来降低各个接近传感器1表现出的检测特性的温度相依性,如所述图6(b)所示,特性参数42是以不依赖于温度而将检测距离变化率维持固定的方式决定。

更具体来说,设层内温度tn、基准温度t0、周围温度和内部温度传感器38检测的壳体内温度的温度差δt,以如下的(2)式成立的方式,拟合变量a2、变量a1、变量a0。

f(tn)=a2(tn-t0+δt)2+a1(tn-t0+δt)+a0=k(固定)

即,通过使用从对象接近传感器1取得的壳体内温度和检测值(例如距离输出dist本身、或距离输出dist的变动量)的多个组合,来拟合所述(2)式,可以决定变量a2、变量a1、变量a0,可以将根据分别决定的变量a2、变量a1、变量a0算出的系数k作为特性参数42来决定。

另外,温度差δt中使用的周围温度可以使用由槽内温度传感器302检测的槽内温度。此外,当配置了多个槽内温度传感器302时,可以基于位于醒目位置周围的多个槽内温度传感器302分别检测出的温度、以及醒目位置和所述多个槽内温度传感器302之间的距离,来推断醒目位置的周围温度。

此外,所述(2)式只不过是一个例子,可以用任意函数对检测部22(检测线圈16)的检测特性的温度相依性进行近似。而且,近似函数的变量值只要至少有接近传感器1的内部温度传感器38和/或外部温度传感器44检测的壳体内温度以及槽内温度传感器302检测的槽内温度的任一个参与即可。不过,不单独使用接近传感器1的内部温度传感器38检测的壳体内温度,而是将槽内温度传感器302检测的槽内温度或外部温度传感器44检测的壳体内温度也作为信息提供,可以进一步提高精度。

(e4:收集数据)

接下来,说明为了决定本实施方式相关的接近传感器1中储存的特性参数42而收集的收集数据228的一个例子。

图10是表示本实施方式相关的制造系统100的设定装置200中储存的收集数据228的数据结构的一个例子的图。

参照图10,例如收集数据228可以将从各个接近传感器1收集的数据以各个表2280的形式储存。各个表2280中可以包含通道编号2281及识别编号2282,其中,所述通道编号2281表示对象接近传感器1连接于集线装置312的哪个通道,所述识别编号2282是从对象接近传感器1收集的。

表2280中依次储存着改变槽内温度分别测定的结果。更具体来说,表2280包含槽内温度2283、壳体内温度2284、检测值2285三栏。恒温槽300的槽内温度为预先规定的温度,若数据收集条件成立,则获取当时的槽内温度、壳体内温度、检测值作为一个记录。若收集了多个此种槽内温度、壳体内温度、检测值的组(记录),则数据收集的处理完成。表2280的生成数量和对象接近传感器1的数量相同。

基于此种收集数据228,决定各个接近传感器1的特性参数42。可以将决定的特性参数42的值储存到对应的表2280。

可以将表2280的内容发送给未图示的制造管理系统,作为用来管理各个接近传感器1的制造状况(追踪能力)的信息使用。

<f.总结>

本实施方式相关的接近传感器1通过使用各固有的特性参数42,利用数字处理实施温度校正,提供更稳定的感测性能。以往的接近传感器中,一律使用固定参数进行温度校正,因制造工序、零件特性偏差(尤其是检测特性的温度变化的偏差),导致检测线圈16产生的电导的大小出现变化,从而引起产品状态下输出的检测距离发生变动。此种检测距离的变动妨碍了可检测范围的长距离化。

如上所述,本实施方式相关的接近传感器1通过采用固有的特性参数42及数字处理,可以使检测距离产生的变动因素最小化,更容易实现可检测范围的长距离化。

本实施方式相关的接近传感器1中,是在制造工序内分开测定温度特性,并基于其测定结果,分别决定固有的特性参数42。而且,将分别决定的特性参数42写入对应的接近传感器1。

本实施方式相关的接近传感器1中,作为主体部2的一部分也可以安装内部温度传感器38和/或外部温度传感器44。通过使用此种内部温度传感器38或外部温度传感器44,在对接近传感器1决定特性参数时,可以更容易地收集温度信息。

通过使用外部温度传感器44来测定外部温度,可以避免温度测定值受到来自主体部2内的热源(例如电源电路50等)的热而发生变化的事态。即,通过使用外部温度传感器44,可以降低热源的影响,从而更准确地测定作为测定对象物的检测线圈16的温度。

以此方式,本实施方式相关的接近传感器1可以和外部装置之间进行内部温度传感器38和/或外部温度传感器44检测出的温度等信息的通讯。

本实施方式相关的接近传感器1中,是在eeprom等能够再写入的非易失性存储装置中保存特性参数42,因此也可以容易地进行特性参数42的重写等。

在制造本实施方式相关的接近传感器1的工序中,决定特性参数42时,可以将决定用测定值等和特定对象接近传感器1的信息相关联地储存,因此,可以对各个接近传感器1确保追踪能力。

应认识到此次公开的实施方式均为例示而非限制。本发明的范围并非由所述说明表示,而是由权利要求表示,且意图包含和权利要求均等含义及范围内的所有变更。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1