一种基于滑动电弧放电原理的等离子发生器的制造方法

文档序号:9671651阅读:1254来源:国知局
一种基于滑动电弧放电原理的等离子发生器的制造方法
【技术领域】
[0001]本发明涉及一种等离子发生器,特别是涉及一种用于巴氏合金、搪瓷、陶瓷、非晶合金等材料的基于滑动电弧放电原理的等离子发生器。
【背景技术】
[0002]工业装置常有一些材料需要在表面制备一层特殊功能的材料,如支撑轴承,需要在表面制备一层巴氏合金材料、流体输送管道需要在内表面制备一层特殊的非晶材料(如搪瓷等),以实现功能需要,由于这些材料熔点低、易氧化,而且对温度很敏感,过热会导致其组织劣化,同时长时间高温也会使材料出现严重的偏析类组织缺陷,而现有方法往往存在火焰温度过高、或者火焰性质非惰性等原因,影响了熔敷材料的组织性能,甚至造成材料失效。
[0003]传统的热平衡等离子体与非平衡等离子体不能同时满足化学应用所需的高能量及高非平衡性,即同时拥有较高的非平衡及电子温度、电子密度。因此寻求一种综合两者的等离子体很有实际意义。目前研究较多且被认为最具工业应用前景的低温等离子体为介质阻挡放电和电晕放电,然而它们也有各自的缺陷,如:电晕放电的电子密度、电场强度和放电能量分布不均匀,局部放电处理面积太小,并且电极几何形状会影响处理效率;而介质阻挡放电对放电过程中气体有很明显的加热,能量利用率有待于提高,同时电极光滑度要求较高并且这两种放电形式的共同特点在于通过高电压低电流抑制电弧,从而避免产生大量光和热能损失,因此具有较高的能量利用率;然而,也抑制了反应器的能量输入,因此在一些情况下不能满足工业应用废气大流量高效率的处理要求。滑动弧低温等离子体综合了热平衡等离子体与非平衡等离子体的优点,利用独特的反应器结构,可以满足同时产生高电子温度和密度的要求。理论研究表明,是一种能量利用率很高的等离子体发生方式。滑动弧技术操作灵活,不受压力限制,而且反应器结构简单,操作成本较低。目前滑动弧光放电已经在大规模废气清理、水处理以及各种表面处理等方面取得了较好的效果,成为等离子体研究的热点之一。
[0004]滑动弧放电产生一种周期性摆动的大气压下非平衡等离子体。典型的平面双电极滑动弧放电装置和现象如下:在平面上垂直布置着一对电极,电极的两边通过变压器加上高压,两个电极的对称轴下布置一个喷嘴,气体不断地从喷嘴中喷出、在电极之间的最短距离处气体击穿开始放电。由于气体的推动,电弧也随之向下移动,同时电弧也随之被拉长。当电弧长度达到电能无法继续维持的时候,电弧熄灭,随之新的电弧又会在两电极之间最小的间距处产生,从而产生一个周而复始的循环放电。以上过程形成稳定的滑动弧放电等离子体区域。
[0005]对于直流滑动弧放电,在电极击穿气体产生电弧后的初始阶段,若电流足够大时滑动弧会处于局域热力平衡阶段。随着滑动弧的不断增长,这样的热力学平衡会被破坏,当滑动弧的长度超过了临界值的时候,等离子体的热损失超过电源提供的能量,等离子体不能继续维持一个局域热力学平衡状态,在电场的作用下放电会快速进入了一个非平衡状态。此时,放电等离子体伴随着气体迅速降温,而等离子体电导率由于电场的作用,仍然维持在很高值,在这个区域的单位热损失将远远小于平衡状态下的热损失,此时的等离子体成为了非平衡等离子体。由于滑动弧放电过程兼具热等离子体和低温等离子体阶段,因此滑动弧放电等离子体有以下显著特点:
[0006](1)由于滑动弧放电过程的大部分能量(大于75?80%)消耗在非平衡等离子体阶段,整体仍表现出显著的低温等离子体特性,所以体现出比热等离子体更高的能量利用率;
[0007](2)相比于脉冲放电和电晕放电等低温等离子体发生方式,滑动弧放电可以在提供良好的反应选择性和能量转化率的同时,突破气压和能量输入的限制,从而通过电极传递更大的输入能量。

【发明内容】

[0008]本发明所要解决的技术问题是提供一种基于滑动电弧放电原理的等离子发生器,可以提供等离子焰流,而且可以根据不同材料实现焰流温度范围控制,解决了材料温度敏感性问题。
[0009]本发明解决其技术问题所采用的等离子发生器,包括阴极、阳极、工作气体通道和绝缘体,所述阴极和阳极通过绝缘体相互安装配合,工作气体通道的喷口位于阴极和阳极之间,所述阳极环绕在阴极周围,还包括阳极气体通道,所述阳极气体通道设置在阳极内部,阳极气体通道的出口设置在阳极末端以形成熔池保护气体喷出口。
[0010]进一步的是,所述工作气体通道和阳极气体通道通过同一进气口进气。
[0011]进一步的是,所述阴极上设置有进气通道,进气通道从阴极的起始端开始沿着阴极轴向延续,并最终连通至阳极气体通道和工作气体通道。阴极是由起始端的连接部位和后端的工作部位构成,进气通道不能设置在阴极的工作部位上,也就是进气通道仅在连接部位上设置。
[0012]进一步的是,所述绝缘体上设置有进气通道,进气通道连通至阳极气体通道和工作气体通道。
[0013]进一步的是,所述阴极的工作区呈圆锥形,其沿气流方向直径逐渐变小。
[0014]进一步的是,所述阳极的工作区呈圆柱管形,并且阳极与阴极同轴安装。
[0015]进一步的是,阳极气体通道的出口由多个通道孔组成,通道孔均匀分布在阳极末端环形端面上。
[0016]进一步的是,所述通道孔轴线与阳极末端环形端面的夹角为30?90度。
[0017]进一步的是,通道孔的数量为6?8个,直径0.5?2毫米。
[0018]本发明的有益效果是:采用大尺寸圆锥形中心阴极及内部气体通道设计实现了滑动电弧产生低温等离子目的,通过调整圆锥形中心阴极收敛角,控制电弧起弧和灭弧过程,从而实现焰流温度控制,通过设置在阳极内部气体通道,可以在等离子发生器工作时利用气体冷却阳极,从而有效的控制阳极的温度,同时,从阳极气体通道喷出的气体还能在等离子焰流周围建立起熔池的保护气氛,以保护功能材料免于受到空气的氧化,正是这样的结构特点,可以保证等离子发生器连续数小时的工作,能使大多数部件实现一次完成重熔,保证了功能层质量和性能。
【附图说明】
[0019]图1是本发明的结构示意图;
[0020]图2是本发明另一种实施方式的示意图;
[0021]图中零部件、部位及编号:阳极1、阴极2、绝缘体3、阳极气体通道4。
【具体实施方式】
[0
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1