光通信系统的制作方法

文档序号:7627149阅读:191来源:国知局
专利名称:光通信系统的制作方法
技术领域
本发明涉及一种光通信系统,尤其但不仅仅涉及一种包括互连的光通信环的光通信系统。而且,本发明还涉及操作这一系统的一种方法。此外,本发明还涉及在该系统中使用的一种接口。
常规的光通信系统包括通过光纤波导互连的节点。通过经波导传送光辐射在节点之间传输通信业务,用通信业务调制辐射。在本发明中光辐射被定义为从560纳米到2000纳米范围的自由空间波长内的电磁辐射,尽管1550纳米的自由空间波长实际上是这一范围的最佳部分。
每个节点可以将所接收的调制辐射转换成相应的电信号。而且,每个节点还可以将电信号转换成相应的调制光辐射,并将辐射发射到与之连接的波导中。如果需要,例如向与节点相连的客户机提供信号和从客户机接收信号用于在系统中传输,可以从节点输入和输出电信号。
常规光通信系统的例子包括在现有技术中被发现并将进行描述的接口。
在PCT公开专利申请PCT/SE96/01265中,描述了一种光交叉连接节点结构,它能够与多个光纤输入和输出链路对接,每个链路本身提供多个波分复用(WDM)信道。在所述结构的第一实施例中,输入链路被连接到一个光耦合器。可调光纤对和光波长转换器分别被连接到光耦合器的输出端口,并执行波长信道路由选择和在波长范围内切换,即不需要任何光空间开关。在所述结构的第二实施例中,另外一个输入波长转换器被连接到每个输入光纤链路以将每条链路上的多个波长信道转换成不同的非干扰波长。这种转换防止在与输入波长转换器相连接的光耦合器中的波长争用。可以通过模块化的方式添加新的光纤链路,而不会对先前存在的光交叉连接结构产生显著的影响。类似地,新的波长信道还可以被多路复用到现有光纤上以提供波长模块化而不需要重新配置节点。
在美国专利US 5 726 785中,描述了一种在光通信中使用的多路复用器。该多路复用器可以将WDM光辐射成分添加到一组现有的WDM光辐射成分中,现有成分的波长属于一组波长λ1到λN。而且,多路复用器还可以从该组现有成分中删除具有从上述波长组中选择的给定波长的至少一个WDM光成分。多路复用器包括至少一个环型器,具有一个光输入端口,用于接收该组现有WDM成分,和一个光输出端口;和在其一侧上连接到环型器的一个光选择装置。选择装置包括至少一个光感应布拉格光栅,该光栅与一个相应波长相关。该光栅可以有选择地在第一状态和第二状态之间切换。在第一状态中,该光栅辐射具有给定波长的一个WDM辐射成分和传送波长与给定波长不同的WDM辐射成分。在第二状态中,光栅传送所有的WDM辐射成分。提供用于控制选择装置的装置,用于使其在第一和第二状态间切换。而且,选择装置与用于添加和删除一个或多个WDM辐射成分的每个光环型器协同工作。因而,US 5 726785主要解决了选择路由WDM辐射成分的问题。
在欧洲专利申请EP 0 862 071 A1中,描述了一种光分支设备和一种光传输方法。在该申请中认为,在包含用于发送WDM辐射成分的一个光分支设备的一个光传输系统中,因为操作中的多个原因,辐射成分的数量可能变化或者辐射成分的强度可能变化。这一系统可以包括一个输出光放大器,用于补偿这种变化以获得基本恒定的输出功率。然而,因为辐射成分数量的变化,通过通常表示从最佳设备工作状态的偏离的这种补偿将修改其余每个成分的功率。因而在该专利申请中提供一种光分支设备,它包括两个光环型器和多个串行连接的光纤光栅。光栅连接在两个光环型器之间。每个光栅可以反射波长不同于所发送辐射成分的一个或多个辐射成分。如果一个故障或类似中断出现,该设备可以将与从包括该设备的第一节点所发射的辐射成分不同的一个或多个辐射成分转移到远离终端节点的一个附加节点,因而将通过第一节点传输的辐射成分保持在预定的功率级别上,并确保例如光放大器工作在它的最佳功能点上。因而,专利申请EP 0 862 071 A1涉及当成分数量在工作中动态地变化时选择地转移WDM辐射成分以维持光工作功率级别的问题。
在另一欧洲申请EP 0 926 853 A2中,描述了一种波长选择增加/删除多路复用器,用于从一个WDM光信号中添加和/或删除频谱分量。在该多路复用器中包括1×1和2×2光开关;或者单独使用或者与其它光元件结合使用以从其它频谱成分中分离出将删除的WDM频谱成分。这些开关被公开为微机电激励器,用于将一个反射设备放置在一个频谱成分的路径之内或之外,用于控制它在多路复用器中的路由选择。因而,专利申请EP 0 926 853 A2涉及解决在光通信系统中选择地进行WDM频谱分量路由选择的问题。
在英国专利申请GB 2 321 809 A中,描述了一种添加/删除多路复用器,用于在WDM光网络中连接主干和分支光纤波导。多路复用器将特定的载波波长λ1和λN从第一和第二干线输入馈送到第一、第二和第三干线和支线输出,从第三支线输入馈送到第一和第二支线输出。例如通过用作反射滤波器的光纤布拉格光栅来选择和通过环型器来发送WDM频谱成分。在这种发送中,可以通过泵激双向掺杂光纤放大器来放大频谱成分。因而,专利申请GB 2 321 809 A涉及WDM频谱成分路由选择和放大的问题。
在另一欧洲专利EP 0 720 408 A2中,描述了一种可调添加/删除光滤波器,它在两个输入WDM信号和两个输出WDM信号中之间提供任意的信道配置。该滤波器包括在每个WGR端口分支中通过2×2光开关连接的两个N端口波长光栅路由器(WGR)。该开关例如可以是能够在50毫秒内切换的光-机械开关。因而,专利申请EP0 720408A2涉及WDM信号频谱成分的选择路由。
在科学技术文献“具有波长转换的难题光网络分析”,Bononi和Castanon,1999年四月光波技术杂志17期4卷,描述了WDM频谱成分路由选择的一种普通分析。然而,在该文献中并未公开用于执行这种路由选择的实际的硬件。
在上述的常规系统中,其中的光辐射传播的波长量级通常在1550纳米。这一波长对应于大约200 THz的辐射频率,考虑奈奎斯特标准,即载波辐射的载波频率必须是被调制到载波辐射上的信号的最高频率的至少两倍以防止混叠和信号损失,理论上提供100 THz量级上的最大通信带宽。如上所述,作为一个常规惯例将常规系统中的辐射传播划分成频带,每个频带具有与之相关的承载信息的辐射;这种划分被称作WDM。
实际上,在常规系统中在每个节点上将光辐射转换成相应的电信号在理论上可以由这些系统提供的通信带宽上强加了一个严格的限制。这一带宽限制代表常规系统的一个严重的首要问题。
为了解决该首要问题,最近已经在理论上研究光孤粒子波在光系统中的传播。这种孤粒子波在经受可忽略的散射和损失的同时能够通过光波导在较长的距离上的传播。由于在常规光通信系统中出现的调制光辐射和相应电信号之间的频率转换,在常规光通信系统中使用孤粒子波传播是不可行的;这些转换使使用孤粒子传播获得的任何潜在优点无效。
本发明人认识到在光通信系统中尽可能多的在光域中执行处理和仅在绝对需要执行诸如信号再生的特定功能时才在光辐射和相应电信号之间进行转换以解决该首要问题是非常必要的。再生对于至少部分消除当光信号通过诸如100公里长的光纤的较长光纤传输时产生的弥散效应是必需的。因此,本发明人设计了一种用于通信系统的再生接口,该接口能够在尽可能多的执行光处理的同时提供灵活的通信业务的重新路由;至今试图提供在现有技术中因技术困难受挫的全光通信系统,尤其是实现全光可配置辐射路由。
而且,本发明人还认识到在常规通信系统中与因系统频带的低效使用产生的带宽限制有关的第二个问题。本发明人已经认识到还需要能够在频带之间在系统中重新分配通信业务以确保系统在通信业务高负载时能够在工作时提供它的全部通信带宽。
而且,本发明人已经认识到还非常需要能够在系统内重新分配通信业务的第三个问题,而不需要将承载信息的辐射转换成相应的电信号,这可能产生带宽限制。
因而,根据本发明的第一方面,提供一种光通信系统,包括(a)第一和第二光路径,用于引导划分成频带的承载信息的光辐射;(b)接口装置,用于有选择地从第一路径向第二路径传输对应于一个或多个频带的辐射分量,该接口装置包括频带选择转移装置和频带选择耦合装置,转移装置被包括在第一路径中和可操作地从第一路径转移对应于一个或多个频带的辐射分量以提供转移辐射,和耦合装置可操作地将在转移辐射中出现的一个或多个辐射分量耦合进第二路径。
其特征在于转移装置包括(c)频带选择滤波装置,用于将沿着第一路径传播的承载信息的辐射的至少一部分划分成空间上分离的光线,每个光线对应于一个相关频带的辐射;和(d)与每条光线相关的液晶衰减装置,用于选择性地引导对应于光线频带的辐射,被引导的辐射添加给提供给耦合装置的转移辐射。
本发明提供该系统能够解决上述第一、第二和第三问题中一个或多个的优点。
该系统能够将承载信息的辐射的选定部分从第一路径通过接口装置传输到第二路径,使用在接口装置中出现的光元件而不需要将系统中的辐射转换成相应的电信号。而且,该系统还能够提供从第一到第二路径的可重新路由的再生连接。而且,该系统能够进行频带切换通信业务的传送,和在系统内在路径之间选择性地重新发送频带转换通信业务。该系统通过使用液晶技术解决了一个或多个问题。
优选地,耦合装置包括(a)频带选择滤波装置,用于将转移辐射的至少一部分分离成空间分离的光线,每条光线对应于一个相关频带;和(b)与每条光线相关的液晶衰减装置,用于选择性地传输或转移对应于光线频带的辐射,从而选择性地提供输出到第二路径的辐射。
耦合装置的这样一种实施是方便的,因为该装置可以作为一个紧凑和低成本的单元从商品供应商处购买,例如从美国、加拿大和日本的专门光元件供应商处购买。
有利地,为了避免被添加在一起的相同频带的辐射导致一个冲突,第二路径包括频带选择衰减装置,用于衰减沿着第二路径传播的频带的辐射,耦合装置可操作地将从第一路径始发的辐射添加到衰减装置输出的辐射,衰减装置可操作地衰减沿着第二路径传播的在波长上与由耦合装置添加的辐射一致的频带的辐射。便利地,当实际上构建该系统时,最好实施衰减装置以便它包括(a)频带选择滤波装置,用于将沿着第二路径传播的辐射分离成空间分离的光线,每条光线对应于一个相关频带的辐射;和(b)与每条光线相关的液晶衰减装置,用于选择性发送或转移与该光线频带对应的辐射,从而选择性地提供辐射以添加给来自耦合装置的辐射以便继续沿着第二路径传播。
在通信系统中,一些频带的通信业务量负载比其它频带的负载高得多。因而,为了在频带之间均匀地分配业务负载,能够将通信业务从系统中的一个频带转换到另一个频带是便利地。因此,频带选择耦合装置最好包括频带切换装置,用于将在第一组转移辐射频带上传播的信息转移到输出给第二路径的第二组转移辐射中的频带。
频带切换装置以多种组成结构来实现。在第一结构中,频带切换装置包括频带选择装置,用于隔离转移辐射中一个选定频带的辐射,检测装置,用于将被隔离的辐射转换成相应的电信号,和一个用信号调制的光辐射源,可操作地生成承载信号的辐射,并且在与选定频带互相不同的一个频带上,所生成的辐射被输出给第二路径。第一结构实施是方便的,因为它利用了容易得到的光元件。
在第二种结构中,需要实现一种不折衷的系统带宽,转移装置、衰减装置和耦合装置对在光域中的承载信息的辐射操作,以将至少一部分辐射从第一路径耦合到第二路径,而不需要将任何一部分辐射转换成相应的电信号,再转换回相应的光辐射。因而,频带切换装置最好包括频带选择装置,用于隔离转移辐射中的选定频带的辐射,和基本上被偏置在其光激射阈值上的一个光辐射源,该辐射源能够受激于隔离的辐射以便用隔离辐射承载的信息调制由辐射源生成的受激辐射,受激辐射在与选定频带互相不同的一个频带上,该受激辐射用于输出给第二路径。
当在较长的距离上传输承载信息的辐射时,例如超过20公里,可能出现辐射衰减,这可以通过再生至少在部分上被校正。因而,耦合装置最好与再生装置协同工作以再生通过其传输的转移辐射。另外,在系统的其它部件中也可以有效地执行再生,即最好至少一条路径与再生装置协同工作以再生通过其传输的承载信息的辐射。
在该系统中,路径支持双向辐射传播是有利的,以在路径在其一个传播方向上出现错误时提供安全性,并且还能够在系统中更加均匀地分配通信业务。因而,第一和第二路径可操作地支持双向辐射传播是有益的,接口装置可操作地将在任一方向上沿第一路径传播的一个或多个频带的辐射耦合到用于在任一方向上传播的第二路径。
便利地,该系统包括一个或多个环形通信路径,例如多个相互连接的环形路径。该路径最好包括一个或多个线性路径和环形路径。
在一些情况下,最好能够将沿系统的一条路径来自一个方向的与一个或多个选定频带相关的通信业务按指令重新发送到另一个方向以分配通信业务,并实现从系统的发送节点到其接收节点的一条最短通信路径。因而,系统的至少一条路径可操作地支持双向辐射传播是有益的,至少一条路径包括重发装置,用于将一个或多个频带的辐射从辐射传播的第一方向耦合到沿着至少一条路径的辐射传播的第二方向,第二方向与第一方向相互相反。
根据本发明的第二方面,提供一种用于光通信系统的接口,包括(a)第一和第二光路径,用于引导划分成频带的承载信息的光辐射;该接口装置可操作地将对应于一个或多个频带的辐射从第一路径选择传输到第二路径,(b)频带选择转移装置和频带选择耦合装置,转移装置被包括在第一路径中和可操作地从第一路径转移对应于一个或多个频带的辐射以提供转移辐射,和耦合装置可操作地将在转移辐射中出现的一个或多个频带的辐射分量耦合进第二路径。
其特征在于转移装置包括(c)频带选择滤波装置,用于将承载信息的辐射的至少一部分划分成空间上分离的光线,每个光线对应于一个相关频带的辐射;和(d)与每条光线相关的液晶衰减装置,用于选择性地引导对应于光线频带的辐射,被引导的辐射添加到提供给耦合装置的转移辐射。
在本发明的第三方面中,提供一种将承载通信信息的辐射从根据本发明第一方面的系统的第一路径传输到第二路径的方法,该方法包括步骤(a)沿着第一路径将承载信息的辐射传播到系统的接口装置;(b)将辐射提供给接口装置的转移装置;(c)将在转移装置上接收的至少一部分承载信息的辐射分离成空间上分离的光线,每条光线对应于一个相关频带的辐射;(d)在相关液晶衰减装置上接收每条光线,并在对应于承载信息的辐射中的一个或多个频带的衰减装置上选择性地转移辐射以提供被转移的辐射;和(e)通过耦合装置将一个或多个转移辐射的频带的辐射耦合到第二路径。现在将参考附图仅通过例子描述本发明的实施例,在附图中

图1是根据本发明的光通信系统的示意图,包括多个互相耦合的双向通信环;图2是图1所示系统的第一种光接口,该接口连接在两个双向通信环之间并提供从一个环到另一个环的E-W方向连接;图3是在图2所示的光接口中包括的信道控制单元的示意图;图4是在图2所示的光接口中包括的再生放大器;图5是图1所示的系统的第二种类型的光接口,该连接提供双向环的相反方向光线回路之间的连接;图6是连接图1所示系统的两个通信环的第三种类型的光接口;图7是连接图1所示系统的两个通信环的第四种类型的光接口;和图8是围绕图1所示系统的一个接口的信道控制单元执行的波长切换。
现在参考图1,根据本发明的光通信系统一般用10表示。该系统10包括五个互相连接的双向光通信环20、30、40、50、60。环20、30、40、50、60的直径在10公里到100公里的范围内,并可操作地在国家和地区级上提供通信链路。环20、30包括中继器节点,例如中继器节点65,用围绕环20、30的交叉线表示。而且,环20通过接口70连接到环30。类似地,环30通过接口80连接到环40。环40分别通过接口90、100在它上面的第一和第二位置上连接到环50。类似地,环50分别通过接口110、120在它上面的第三和第四位置上连接到环60。接口70至120是类似的,并将在下文更详细地描述。
每个环20至60包括两个平行的光纤波导回路,第一光纤波导回路围绕该环在顺时针方向上传输光辐射,第二光纤波导回路围绕该环在逆时针方向上传输光辐射。在每个环中包括两个回路以确保在一个回路被损坏时,例如因为光纤断裂,该环可以继续工作。而且,两个回路使得能够在两个回路之间分配业务以确保系统100最佳地承载通信业务。
通信业务被调制到通过系统10传播的光辐射上。环20至60的每个光纤回路可操作地承载已调光辐射,该辐射包括对应于各32个通信信道的各32个已调辐射分量。用0.8纳米的波长差将每条信道与它的相邻信道隔离;这样一个波长差等于100 GHz的信道频率间隔。因而,每条光纤传输名义上为1550纳米波长的光辐射,它包括在实际上为25纳米的波长范围上扩展的32个信道。
现在将描述系统10的操作,从环20上的节点A向环60上的节点B传输通信业务;系统10能够在其中的其它节点之间进行通信,然而节点A和B在此用作一个例子。在节点A上接收一个电信号,它将其转换成与32个信道之一相关的相应的光辐射。该辐射从节点A通过中继器节点65传输到接口70,并从环30的中继器节点传输到接口80。该辐射从接口80沿着环40逆时针传播到接口100。接着,该辐射从接口100围绕环50的一部分传播到接口120,通过它传播到环60并环绕到节点B。节点B接收该辐射并将其转换成相应的电信号。通过系统10从节点A到节点B的辐射的传播可以被完全光学地执行。
在从节点A到节点B的传播过程中,辐射通过多个中继器和接口,尽管它们提供光放大,但是导致辐射因为衰减和散射而劣化。如果可能的话,系统10在其节点上包括再生器和相位弥散和补偿校正单元。这种再生最好纯光学地执行,因为为了执行再生将辐射转换成相应的电信号,然后再转换回相应的光辐射是系统10上的一种带宽限制约束。类似地,相位弥散和补偿校正也最好被纯光学地执行。在无法在系统10中纯光学地执行这种再生和散射校正时,不得不在电学范围中执行向电信号的转换、再生和散射校正。
现在参考图2,示出在系统10中包括的第一种类型的光接口,即在虚线180中包括的接口70。环20包括第一顺时针光纤回路210,通过它辐射在从东(E)向西(W)的方向上通过接口70传播。而且,环20包括第二逆时针光纤回路200,通过它辐射在从西(W)向东(E)的方向上通过接口70传播。东(E)和西(W)方向在此用于指示图中的传播方向,和实际的东和西的地理方向无关。
类似地,环30包括第一顺时针光纤回路220,通过它辐射在从西(W)到东(E)的方向上通过接口70传播。而且,该环还包括第二光纤回路230,通过它辐射在从东(E)到西(W)的方向上通过接口70传播。
如图2所示,接口70包括十二个信道控制单元(CCU)250至360和互连的相关光放大器400至550;光放大器440至550是再生光放大器,它可以选择提供纯光放大传输和再生光放大传输。接口70还包括光耦合器600至690,用于将辐射从一条光纤耦合到另一条光纤;耦合器是使用光纤熔接技术制造的,尽管也可以使用其它类型的耦合器,例如在此引用作为参考的美国专利US4 950 045中描述的一种耦合器。由于其复杂性,接口70是相对昂贵的器件,但是当在环20、30之间选择性地耦合光辐射时提供更大的灵活性。在不需要这种灵活性时,接口70可以被简化以降低成本;这种简化将在下文中描述。例如,一种可能的简化涉及用与光放大器400至430、520至550相同的光放大器替代一个或多个再生放大器440至500。
现在将参考图2描述耦合器600至690、CCU250至360和光放大器400至550的详细连接。耦合器600至690是相互类似的。而且,放大器400至550也是相互类似地,除了放大器440至550包括附加的再生元件。而且,CCU250至360相互类似。
来自西(W)方向的环20的光纤200被连接到放大器400的输入口。放大器400包括一个输出口,它通过光纤连接到耦合器600,通过其连接到CCU250的输入口A。CCU250包括输出口B,它通过一条光纤连接到耦合器610,通过其连接到放大器410的输入口。东(E)方向中的光纤200被连接到放大器410的输出口。
类似地,来自东(E)方向的环20的光纤210连接到放大器430的输入口。放大器430包括一个输出口,它通过一条光纤连接到耦合器640,通过其连接到CCU260的输入口A。CCU260包括一个输出口B,它通过一条光纤连接到耦合器630,通过其连接到放大器420的输入口。东(W)方向中的光纤210连接到放大器420的输出口。
类似地,来自西(W)方向的环30的光纤220被连接到放大器520的输入口。放大器520包括一个输出口,它通过光纤连接到耦合器690,通过其连接到CCU350的输入口A。CCU350包括输出口B,它通过一条光纤连接到耦合器660,通过其连接到放大器530的输入口。东(E)方向中的光纤220被连接到放大器530的输出口。
类似地,来自东(E)方向的环30的光纤230连接到放大器550的输入口。放大器550包括一个输出口,它通过一条光纤连接到耦合器680,通过其连接到CCU360的输入口A。CCU360包括一个输出口B,它通过一条光纤连接到耦合器670,通过其连接到放大器540的输入口。西(W)方向中的光纤230连接到放大器540的输出口。
耦合器600至640通过一系列的连接电路被连接到耦合器660至690,每条电路包括串行连接的一个光放大器和一个相关CCU。
现在将描述从环20到环30的连接。耦合器600包括第一和第二输出口。耦合器600的第一端口经一条光纤通过放大器480然后通过CCU280连接到耦合器660的第一输入口。另外,耦合器600的第二端口经一条光纤通过放大器470和通过CCU300连接到耦合器670的第一输入口。而且,耦合器640包括第一和第二输出口。耦合器640的第一端口经一条光纤通过放大器490和通过CCU320连接到耦合器670的第二输入口。而且,耦合器640的第二端口经一条光纤通过放大器500和通过CCU330连接到耦合器660的第二输入口。
接着,将描述从环30到环20的连接。耦合器690包括第一和第二输出口。耦合器690的第一端口经一条光纤通过放大器440然后通过CCU270连接到耦合器630的第一输入口。另外,耦合器690的第二端口经一条光纤通过放大器460和通过CCU290连接到耦合器610的第一输入口。而且,耦合器680包括第一和第二输出口。耦合器680的第一端口经一条光纤通过放大器480和通过CCU310连接到耦合器630的第二输入口。而且,耦合器680的第二端口经一条光纤通过放大器510和通过CCU340连接到耦合器610的第二输入口。
每个CCU能够选择性地衰减通过其传播的对应于32个信道中的一个或多个信道的辐射。而且,在CCU250、260、350、360上进行选择性衰减具有将光辐射转向分别在CCU之前的耦合器600、640、690、680的效果。这种转向还使辐射能够在分别在CCU250、260、350、360之后的耦合器610、630、660、670上被添加到转向信道。
在操作中,接口70能够在环20、30之间提供纯光路径,这种路径并不受带宽的限制;然而,当在一个或多个放大器440至500之间使用电再生时产生带宽限制。而且,接口70能够耦合来自环20的特定选择信道并将它们引导到围绕环30的任一方向上。而且,在一种相应的方式中,接口70能够耦合来自环30的特定选择信道并将它们引导到围绕环20的任一方向上。在图2和随后的附图中,东(E)、南(S)、西(W)和北(N)与地理方向无关而仅用于指示图中的方向。
在通信系统10中,节点并不总是需要提供接口70的连接功能。当不需要这种重要功能时,通过省略一些电路,接口70可以被简化以降低其复杂性和成本。
在接口70中,再生和补偿功能可以被包括在上述电路中。如果可能的话,最好光学地执行这些功能,因为它使系统10中的孤粒子传播的优点能够被实现。以在此引用作为参考的美国专利US 5 859 939中所述的方式使用偏振相关波束分离器和交换光延迟线可以实现光均衡。
尽管在系统10中最好使用光再生,也可以在该系统中使用电再生和均衡,尽管这种再生和均衡可能在系统10上施加带宽限制,并阻碍诸如在系统10中实现孤粒子传播的优点。如果需要,除了接口70中的再生之外或者作为替代,光或电再生可以在围绕环20、30的中继器节点中实现。
实际上,商业上可用的光放大器、CCU和光耦合器可以被连接在一起以构成接口70。例如,光放大器400至550最好是结合光激励掺铒的超荧光光纤作为有源光增益元件的专用单元。类似地,CCU 250至360可以从美国的厂家购买,例如可以按单位购买CCU,每个单位包括一对CCU。每个包括光栅、用于可变光衰减器的液晶孔径矩阵和自由空间光学路径以实现一种简单结构和从CCU光输入口到CCU光输出口的6dB量级上的最低插入损耗,当衰减器被设置以提供零衰减时。考虑到在接口70中使用的CCU数量,使用这种可以购买的呈现低插入损耗的CCU对于接口70的性能是有益的;这种低插入损耗的CCU降低了放大要求从而提高了系统10的信噪比性能。
为了进一步说明接口70的操作,将参考图3更加详细地描述CCU250至360。在图3中,图示了CCU250的示意图;其它的CCU260至360与CCU250在结构和性能上类似。
CCU250包括用于接收辐射的光输入口A,用于输出辐射的光输出口B、辅助光输出C、辅助光输入D和用于接收用于控制CCU250的操作的电控制信号的电输入口E;端口E例如用于接收用于控制衰减器的衰减设置的电信号。CCU250在其中包括一个去复用器800、复用器810和在虚线820中包括的所示的32个液晶衰减器矩阵818;衰减器815是矩阵818中一个衰减器的例子。去复用器800包括32个光输出,用于将辐射传输给矩阵818中它们的相应液晶衰减器。衰减器的输出被发送给复用器810的光输入,由其重新重新组合通过衰减器发送的辐射以在端口B上提供输出辐射。当衰减器被设置以衰减入射到其中的辐射时,辐射被转向到复用器830,由其可操作地组合转向辐射并在端口C上提供相应的辐射输出。类似地,端口D被连接到去复用器840,它可操作地将端口D上的辐射输入引导到衰减器以传播到复用器810用于随后输出在端口B上。在接口70中,通常不使用CCU的端口C和D,尽管它们在特定的环境下可以被使用,例如当执行波长转换以将业务从一条信道转换到另一条信道上时,这种转换将在下文中描述。
衰减器可以被电控制器以提供0.1dB到30dB范围内的通过每个衰减器的衰减。在接口70中包括的由在美国的厂家提供的CCU使用自由空间光学器件以获得最小6dB的插入损耗。如果未使用这种自由空间光学器件构造CCU,例如使用更加常规的熔接光纤光学器件,通过去复用器800和复用器810的光损耗将分别在大约7.5dB和4.5dB,导致12dB的总最小插入损耗。而且,如果它们不使用这种简单自由空间结构,在接口70中使用的市场上可买到的CCU将相当昂贵和庞大。
去复用器800可操作地将在端口A上输入的合成辐射滤波成对应于每个上述32个信道的0.8纳米波长信道间隔上的分离的辐射分量。因而,每个衰减器可以衰减与其对应的辐射分量,从而使在输入给去复用器800的辐射中出现的每个信道能够被选择性地衰减并转向给端口C。在接口70中,在CCU250中对应于一个特定信道的辐射分量的衰减导致它的辐射被通过耦合器600转向到它的相关第一和第二输出端口。类似的特性也为在环20、30中顺序连接的CCU260、350、360所有。
由响应于客户命令在系统10中负责路由信息业务的管理控制单元(未图示)所发送的电指令控制CCU250至360。因此,接口70被设计得高度可重新配置,从而使在一个环中传播的任一信道的通信业务能够被选择性地在任一环方向上即在环中的两个辐射传播方向上耦合到另一个环。
现在将参考图4描述再生放大器440至500。放大器440至500是类似,因此,仅详细描述放大器440。再生放大器440包括光开关850、耦合器852、光放大器854、包括通过类似的再生电路连接到复用器864的32个输出的频带选择去复用器856。举一个例子,一个电路包括检测器858、电再生单元860和调制激光源862。每个电路在其输出上连接到复用器864的一个相应光输入。光放大器854可操作地仅提供非再生光放大。
现在将描述再生放大器440的器件部分的互连。放大器440的输入口被连接到光开关850的光输入口J1。光开关的输出J2通过耦合器852的第一光输入口被连接,并自此通过耦合器852被连接到光放大器854的输入口K1。放大器854的输出口K2被连接以为再生放大器440提供一个光输出。
开关850的输出口J3被连接到去复用器856的光输入口H1。去复用器856包括32个光输出口F1至F32,在其上输入给光端口H1的辐射被输出。32输出中的每个输出承载对应于系统10的一个相关频带的辐射。32个输出的每个输出通过它的相关再生电路连接到复用器864的一个相关输入。复用器864的一个光输出口H2被连接到耦合器852的第二输入口,并通过耦合器852连接到放大器854的输入口K1。
现在将参考图4描述再生放大器440的操作。输入口J1接收辐射,根据开关850是如何被编程的,它(a)通过耦合器852转向辐射用于在放大器854中放大以随后在端口K2上输出,从而提供通过放大器440的纯光学传输;或者(b)将辐射转向到去复用器856,由其将辐射分离成对应于频带的相关辐射分量;每个分量通过在其中出现再生的它的相关电路传播,并且在再生时由此传播到复用器864,复用器组合从电路接收到的再生辐射分量以提供再生辐射,该再生辐射在端口H2上被输出给耦合器852;耦合器852将再生辐射耦合到光放大器854用于在其中进行光放大并随后在端口K2上输出。
因而,再生放大器440能够选择性地提供简单的纯光放大或者可选的再生放大。
现在将详细描述放大器440线路的操作。解码器858包括一个光电二极管,可操作地将所接收的光辐射(o)在其电输出上转换成相应的电信号(e)。再生单元860可操作地接收包括一系列数据流的电信号(e),例如以10Gbits/s的比特率,并对它进行滞后和同步处理以使它的数据边沿更加接近它们的原始形式。信源862从它的相关再生单元860可操作地接收一个电信号(e),并使用它调制调谐到在与电路相关的频带上输出辐射的一个激光器。放大器440的每个电路以相同的方式工作,除了每个电路被安排以在与其对应的频带中输出调制辐射。
尽管接口70能够提供双向环之间的互连,例如环20、30之间,经常需要将双向环中的一个特定信道从一个方向切换到另一个方向。为了实现这样一种选择切换功能,一种接口70的简化型式可以被包括在环中。这样一种接口的简化型式在图5中图示并用900一般地表示。减缓接口900包括四个CCU910至940,六个光放大器950至1000和四个光纤耦合器1010至1040。CCU910至940都类似于CCU250。放大器970、980是图4所示类型的,用于选择地提供纯光放大或者再生放大。
现在将描述简化接口900的CCU、放大器和光纤耦合器的互连。放大器950、960、CCU910和耦合器1010、1020在环20的第二光纤回路中被顺序连接。西(W)方向中的第二环的光纤200被连接到放大器950的光输入。放大器950的光输出通过一条光纤被连接到耦合器1010,在通过其连接到CCU910的光输入口A。CCU910的光输出口B通过一条光纤被连接到耦合器1020,再通过其连接到放大器960的光输入。放大器960的光输出被连接到在东(E)方向中的光纤200。
以相同的方式,放大器990、1000、CCU920和耦合器1030、1040被顺序连接在环20的第一光纤回路中。东(E)方向中的第一回路的光纤210被连接到放大器1000的光输入。放大器1000的输出通过一条光纤被连接到耦合器1040,再通过其连接到CCU920的光输入口A。CCU920的光输出口B通过一条光纤被连接到耦合器1030,再通过其连接到放大器990的光输入。放大器990的光输出被连接到西(W)方向中的光纤210。
放大器970及其相关CCU1030被串联连接,并可操作地提供将通信业务从包括光纤200的第二回路连接到包括光纤210的第一回路210的第一电路。类似地,放大器980及其相关的CCU940可操作地提供有选择地将通信业务从第一回路连接到第二回路的第二电路。
在操作中,依靠CCU910、920,简化接口900可以阻止与特定信道相关的在回路中传输的通信业务,并根据发送给其CCU的端口E的指令,将该业务发送给一个电路,该电路可以选择性地传输一个或多个信道。通常,CCU910将被设置以衰减CCU930设置来选择性地传输的一个或多个信道的辐射。类似地,CCU920将被设置以衰减CCU940设置以选择性地传输的一个或多个信道的辐射。因而,接口900使特定的选择信道从围绕环20一个方向上的传播切换到与其相反的方向上。接口使通信业务量更加平均地分配在环20的两个回路之间,从而使系统10能够被更充分地利用。接口900还提供一个或多个光放大和再生放大,它们帮助维持系统10中的光辐射幅度。
当在系统10中耦合通信业务时,以及当在系统10的一个或多个环中切换所选信道的方向时,将通信业务从一个信道切换到沿一个特定回路或者环的另一个信道通常很方便;这通常被称为补偿切换。补偿切换使系统10的信道能够被更完整地利用以承载通信业务以帮助优化系统10的业务容量。
这种波长切换最好在纯光域中执行以避免在系统10上增加带宽限制;在能够执行光混合的非线性光元件中使用光外差技术可以实现光波长切换。另一个方式,通过使用第一频率上的光辐射泵激偏置在其发射激光阈值附近并调谐到在第二频率上输出光辐射的一个激光器也可以实现波长切换,从而使调制到第一频率的辐射上的通信业务能够被调制到从激光器输出在第二频率上的辐射输出上;如果第一频率的辐射对应于系统10的一个信道和第二频率的辐射对应于另一条信道,可以实现将业务从一条信道到另一条信道的切换。
通过将在与系统10的特定信道相关的第一波长上的调制的辐射转换成相应的电信号,然后使用该电信号以幅度调制一个激光器以输出在与系统10的另一个特定信道相关的第二波长上用电信号幅度调制的辐射,也可以执行波长切换。当将通信业务从系统10的一个环耦合到另一个环时,通常发现需要这种波长切换。
现在参考图6,示出连接系统10的两个通信环的波长切换接口。该接口通常用1200表示,并包括两个CCU1210、1220、四个光放大器1230至1260、四个光耦合器1270至1300、一个可调谐滤波器和检测器1310和一个调制可调谐激光器源1320。两个CCU1210、1220中的每个类似于先前所述的CCU250。放大器1230、1240、CCU1210和耦合器1270、1280被连接到环20的第二回路中,该回路包括光纤200。类似地,放大器1250、1260、CCU1220和耦合器1290、1300被连接到环30的第一回路中,该回路包括光纤210。可调谐光纤和检测器1310和激光源1320构成在虚线1330中示出和用1332表示的转发器,它连接到耦合器并可操作地将一个选定信道从一个回路进行波长切换并在另一个波长上将其输出回到相同的环路或者另一环路上。
现在将描述接口1200的互连。来自西(W)方向的环20的第一回路的光纤210被连接到放大器1230的光输入。来自放大器1230的光输出被连接到耦合器1270,并通过其连接到CCU1210的光输入口A。CCU1210的光输出口B经一条光纤连接到耦合器1280,并通过其连接到放大器1240的光输入。第二回路的东(E)方向中的光纤被连接到放大器1240的光输出。
类似地,来自东(E)方向的环30的第一回路的光纤210被连接到放大器1260的光输入。放大器1260的光输出被连接到耦合器1300,并通过其连接到CCU1220的光输入口A。CCY1220的光输出口B通过一条光纤连接到耦合器1290,并通过其连接到放大器1250的一个光输入。环30第一回路的西(W)方向中的光纤210被连接到放大器1250的光输出。
耦合器1270的光输出通过一条光纤连接到可调谐滤波器和检测器1310的第一光输入(W)。类似地,耦合器1300的光端口通过一条光纤连接到滤波器和检测器1310的第二光输入(E)。
耦合器1290的光输出通过一条光纤连接到激光源1320的第一光输入。类似地,耦合器1280的光输入口通过一条光纤连接到激光源的第二光输出(E)。可调谐滤波器和检测器1310包括一个耦合器,以组合在其第一和第二端口上接收的辐射,以及一个可调谐滤波器和检测器。它可操作地接收辐射,滤除与将被切换的一个信道对应的辐射并检测被滤波的辐射以生成提供给输出P1的一个相应的解调电信号。激光源1320包括一个可调谐激光器,用于生成用在激光源1320的电输入P2上施加的一个电信号调制的输出辐射。当激光源1320被调谐以在与滤波器和检测器1310的滤波器频率不同的频率上工作,当在P1上输出的电信号在输入P2上被注入时实现信道间业务的频率切换。
CCU1210可操作地衰减环绕环20的第二回路传播的辐射中所包括的一个或多个选定信道。这种衰减将衰减后的辐射转向到耦合器1270,并向前发送到滤波器和解码器1310的第一输入。当滤波器和检测器1310被调谐到在CCU1210上衰减的一个信道的波长时,辐射通过其传播到检测器并在输出P1上产生一个电信号。来自输出P1的信号被发送给输入P2,并可操作地调制由激光源1320生成的辐射,该激光源1320根据从管理控制单元(未图示)接收的指令选择性地在第一或第二输出上输出调制辐射。当在激光源1320的第二输出上输出辐射时,它传播到耦合器1280并被耦合到第二回路以在东(E)方向中通过光纤200围绕环20的第二回路继续传播。相反,当在激光源1320的第一输出上输出辐射时,它传播到耦合器1290并通过其传播到放大器1250,向前沿着环30的第一回路的光纤210在西(W)方向上继续传播。
CCU1220可操作地选择衰减在环30中传播与一个或多个选定信道对应的辐射,并将该辐射通过耦合器1300发送给滤波器和检测器1310的第二输入。滤波器和检测器1310可操作地隔离辐射分量并检测它们以在输出P1上生成一个相应的电信号。当被发送到激光源1320时电信号调制激光源1320以提供可以被选择性地发送给环20或环30的调制辐射。
因此,接口1200能够选择性地将通信业务从一条信道切换到另一条信道。而且,还能够从环20或30接收这种业务并在信道被切换时选择性地将业务输出到环20或环30上,因此,接口能够执行灵活的和可配置的频率切换和路由选择功能。如果需要,在激光源1320的东(E)和西(W)输出之后可以包括如参考图4所述的纯光放大或者再生光放大。
现在参考图7,示出用1400一般表示的根据本发明的一个接口。接口1400在功能上类似于接口1200并包括在接口1200中出现的部件,除了在接口1200中的转发器1332被用在接口1400中用1410表示的转发器替代。
转发器1410在图7中被包括在虚线1412中表示。转发器1410包括一个可调谐滤波器1420,包括双可选择输入口(E,W),一个可调谐激光源1430和一个偏置控制单元1440。滤波器1420的光输出口Q1被连接到激光源1430的光输入Q2。而且,激光源1430包括两个光输出口(E-W)和光监视口Q3。端口Q3被连接到偏置控制单元1440的输入口。单元1440还包括一个被连接到激光源1430的电输入S2的电输出S1。
现在将参考图7描述接口1400的操作。被划分成32个频带的承载信息的辐射沿着光纤200从西方向传播到放大器1230,放大器1230放大该辐射以提供相应的放大辐射,该放大辐射进一步从放大器1230通过耦合器1270传播到CCU1210。CCU1210从管理控制单元(未图示)接收路由指令以将一个或多个选定频带的辐射转向回到耦合器1270,从它到转发器1410,即到可调谐滤波器1420的W输入口。滤波器1420在来自管理控制单元的指令的控制下通过选择它的W输入口接收被转向的辐射。然后,滤波器1420滤出与将被频率转移的特定频带相关的辐射,并随后在它的输出口Q1上输出滤波后的辐射。然后,滤波后的辐射在激光源1430中被用作激励辐射用于其中所包含的一个可调谐激光器。该激光器被调谐到与滤出的辐射的波长不同的一个波长上。滤出的辐射激励激光器的发射以提供根据来自管理控制单元的指令被选择输出给激光源1430的W或E端口的相应的受激辐射。当选择W端口时,受激辐射被转向到耦合器1290并沿着光纤210在西方向上继续传播。相反,当选择E端口时,受激辐射被转向到耦合器1280并沿着光纤200在东方向中继续传播。
偏置控制单元1440可操作地监视来自激光器的受激辐射。如果辐射存在但是出现未调制,单元1440将这解释为激光器被偏置地远超过了它的发射激光阈值;单元1440通过降低在S1输出上提供的激光器偏置电流来响应,这将降低流过激光器的电流。相反,如果未出现辐射,单元1440将这解释为激光器被偏置地远低于它的发射激光阈值;单元1440通过增加在S1输出上提供的激光器偏置电流来响应,这将增加流过激光器的电流。
接口1400还可以响应沿着光纤210从东方向传播的承载信息的辐射,在此辐射被传播到放大器1260,由其放大该辐射以提供相应的放大辐射。放大的辐射通过耦合器1300传播到CCU1220。CCU1220由管理控制单元指示以将放大辐射中的一个或多个选定频带的辐射转向回耦合器1300,通过它传播到滤波器1420的E输入口。滤波器1420由管理控制单元指示以在E端口上接收辐射。在E端口上出现的辐射的选定频带的处理如上所述出现在激光源1430中,在此相应的切换辐射根据管理控制单元发送的指令可以在东方向中被输出给光纤200或者在西方向中输出给光纤210。
因此,在操作中,接口1200、1400不仅提供波长切换还提供信道通信业务重新路由选择,不仅在东西方向上而且在南北方向上;以与东西方向类似的方式,在此所称的南北方向并不涉及地理方向而仅用于参考图中的传播方向。
在接口1200、1400中,可以并行包括多个转发器1332、1410,以便多个频带的辐射可以被同时切换到其它频带。这样一种修改要求耦合器1270、1300应当具有多个光输出。每个输出被连接到相应的转发器。类似地,耦合器1280、1290应当也具有多个光输入,每个输入连接到一个相应的转发器。如果需要的话,如参考图4所述的纯光放大或者再生光放大可以被包括在激光源1320、1430的一个或多个东(E)和西(W)输出之后。
图6中所示包括在虚线1330中的转发器1332,或者图7所示包括在虚线1412中的转发器1410可以被包括在图1所示的接口70中以提供根据在图8中用1500一般表示的根据本发明的一种修改接口。这样一种修改接口1500不仅提供高度的可重新偏置的信道连接控制,而且使通信业务能够在信道之间切换以确保系统10最佳地操作以防止在可用信道之间业务的很不均衡的分配。
在接口1500中,每个转发器1332与它的滤波器和耦合到其相关CCU光输出口C的检测器1310输入以及耦合到其相关CCU光输入口D的其激光源1320输出相连。尽管转发器1332被图示仅耦合到CCU270、330,如果需要,可以将多个转发器包括在接口1500中以便最多所有的CCU270至340具有能够执行通过其发送的通信业务的波长切换的相关转发器1332、1410。
应该理解,在不脱离本发明范围的情况下可以对系统10、接口70、900、1200、1500进行修改。例如,尽管系统10被表示具有一个发送节点A和一个接收节点B,系统10可以具有围绕其分布的大量发送和接收节点。可以修改系统10以在各种位置上包括通过接口70、900、1200、1500中的一种类型的接口互连的环和线性通信路径的组合。而且,可以如上所述可以简化接口70、900、1200、1500或者使其更加复杂以适应特定的系统重新配置的需要。例如,系统10可以被修改以包括100个双向环,每个环可以包括与接口900类似的10个接口,该环通过类似于接口1500的接口互连在一起。而且,系统10可以被修改以在能够支持孤粒子传播的它的环20至60中包括光纤,以便在不需要附加再生和中继器的情况下可以由系统服务更远的通信距离。
权利要求
1.一种光通信系统(10),包括(a)第一和第二光路径(20、30、40、50、60;200、210;220、230),用于引导划分成频带的承载信息的的光辐射;(b)接口装置(70、80、90、100、110、120),用于选择性地从第一路径(200、210)向第二路径(220、230)传输对应于一个或多个频带的辐射分量,该接口装置(70、80、90、100、110、120)包括频带选择转移装置(250、260)和频带选择耦合装置(280、300、320、330、470、480、490、500、600、630),转移装置(250、260)被包括在第一路径(200、210)中和可操作地从第一路径转移对应于一个或多个频带的辐射分量以提供转移辐射,和耦合装置(280、300、320、330、470、480、490、500、600、630)可操作地将在转移辐射中出现的一个或多个辐射分量耦合进第二路径(220、230)。其特征在于转移装置包括(c)频带选择滤波装置(800),用于将沿着第一路径传播的承载信息的辐射的至少一部分划分成空间上分离的光线,每个光线对应于一个相关频带的辐射;和(d)与每条光线相关的液晶衰减装置(818、820、825),用于选择性地引导对应于光线频带的辐射,被引导的辐射添加给提供给耦合装置的转移辐射。
2.根据权利要求1的系统,其特征在于耦合装置包括(a)频带选择滤波装置(800),用于将转移辐射的至少一部分分离成空间分离的光线,每条光线对应于一个相关频带;和(b)与每条光线相关的液晶衰减装置(818、820、825),用于选择性地传输或转移对应于光线频带的辐射,从而选择性地提供输出到第二路径的辐射。
3.根据权利要求1或2的系统,其特征在于第二路径包括频带选择衰减装置(350、360),用于衰减沿着第二路径(220、230)传播的频带的辐射,耦合装置可操作地将从第一路径始发的辐射添加到衰减装置输出的辐射,衰减装置可操作地衰减沿着第二路径传播的在波长上与由耦合装置添加的辐射一致的频带的辐射。
4.根据权利要求3的系统,其特征在于衰减装置包括(a)频带选择滤波装置(800),用于将沿着第二路径传播的辐射分离成空间分离的光线,每条光线对应于一个相关频带的辐射;和(b)与每条光线相关的液晶衰减装置(818、820、825),用于选择性发送或转移与该光线频带对应的辐射,从而选择性地提供辐射以添加给来自耦合装置的辐射以便继续沿着第二路径传播。
5.根据前述权利要求中任一权利要求的系统,其特征在于转移装置、衰减装置和耦合装置在光域中对承载信息的辐射操作以将至少一部分辐射从第一路径耦合到第二路径,而不需要将任何一部分辐射转换成相应的电信号,再转换回相应的光辐射。
6.根据权利要求1至5中任一权利要求的系统,其特征在于频带选择耦合装置包括频带切换装置(1332、1410),用于将在第一组转移辐射频带上传播的信息转移到输出给第二路径的第二组转移辐射频带。
7.根据权利要求6的系统,其特征在于频带切换装置包括频带选择装置,用于隔离转移辐射中一个选定频带的辐射;检测装置(1310),用于将被隔离的辐射转换成相应的电信号,和一个可用信号调制的光辐射源(1320),可操作地生成承载信号的辐射,并且在与选定频带互相不同的一个频带上,所生成的辐射被输出给第二路径。
8.根据权利要求6的系统,其特征在于频带切换装置包括频带选择装置,用于隔离转移辐射中的选定频带的辐射;和基本上被偏置在其光激射阈值上的一个光辐射源(1430),该辐射源(1430)能够可操作地受激于隔离的辐射以便用隔离辐射承载的信息调制由辐射源(1430)生成的受激辐射,受激辐射在与选定频带互相不同的一个频带上,该受激辐射用于输出给第二路径。
9.根据前述权利要求中任一权利要求的系统,其特征在于耦合装置与再生装置(440、850、852、854、856、858、860、862、864)协同工作以再生通过其传输的转移辐射。
10.根据前述权利要求中任一权利要求的系统,其特征在于第一和第二路径可操作地支持双向辐射传播,接口装置可操作地将在任一方向上沿第一路径传播的一个或多个频带的辐射耦合到用于在任一方向上传播的第二路径。
11.根据前述权利要求中任一权利要求的系统,其特征在于路径包括一个或多个线性路径和环形路径。
12.根据前述权利要求中任一权利要求的系统,其特征在于至少一条路径可操作地支持双向辐射传播,至少一条路径包括重发装置,用于将一个或多个频带的辐射从辐射传播的第一方向耦合到沿着至少一条路径的辐射传播的第二方向,第二方向与第一方向相互相反。
13.一种用于光通信系统(10)的接口(70、80、90、100、110、120),包括(a)第一和第二光路径,用于引导划分成频带的承载信息的光辐射;该接口可操作地将对应于一个或多个频带的辐射从第一路径选择传输到第二路径,(b)频带选择转移装置和频带选择耦合装置,转移装置被包括在第一路径中和可操作地从第一路径转移对应于一个或多个频带的辐射以提供转移辐射,和耦合装置可操作地将在转移辐射中出现的一个或多个辐射耦合进第二路径其特征在于转移装置包括(c)频带选择滤波装置(800),用于将承载信息的辐射的至少一部分划分成空间上分离的光线,每个光线对应于一个相关频带的辐射;和(d)与每条光线相关的液晶衰减装置(818、820、825),用于选择性地引导对应于光线频带的辐射,被引导的辐射添加到用于耦合装置的转移辐射。
14.根据权利要求13的接口,其特征在于耦合装置包括(a)频带选择滤波装置(800),用于将转移辐射的至少一部分分离成空间分离的光线,每条光线对应于一个相关频带;和(b)与每条光线相关的液晶衰减装置(818、820、825),用于选择性地传输或转移对应于光线频带的辐射,从而选择性地提供输出到第二路径的辐射。
15.根据权利要求13或14的接口,其特征在于转移装置、衰减装置和耦合装置对在光域中的承载信息的辐射操作以将至少一部分辐射从第一路径耦合到第二路径,而不需要将任何一部分辐射转换成相应的电信号,再转换回相应的光辐射。
16.根据权利要求13、14或15的接口,其特征在于频带选择耦合装置包括频带切换装置(1332、1410),用于将在第一组转移辐射频带上传播的信息转移到输出给第二路径的第二组转移辐射频带。
17.根据权利要求16的接口,其特征在于频带切换装置(1400)包括频带选择装置,用于隔离转移辐射中的选定频带的辐射;和基本上被偏置在其光激射阈值(1440)上的一个光辐射源(1420),该辐射源(1420)能够可操作地受激于隔离的辐射以便用隔离辐射承载的信息调制由辐射源生成的受激辐射,受激辐射在与选定频带互相不同的一个频带上,该受激辐射用于输出给第二路径。
18.根据权利要求16的接口,其特征在于频带切换装置(1332)包括频带选择装置,用于隔离转移辐射中一个选定频带的辐射;检测装置(1310),用于将被隔离的辐射转换成相应的电信号,和一个用信号调制的光辐射源(1320),可操作地生成承载信号的辐射,并且在与选定频带互相不同的一个频带上,所生成的辐射被输出给第二路径。
19.根据权利要求13至18中任一权利要求的接口,其特征在于耦合装置与再生装置(440、850、852、854、856、858、860、862、864)协同工作以再生通过其传输的转移辐射。
20.根据权利要求13至19中任一权利要求的接口,其特征在于第一和第二路径可操作地支持双向辐射传播,接口可操作地将在任一方向上沿第一路径传播的一个或多个频带的辐射耦合到用于在任一方向上传播的第二路径。
21.一种将承载信息的辐射从权利要求1所述的系统的第一路径传输到第二路径的方法,该方法包括步骤(a)沿着第一路径将承载信息的辐射传播到系统的接口装置;(b)将辐射提供给接口装置的转移装置;(c)将在转移装置上接收的至少一部分承载信息的辐射分离成空间上分离的光线,每条光线对应于一个相关频带的辐射;(d)在相关液晶衰减装置上接收每条光线,并在对应于承载信息的辐射中的一个或多个频带的衰减装置上选择性地转移辐射以提供被转移的辐射;和(e)通过耦合装置将一个或多个转移辐射的频带的辐射耦合到第二路径。
全文摘要
一种光通信系统(10)包括多个互相连接的双向光波导环(20、30、40、50、60),用通信业务调制的辐射在这些环中传播。辐射被划分成32个不同频带。在通信业务在环中从一个环传播到另一个环的系统(10)中包括接口(70、80、90、100、110、120)。每个接口(70)能够在环之间提供一个全光频带可重新配置通信链路。在每个接口上,当将通信业务从一个环传输到另一个环时不需要将光辐射转换成相应的电信号,从而为系统提供与常规光通信系统相比一个潜在的更大的通信带宽。
文档编号H04Q11/00GK1312629SQ01116860
公开日2001年9月12日 申请日期2001年2月17日 优先权日2000年2月18日
发明者M·沙里特, H·R·克拉林博恩 申请人:马科尼通讯有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1